
R

V
r

D
a

b

a

A
R
R
1
A
A

K
B
S
C
P

1

s
m
i
s
n
t
s
q
i

n
a
t
e
u
s
p

0
d

Brain Research Bulletin 87 (2012) 130– 134

Contents lists available at SciVerse ScienceDirect

Brain  Research  Bulletin

journa l h o me pag e: www.elsev ier .com/ locate /bra inresbul l

esearch  report

alue  of  amplitude,  phase,  and  coherence  features  for  a  sensorimotor
hythm-based  brain–computer  interface

ean  J.  Krusienskia,∗,  Dennis  J.  McFarlandb,  Jonathan  R.  Wolpawb

Electrical & Computer Engineering, Old Dominion University, Norfolk, VA, 23529, United States
Wadsworth Center, Albany, NY 12201, United States

 r  t  i  c  l  e  i n  f  o

rticle history:
eceived 26 July 2011
eceived in revised form
2 September 2011
ccepted 26 September 2011
vailable online 1 October 2011

eywords:
rain–computer interface

a  b  s  t  r  a  c  t

Measures  that  quantify  the  relationship  between  two  or more  brain  signals  are  drawing  attention  as
neuroscientists  explore  the  mechanisms  of  large-scale  integration  that  enable  coherent  behavior  and  cog-
nition.  Traditional  Fourier-based  measures  of  coherence  have  been  used  to  quantify  frequency-dependent
relationships  between  two  signals.  More  recently,  several  off-line  studies  examined  phase-locking  value
(PLV) as  a possible  feature  for use  in  brain–computer  interface  (BCI)  systems.  However,  only  a  few  indi-
viduals  have  been  studied  and  full  statistical  comparisons  among  the  different  classes  of  features  and
their  combinations  have  not  been  conducted.  The  present  study  examines  the  relative  BCI  performance
of  spectral  power,  coherence,  and  PLV,  alone  and  in  combination.  The  results  indicate  that  spectral  power
ensorimotor rhythms
oherence
hase-locking value

produced  classification  at least  as  good  as PLV,  coherence,  or any  possible  combination  of  these  measures.
This may  be  due  to  the  fact  that  all three  measures  reflect  mainly  the  activity  of  a single  signal  source
(i.e.,  an  area  of  sensorimotor  cortex).  This  possibility  is  supported  by the  finding  that  EEG signals  from
different  channels  generally  had  near-zero  phase  differences.  Coherence,  PLV,  and  other  measures  of
inter-channel  relationships  may  be more  valuable  for BCIs  that  use signals  from  more  than  one  distinct
cortical  source.

© 2011 Elsevier Inc. All rights reserved.
. Introduction

Numerous studies over the past two decades show that
calp-recorded EEG activity can be the basis for non-muscular com-
unication and control systems, commonly called brain–computer

nterfaces (BCIs) [18]. EEG-based communication systems measure
pecific features of EEG activity and use the results as control sig-
als. Certain BCI systems use features in the frequency domain
hat are spontaneous in the sense that they are not dependent on
pecific sensory events [19]. Appropriate feature extraction, which
uantifies characteristics of brain signals that convey the user’s

ntentions, is extremely important for effective BCI operation.
Neuroscientists have recently become interested in mecha-

isms of large-scale integration that enable coherent behavior
nd cognition (e.g. [16]). For this reason, measures that quantify
he relationship between two or more brain signals are of inter-
st. Traditionally Fourier-based measures of coherence have been

sed to quantify frequency-dependent relationships between two
ignals. More recently, it has been suggested that a measure of
hase-locking value (PLV) might be better for this purpose as it

∗ Corresponding author. Tel.: +1 757 683 3752; fax: +1 757 683 3220.
E-mail address: deankrusienski@ieee.org (D.J. Krusienski).

361-9230/$ – see front matter ©  2011 Elsevier Inc. All rights reserved.
oi:10.1016/j.brainresbull.2011.09.019
is computationally faster and requires fewer data for a given time
resolution [6,7].

