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Abstract—This paper compares the performance of several 
structured optimization strategies in adaptive signal processing 
problems that are characterized by ill-conditioned error 
surfaces.  The genetic algorithm (GA), the particle swarm 
optimization (PSO) algorithm, and a new constrained random 
search (CRS) algorithm [8] are considered.  When applied to 
adaptive filters, these structured stochastic search strategies 
are independent of the adaptive filter structure and are 
capable of converging to the global solution when applied in 
circumstances that create multi-modal mean squared error 
surfaces. 

I. INTRODUCTION 
In many adaptive signal processing problems the mean 

squared error surface that exists as a hyper-surface in the 
multidimensional parameter space may be ill-conditioned in 
the sense that it is a non-quadratic surface that possesses 
local minima and saddle points, in addition to a global 
minimum that represents the optimal solution.  It is well 
known that such surfaces inhibit efficient optimization for 
certain classes of adaptive systems, such as infinite impulse 
response (IIR) adaptive filters, nonlinear polynomial 
adaptive filters, and neural networks. One such situation 
occurs in independent component analysis (ICA), where it is 
well known that the mutual information function exhibits 
multi-modality that tends to inhibit the success of gradient 
descent algorithms. 

Stochastic optimization algorithms aim at increasing the 
probability of encountering the global minimum, without 
performing an exhaustive search of the entire parameter 
space.  Unlike gradient descent techniques, the performance 
of stochastic optimization techniques in general is not 
dependent upon the filter structure.  Therefore, these types of 
algorithms are capable of globally optimizing any class of 
adaptive filter structures or any types of objective functions. 

II. STRUCTURED STOCHASTIC OPTIMIZATION 
The foundation of a structured stochastic search is to 

intelligently generate and modify the randomized estimates 
in a manner that efficiently searches the error space, based 

on some previous or collective information generated by the 
search. Several different structured stochastic optimization 
techniques can be found in adaptive filtering literature, most 
notably simulated annealing [1], evolutionary algorithms 
such as the genetic algorithm [9], and swarm intelligence 
algorithms such as particle swarm optimization [5][6][7]. 
One interesting item to note is that all of the prominent 
structured stochastic optimization techniques are inspired by 
a natural or biological process. 

A. Evolutionary Algorithms 
Evolutionary algorithms (EA) begin with a random set 

of possible solutions (the unknown parameters to be 
optimized), termed the population [4].  Each possible 
solution in the population is termed an individual.  Each 
individual’s set of parameters is termed a chromosome or 
genome, and each parameter is termed a gene.  Depending 
on the nature of the problem, the chromosomes may 
represented as real numbers or can be encoded as binary 
strings. 

For every generation the fitness of each individual is 
evaluated by a predetermined fitness function that is assumed 
to have an extremum at the desired optimal solution.  An 
individual with a fitness value closer to that of the optimal 
solution is considered better fit than an individual with a 
fitness value farther from that of the optimal solution.  The 
population is then evolved based on a set of principles rooted 
in evolutionary theory such as natural selection, survival of 
the fittest, and mutation.  Natural selection is the mating of 
the fittest individuals (parents) within the population to 
produce a new individual (offspring). This equates to 
randomly swapping corresponding parameters (crossover) 
between the parents to produce a new, potentially fit 
individual. The new offspring then replace the least fit 
individuals in the population, which is the survival of the 
fittest facet of the evolution. A portion of the population is 
then randomly mutated in order to add new parameters to the 
search. The expectation is that only the offspring that inherit 
the best parameters from the parents will survive and the 
population will continually converge to the best possible 
fitness that represents the optimal or suitable solution. 
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Previous work on EAs for adaptive filtering, specifically 
the GA, shows that the GA is capable of globally optimizing 
both IIR [9] and nonlinear [10] filter structures. The 
performance of the GA is examined for general nonlinear 
recursive adaptive filters in [10], along with a proof of 
convergence for the estimation error.  

B. Particle Swarm Optimization  
Particle swarm optimization was first developed in 1995 

by Eberhart and Kennedy [2].  Based on the notion of swarm 
intelligence of insects, birds, etc. the algorithm attempts to 
mimic the natural process of group communication of 
individual knowledge that occurs when such swarms flock, 
migrate, forage, etc. in order to achieve some optimum 
property such as configuration or location. 

