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Abstract — This paper considers series-cascade nonlinear
adaptive filter architectures consisting of a linear input
filter, a memoryless polynomial nonlinearity, and a linear
output filter (LNL). The learning characteristics of the LNL
structure are studied in terms of perfortnance and
complexity. Replacing the linear input stage and the
memoryless nonlinear stage of the LNL model with a
Volterra module is then considered. Adaptive algorithms
are summarized for these structures and experimental
examples are used to illustrate performance for the
identification of an acoustic echo channel.

1. Introduction

Many nonlinear systems can be represented using one of
three models shown in Figure 1 [1]. Depending on the
memory size of the linear components in the LNL model, it
may be desirable to combine modules of the ILNL model,
representing the complete system as a series-cascade of a
Velterra module foilowed by linear filter, or as a linear filter
foliowed by a Volterra module.

In this paper we first consider modular LNL systems
with an FIR input stage and both FIR and IR output stages.
In particular, we consider the models shown in figures 2
and 3 for system identification. The nonlinear filter in
figure 2 is simply a memoryless polynomial filter. Filter-1
of figure 3 is 2 nonlinear filter with memory, which can be
implemented with a Jow Volterra module

2. Joint Adaptation Algorithms

Since the derivations of joint adaptation schemes for the
series-cascade structures considered in this paper were
published in {3, 4], the algorithms will be summarized here.
The normalized least mean squares algorithm {NLMS) used
in this work requires the derivative of the error-squared with
respect to the filter coefficients for each module for
updating the tap weights. These derivatives were obtained
via the concept of back-propagation that is found
extensively in the neural network literature [5].

2.1 The LNL Structure: FIR Output Stage

Table 1 summarizes the joint NLMS adaptation of the
three section LNL structure with an FIR output stage. The
computational requirements for this cascade structure:

Number of tap-weights:
Memory units:
Additions:
Muitiplications:

M NTM;
(M+N)M;
2M,+3N+3Ma+ MMy +NM,-3
4M+HEN+3 MM, M+ NMa+4
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2.2 The LNL Structure: @IR Qutput Stage

Table 2 summarizes the joint NLMS adaptation of the
ENL structure with an lIR output stage using an output
error algorithm. The computational requirements for this
cascade structue are as follows:

Number of tap-weights] M+N+N+N,+]

Memory units: (M +NKNNy+1)

Additions: IMFANHINAINGHMANYNANG )
Multiplications: SMy+ N3N, + 3N, +H(M; + NN +N, 1+6

2.3 Cascaded Volterra aad FIR Structure

Teble 3 summarizes the joint NLMS adaptation
algorithim for the combined Volterra-FIR structure. The
computational requirements for this structure are:

Number of tap-weights: | N,+M,

Memory units: N.M»

Additions: 2NA3M+N M-
Muhiplications: M 3N A4My+N Ma+4

2.4 Cascaded Volterra and IIR Structure

Table 4 summarizes the joint NLMS adaptation of the
Volterra-1IR structure using the output error algerithm for
adjusting the taps of the IIR stage. The computational
requirements for this structure are:

Number of tap-weights:
Memory units:
Additions:
Multiplications:

NN, Nyt 1

N, (N, Ny +1)

3N, HINAINGENLN, NN 2

M, HANHIN+INGENNANN T

3. Experimental Results

Experiments were performed using the series-cascade
structures from Section 2 for the identification of a
noniinear system. Figure 6 shows the model of the acoustic
echo path that was used in the following experiments.