Several studies have examined PLV as a possible feature for
use in BCI systems. Brunner et al. [3] documented changes in both
spectral power and PLV in response to movement in the electrocor-
ticographic (ECoG) activity of three individuals. Brunner et al. [4]
showed that three individuals could learn to control scalp recorded
PLV by motor imagery to select one of three targets online. Subse-
quent offline analysis suggested that the combination of PLV and
spectral power produced better classification than either class of
features alone. Wei  et al. [17] studied spectral power, PLV, and a
non-linear amplitude locking measure (NLR). In three people, com-
binations of spectral amplitude and PLV or NLR produced better
classification than any of the three feature classes alone. Gysels
et al. [6–8] compared PLV and power as EEG features for classifying
imagery conditions in five individuals. Gysels and Celka [6] found
that a combination of PLV and spectral power classified better than
either alone. Results across days and subjects were not always con-
sistent. Gysels et al. [7] report that narrow-band features classify
better with spectral power, while broad-band features classify bet-

ter with PLV. Gysels et al. [8] also compared spectral power and PLV
values with narrow- and broad-band features in a statistical anal-
ysis that apparently mixed days and subjects as sources of error
variance. As in [7],  it is reported that narrow-band features classify

dx.doi.org/10.1016/j.brainresbull.2011.09.019
http://www.sciencedirect.com/science/journal/03619230
http://www.elsevier.com/locate/brainresbull
mailto:deankrusienski@ieee.org
dx.doi.org/10.1016/j.brainresbull.2011.09.019
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Fig. 1. Results of the offline analysis comparing the seven models, representing each
possible combination of features. Each bar indicates the trial-averaged r2 (i.e., the
proportion of the variance of the feature for top and bottom targets accounted for
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etter with spectral power and broad-band features classify better
ith PLV.

These promising initial studies suggest that features such as
LV may  be useful for BCI systems. Thus, they provide the impe-
us for larger studies that gather data from more subjects and over

ultiple days, and apply full statistical analyses to compare the
ifferent feature classes and their combinations. Accordingly, the
resent study compares the utility of spectral power, coherence,
nd PLV in seven BCI users, each studied over 4 days. Furthermore,
t compares the model performances on data sets acquired on days
ifferent from those used for model training.

. Results

The results of the offline analysis comparing the seven models,
epresenting each possible combination of spectral features (i.e.,
LV, Fast Fourier Transform (FFT), and Magnitude-Squared Coher-
nce (MSC)) are summarized in Fig. 1. Each bar in the upper plot
ndicates r2 (i.e., the proportion of the variance of the feature for top
nd bottom targets accounted for by target position) for each of the
even models averaged over all users and each bar in the lower plot
ndicates the classification accuracy for each of the seven models
veraged over all users.

Separate repeated measures analysis of variance (ANOVA) were
erformed on the r2 and accuracy using the factors: METHOD, and

ESSION as factors and their interaction with USERS as error. Only
he effect of SESSION for r2 was significant (p < 0.0004). A posthoc
ukey–Kramer test on METHOD indicated that the only significant
ifferences (p < 0.05) were that PLV performed significantly worse

by  target position) and classification accuracy, averaged across the seven users. The
error bars indicate standard deviation. For reference, the online classification accu-
racy averaged across the users was  79.05 ± 10.8%. This discrepancy with the offline
results is largely due the online classifier adaptation, in addition to the different
feature extraction approach and parameters used online.

ig. 2. The average phase difference between pairs of channels for SWLDA selected features from a representative user. The colorbar indicates the value of the phase difference.
he  left column represents the top target and the right column represents the bottom target. (A) PLV features. (B) MSC  features. (C) FFT-based spectral features. Note that in
ost  cases the phase difference is near zero and is consistent across the top and bottom target conditions. (For interpretation of the references to color in this figure legend,

he  reader is referred to the web version of the article.)
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ig. 3. The phase difference distributions from a representative user. Each distribu
WLDA  regression, respectively.

han all other methods except PLV + MSC, and that PLV + MSC  per-
ormed significantly worse than FFT, PLV + FFT, and PLV + MSC  + FFT.
or accuracy, neither METHOD nor SESSION revealed a significant
ffect.

Fig. 2 illustrates the average phase difference between chan-
els for SWLDA selected features from a representative user for
ach method and target condition. Note that in the vast majority
f cases the phase difference is near zero and is consistent across
onditions. Although the average phase difference is consistent and
ear zero across conditions, the subtle difference in the phase dis-
ributions between conditions, as illustrated in Fig. 3, is sufficient
o produce discriminable PLV features. For each user, the mu-  and
eta-band feature that had the maximum r2 correlation with the
arget position were selected as the most prominent feature for
ach band. Fig. 4 shows the r2 correlation between the most promi-
ent features from each pair of feature extraction methods for the
u and beta bands, respectively. The channel pair and frequency

efining these prominent features tended to be common across fea-
ure extraction methods, thus the same features were compared
cross methods.
. Discussion

The results show that for both r2 and accuracy, the FFT-based
agnitude difference was at least as effective in predicting target
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ig. 4. The r2 correlation between the most prominent features derived from each
air of feature extraction methods for the mu  and beta bands, respectively. For
ach user, the mu-  and beta- band feature that had the maximum r2 correlation
ith the target position were selected as the most prominent feature for each band.

he  channel pair and frequency defining these prominent features tended to be
ommon across feature extraction methods, thus the same features were compared
cross methods. The results were averaged across users and the error bars indicate
tandard deviation.
as generated based on the most prominent mu-  and beta-band feature from the

location as PLV and coherence features. Furthermore, inclusion of
PLV and/or coherence in models with the FFT-based magnitude dif-
ference did not improve prediction above that for the FFT-based
difference alone. This result suggests that, for the task and EEG
channels used in this study, PLV and coherence-based features do
not contain information that is different from that contained in the
FFT-based magnitude features. This is also supported by the high
correlations between the features produced by each method shown
in Fig. 4.