Modeling the loudspeaker: The loudspeaker was modeled
with an FIR filter with memory length 8 in series-cascade
with a memoryless nonlinearity of order $ [2]. The first
coefficient of the FIR filter was fixed at value 1.0 and the
remaining 7 coetlicients were generated randomly and were
kept small, so that the gain due to the memory of this FIR
filter is about 25%. This makes sure that if the magnitude
of the input to the loudspeaker is within 0.8 the magnitude
of the input to the static nonlinearity is within 1.0. The
amplifier was modeled by the nonlinear function f{x) = x —
0.5%* + 0.02x%, which approximates a hyperbolic tangent.
The amplifier is nearly linear for an input [-0.3, 0.3], but
starts saturating for inputs outside of this range.
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Modeling the linear part of the echo path: The envelope
of the impulse response of the room typically has a peak,
and decays exponentially on either side. In the following
experiments, where an FIR filter is used at the output stage,
a filter of length 64 was used to model the echo path. A
small random number was added to each coefficient. For
experiments where the TIR filter is used at the output stage,
an all-pass filter with two complex conjugate poles at 0.9¢
+/-j60 and two zeros at 1.1111le +/-j60 was used to model
the echo path [4]. A babble signal was used as a test input
signal [3]. The instantaneous magnitude of the input signal
was set to be in the range [0.3, 0.8], so that the loudspeaker
operates in its nonlinear region. A Gausian noise of
variance 0:001 was added to the echo signal, corresponding
to a SNR of 21 dB for the echo signal.

Experiment 1: As a baseline experiment an FIR {ilter of
length 71 was used for acoustic echo cancellation. During
the first 20,000 iterations the babble input was de-amplified
by 0.375 so that the input remained in the range [-0.3,0.3],
and the loudspeaker operated in its linear région. For the
next 20,000 iterations the de-amplification was removed
and the toudspeaker was driven into its nonlinear region.
The echo retum loss (ERLE) [3] plot for this stmulation is
shown in figure 7. Whereas the FIR filter achieved an
ERLE of 22.5 dB in the linear region, in the nonlinear
region it was able to achieve an ERLE of only 17 dB.

Experiment 2: The LNL cascade structure was used for
echo cancellation with input and output filter lengths of M,
= 8 and M> = 64. The polynomial filter had a nonlinearity
of order N = 5. The total number of taps required for this
filter is 77. The ERLE plot is shown figure 8, where it is
seen that this structure converged to approximately 20 dB
after 30,000 iterations, i.e., it achieved about 2.5 dB lower
ERLE as compared with operating in the linear region

Next we considered the LNL cascade with a memoryless
polynomial filter of order 5 sandwiched between an FIR
input filter and an 1IR output filter. In this case the IR
stage was adapted with an output error algorithm. The FIR
filter had a memory of length 8, whereas the TIR filter had 2
zeros and 2 poles. The ERLE plot of this experiment is also
plotted in figure 8. This filter reached an ERLE of only 14
dB after 20,000 iterations with the output error scheme,
which appears to be convergence to a local minimum.

Experiment 3: Next the series-cascade of a Volterra filter
and an FIR was tested. The Volterra filter had a memory of
M, = 8 and a nonlinearity order of 3, thereby requiring 164
filter coefTficients. The length of the FIR filter was M, = 64.
The ERLE plot of this structure is shown figure 9. This
structure converged to 21 dB afier 30,000 iterations, which
is 1.5 dB lower than the ERLE obtained in the linear region.

Next he cascade of a Volterra filter followed by an IR
using an output error algorithm was tested. The Volterra
filter had order 3 and memory length 8. The IIR filter had 2

zeros and 2 poles. The ERLE plot of this filter using the
output error scheme is also plotted in figure 9. This
architecture obtained an FRLE of 22 dB with the output
error scheme.

Experiment 4: Both of the cases from the above exampies
with the IIR oufput stage were tested again using the
equation error method for adaptation of the IIR stage. The
ERLE plots for these two cases are compared in figure 10,
where it appears that the equation error method is effective
in avoiding convergence to local minima. Both of these
cases achieved the near optimum ERLE of approximately
22dB.

4. Conclusion

Of the structures considered in this paper, the LNL
architecture appears to perform best with respect to
convergence and computational complexity. The Volterra-
FIR series-cascade structure achieved an ERLE that is
comparable to that of the LNL structure, although its
convergence rate was often slower, and its computation
complexity higher. The equation error method for adaptatin
of the IIR output stage alleviates the difficulty of
convergence to local minima.
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Table I. Joint NLMS update for FIR +memoryless polvonomial filter + FIR eascade

] Additions Multiplications
Operation
1 x[kl= [ skl afk-1he o a[k-Mi+11] - N
2. k=o' [k].x[k] M-t M,
3 vl = Eobkd ok R - N-1
4. 2k = vK]aTk] N-1 N
5. zlk]=[2k], k- 1]...., z{k-Mat11]T - -
6. dlk]=w'[k].z[k] Ma-t M.
7. elkl=AK] - d]k] 1 -
8. a[kl=[1. 2 vkl (K], Ne[k]™ T - N-1
9. MK =v'[klalk] N-1 N
10, x[k] = bik]x[k] - M
1. X[kl = [xplk], xp[k-1],...., Xp{k- Ma+1]) - -
12, p[k] = X[k].w[k] My(Ma-1) M:M;
13, Y[k} =[yfk] vlk-11...., y[k-M:H1]) - -
14, glkl= Y[K.wlk] N (M1} NM,
15, ufk+1}= ulk] + (o / {EpTk]F + 8)).plk].efk} M, M, +2
16, v[k+1]=v[k] + (o / Ga[k}® + ) afk]elk] 2N 2N+2
17 wik+1] = wlk] + o / e[kl + 5)).2{k]efk] 2M, M. +2
Table 2. Joint NLMS FIR +memoryless polvnomial + I1R cascade: Output Error
. Additions Muitiplications
Operation
1. xIK]= [ k], x[k-1]...., x[k-My+1]7” - -
2. vkI=u'Tk].x[k] M,-1 M,
3. vkl = [k} kT, . [K]] - N-1
4. z[k]= vkLylki N-1 N
5. z[k] = [z]k}....z[k-No], alk-Fl....d[k-Ne]]" - -
6,  dlk]=w'[k].z[k) NN, NytN,
7. elk] =rk] - dki - 1 -
8. alki=[1, 2v[kk Syfk],.. Nok[™ - N-1
9, b[k]=v'|k}alk}] N-1 N
10 x k] = &[k].x[k] - M,
1. XK= [xo[k].. ..o [k-No ), pfk-11,. .. plk-Na]) - -
12, plk]= X[kl.w[k] M, (N, +Ng) M, (N, AN+ 1)
13, Y[k] = fyfkd.....y[k- Nl g[k-1}.. . .gfk- No]i - -
14. qlk] = Y[kl.w[k] N(N,*Np) N(N,+Ny+1)
15 ufk+1]= ulk}+ (o / (ipK]iE + 8).p[kLelk] M, M +2
16, v[k+1] = v[k]+ (on / figik]E + 8)1.qlk].c[k] 2N INT2
17, wik+H = wik] + (o ¢ (lz[K]}F + )z{k].e[k] 2N, N,) +2 2NN+
Tgli)k 3. Joint NLLMS Volterra filter + FIR filter cascade,
. Additions Multiptications
Opcration
1 vikp=[yolk] yilk} ... voafk] 17 - M.
2. k)= VK[ N,-1 N,
3. zlki=| z[k], z[k-1},.., z[k-M+1] T - -
4. dk}=w'k].z[k] M1 M,
5. e[kl =r[k}-dik} i .
6. YIki=]|y[klL ¥[k-1],.... y[k-M+*1]L - -
-7, qlk}= Y(KLw k] (Mp-DN, M.N,
8. vik+11= vlk] +Con / (ylkli’ + Sglklefk] N, IN 42
9, wikt1]= wik] + (o / C2fkPE + 3).20k]¢[k] 2 M, 2 My+2
Table 4, Joint NLMS for Volterra Filter + 11R Filter Cascade; Qutput Error
i Additions Muttiplications
Operation
1. ylk]=[ylk] 1k-1]..., v[k-N+1T} - M,
2. zfkl= v (k].v[K] N,-1 N,
3. afki=[7K] .2{k-Ni]. dlk-1}....aTk-Na]" - -
4. dik]= w fklz[k) NNy NN+ |
5. elk]=rlk] - d[k] 1 -
6. Y[k}~ [y[k]L...¥[k-No]. gfk-1],... gk- N.J} - -
7. qlkl= YIXlw[k] NN, *Ny) NN, N+1)
8. v[k+1]= v[k] + (o £ (a[k]F + 8D.gkbefk) 2N, N2
9. wik+1]= wik] + (o 7 G2k]E + 8h.2]k].e[k) 2NN £ 2 2NN +4
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