The present results lead us to a conclusion different from [6]
and [4],  which both report that the combination of PLV and spec-
tral power features leads to better classification than either of these
classes of features alone. This could be due to several factors. These
previous studies [6–8] had fewer subjects, each of whom appears to
have provided the data for a number of analyses. Combining many
analyses with few subjects increases the probability of findings that
do not generalize well to other subjects. Methodological differences
could also be involved. For example, the data used in the present
study were collected in BCI users performing a cursor movement
task with on-line feedback while the data used in [6] involved
imagination without feedback of movements and unspoken word
generation. Feedback was  not provided. The ECoG data presented
in [3] may  have reflected multiple different cortical sources, while
our data were probably dominated by a single source. However it
is difficult to speculate why these results are different from the
present results because they do not describe the phase differences
they found.

Our observation that signals recorded over motor areas gener-
ally have zero phase difference is consistent with the observations
of others [13,15]. This could be due to volume conduction and/or
to the fact that large (i.e., topographically extensive) sources are
likely to dominate scalp-recorded activity. To the extent that
near-zero phase synchronized activity is present across mul-
tiple recording sites, it would be expected to produce high
phase-locking values. At the same time, it would appear that
in this case simple spectral amplitude measures work at least
as well for BCI purposes. This is probably due to the nature
of sensorimotor rhythm de/synchronization. During synchroniza-
tion, signal amplitude increases and, together with the observed
zero-phase synchrony across channels, leads to increased phase-
locking values, coherence, and spectral amplitudes. Conversely,

during desynchronization, signal amplitude and signal-to-noise
ratio decrease, and this also reduces phase-locking and coherence
values (though only slightly). In sum, in the present BCI applica-
tion, PLV, coherence, and simple spectral amplitude features are
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Table 1
Online features.

User Location Freq. (Hz)

A C3/C4 12
B  C3/C4 22
C C3/C4 12
D  C3/C4 12
E CP3/CP4 12
F  C3/C4 12
G  CP3/CP4 11

For each of the seven users, the predetermined central electrodes of the Laplacian

and Puv(f) is the cross power spectral density between the two  channels. The MSC
was  computed using Welch’s averaged modified periodogram method [9] with each
data segment divided into eight equal sections having 50% overlap. The resulting
MSC  features were averaged over each trial. The FFT magnitude difference for each

Fig. 6. The large Laplacian spatial filter configuration for the C3/C4 users. For an elec-
ig. 5. One-dimensional task trial structure. (1) The target and cursor are present on
ovement controlled by the user. (3) If the user hits the target, the target flashes 

lank  for a 1-s interval. (5) The next trial begins.

ssentially capturing the same phenomenon. This is indicated by
he regression model performance in Fig. 1 and the high feature
orrelations in Fig. 4.

Phase-locking and coherence features are likely to be of greater
enefit when the recorded signals have non-zero phase synchrony.
his would be the case if there were waves that travel across the
urface of the scalp (e.g. [2])  or perhaps when there is a relationship
etween activities in two distant sites [16]. Neither of these con-
itions appears to be present in the present study, which focused
ntirely on data from sensorimotor cortex. Coherence and PLV may
e of greater value when BCIs use activity from multiple different
ources. While the present results suggest it is unlikely that useable
hase or coherence features can be produced by a single source
rom the sensorimotor cortex, online feedback of these features
as not provided. Online experiments are necessary to confirm
hether users can learn to accurately modulate phase or coher-

nce features from multiple sources within or in conjunction with
he sensorimotor cortex.

. Methods and materials

In one- and two-dimensional cursor control studies [11,19], trained users are
ble to effectively modulate 8–12 Hz (� band) and/or 18–26 Hz (� band) spec-
ral  components over sensorimotor cortex to move a cursor toward a randomly
ositioned target on a monitor. In the present study, data were collected from 7
ble-bodied users (4 women and 3 men  ranging in age from 28 to 56). Each user was
rained on a simple one-dimensional two-target cursor control task, and EEG data
ere collected during task performance. The data were analyzed offline to examine

he relationship and utility of amplitude, phase, and coherence features for the task.
he study was approved by the New York State Department of Health Institutional
eview Board, and each user gave informed consent.

.1. One-dimensional cursor control task

For one-dimensional sensorimotor rhythm cursor control task, the users were
resented with a target randomly positioned at the top or bottom of the right edge
f  the monitor as illustrated in Fig. 5 [11]. The trial began with the cursor at the
enter of the left edge of the monitor. It moved at a constant rate toward the right,
eaching the right side of the monitor in 2 s. The user’s goal was  to move the cursor
ertically to hit the target using hand-motor imagery. A single 3-min run consisted
f  32 trials, and 8 runs constituted a single session.

.2. Data collection and feature extraction

The details of the data collection and analysis are as follows. Using the BCI2000
eneral-purpose BCI software platform [14], EEG activity was collected from 64
hannels at standard locations distributed over the scalp [1]. All 64 channels were
eferenced to the right ear, bandpass filtered (0.1–60 Hz), and digitized at 160 Hz. A
arge Laplacian spatial filter was applied to the electrode over the right and/or left
and area of the sensorimotor cortex that was predetermined as optimal for each
ser based on analysis of prior sessions (see Fig. 6 and Table 1). The spectrum of the
patial-filtered signal was  computed every 50 ms  from the past 400 ms  of data using

 16th-order AR model. A linear combination of 3-Hz bins at the predetermined
-band and/or �-band center frequency was  used as the online control feature.
his linear combination of bins was adapted from trial to trial using the least-mean
quares (LMS) algorithm [12].

.3. Offline feature extraction
The offline features were extracted using the raw signals from nine electrodes
omprising the online large Laplacian spatial filter of the right and left hemisphere
and areas of the motor cortex, as predetermined to be optimal for each user
ased on analysis of prior sessions (see Fig. 6 and Table 1); however, note that a
spatial filter (International 10–20 System) and the frequencies used for the online
experiments.

Laplacian filter was  not applied to these raw signals for the offline analysis. The
features were computed every 20 ms  using the past 500 ms of data. This window
size and overlap were selected to provide sufficient data for achieving an adequate
coherence resolution, while allowing for the frequent cursor movements that are
best  for online BCI control. The data segments were zero-padded to length 256 and
the  Fast Fourier Transform (FFT) and Magnitude-Squared Coherence (MSC) between
each pair of channels (36 combinations total) were computed for each segment, with
the MSC  defined as:

MSC(f ) = |Puv(f )|2
Puu(f )Pvv(f )

(1)

where Pxx(f) is the power spectral density for each of the two channels x = u and v,
trode over the hand area of the sensorimotor cortex (indicated in black), the signals
from the four equidistant surrounding electrodes (indicated in gray) are averaged
and subtracted from this central (black) electrode to produce the control signal. For
offline analyses, the nine black or gray electrodes from both hemispheres were used
for processing. For CP3/CP4 users, the nine white electrodes were used.
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air of channels was computed and averaged over each trial. The phase of the FFT
as  used to compute the PLV [10] for each trial as follows:

LV(f  ) =

∣∣∣∣∣
1
N

N∑

t−1

ej�uv(f,t)

∣∣∣∣∣
(2)

here �uv(f, t) is the phase difference between channels u and v for a given data
egment and N is the number of phase observations over a trial. Thus, three types
f  spectral features were computed for each trial and pair of channels: the FFT rep-
esenting the magnitude relationship; the PLV representing the phase relationship;
nd MSC  representing the coherence between channels.

.4. Feature classification

The aforementioned features were extracted from four consecutive sessions
sessions 4–7) for each subject. To further reduce the feature space for analysis,
djacent frequency bins were averaged to produce 2.5-Hz frequency bins from 0 to
0  Hz, resulting in 576 features (36 channel pairs X 16 frequency bins) for each of the
hree feature extraction methods. Using the first session for each subject (i.e., ses-
ion 4), combinations of features from each feature extraction method were used to
onstruct seven linear regression models to predict the vertical target position: PLV,
SC, FFT, PLV + MSC, PLV + FFT, MSC  + FFT, and PLV + MSC  + FFT (i.e., the three differ-

nt feature classes alone and their four different possible combinations). The model
eights were determined using a stepwise linear discriminant analysis (SWLDA)

5]  with entrance and exit tolerances of 0.1 and 0.15, respectively, and the size of
he  model limited to 60 features.

The models were tested using the three subsequent sessions (i.e., sessions 5–7)
or  each user and the predicted model outputs were correlated with the actual
ertical target positions. Additionally, the classification accuracy of the model for
redicting the target position was determined.
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