The conventional PSO algorithm begins by initializing a 
random swarm of M particles, each having R unknown 
parameters to be optimized.  At each epoch, the fitness of 
each particle is evaluated according to the selected fitness 
function.  The algorithm stores and progressively replaces 
the most fit parameters of each particle (pbesti, i=1,2,...,M) 
as well as a single most fit particle (gbest) as better fit 
parameters are encountered.  The parameters of each particle 
(pi) in the swarm are updated at each epoch (n) according to 
the following equations: 

veli (n) = w * veli (n −1) + acc1 * diag e1,e2,...,eR[ ]i1
* (gbest − pi (n −1))

+ acc2 * diag e1,e2,...,eR[ ]i2
* (pbesti − pi (n −1))

                       pi (n) = pi (n −1) + veli (n)  

where veli (n)  is the velocity vector of the ith particle, er is a 
vector of random values within in the interval (0,1), acc1 
and acc2 are the acceleration coefficients toward gbest and 
pbesti respectively, and w is the inertia weight. 

Each particle is influenced in a direction determined by 
the previous velocity and the location of gbest and pbesti.  
Each particle’s previous position (pbesti) and the swarm’s 
overall best position (gbest) are meant to represent the 
notion of individual experience memory and group 
knowledge of a “leader or queen”, respectively, that 
emerges during the natural swarming process. The 
acceleration constants are typically chosen in the interval  
(0,2) and serve dual purposes in the algorithm. For one, they 
control the relative influence toward gbest and pbesti, 
respectively, by scaling each resulting distance vector.  
Secondly, the two acceleration coefficients combined form 
what is analogous to the step size of an adaptive algorithm.  
Acceleration coefficients closer to 0 will produce fine 
searches of a region, while coefficients closer to 1 will result 
in lesser exploration and faster convergence. Setting the 
acceleration greater than 1 allows the particle to possibly 
over-step gbest or pbest, resulting in a broader search. The 
random ei vectors have R different components, which are 
randomly chosen from a uniform distribution in the interval 

(0,1).  This allows the particle to take constrained randomly 
directed steps in a bounded region between gbest and pbest.  

When a new gbest is encountered during the update 
process, all other particles begin to swarm toward the new 
gbest, continuing the directed global search along the way.  
The search regions continue to decrease as new pbesti’s are 
found within the search regions.  When all of the particles in 
the swarm have converged to gbest, the gbest parameters 
characterize the minimum error solution obtained by the 
algorithm. One of the key advantages of PSO is the ease of 
implementation in both the context of coding and parameter 
selection.  

C. A New Constrained Random Search Algorithm 
The form of the new constrained random search (CRS) 

method proposed here was motivated by a study of simulated 
annealing [1].  The SA algorithm starts with defining an 
initial configuration C0 and an initial temperature T=T0.  It 
then generates a sequence of configurations N=N0. The 
temperature is then reduced and a new number of steps to be 
performed at that temperature are determined.  A candidate 
configuration is accepted if its cost is less than that of current 
configuration. If the cost of the new configuration is larger 
than the cost of the previous configuration it can still be 
accepted with a certain probability. Typically, SA is not a 
population based search method, so instead of taking N0 
steps one after another, we decided to instead initialize N0 
configurations around a configuration (filter coefficient 
vector) and then evaluate the fitness of all these. The fittest 
among the population is selected and the process is repeated. 

The weight initialization equation for the CRS algorithm 
proposed here is given by: 

                  )(*)(*)()()1(
___

nbnenanwnw ii +=+  (3) 
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_

+nwi  is a newly generated ith configuration 

(weight vector), )(
_

nw  is the previous best configuration, a(n) 
is a parameter which decreases as the number of iteration 
increases, e(n) is the instantaneous error value of the 

previous configuration and )(nbi

−
 is a random vector 

consisting of uniformly distributed random numbers between 
[-1,1]. It was discovered experimentally that the inclusion of 
the instantaneous error term e(n) in equation (3) gives a 

faster convergence when )(nbi

−
 training IIR adaptive filters. 

The product of e(n) and )(nbi

−
 can be viewed as a noisy 

gradient. So basically we start with a random filter weight 
vector and then generate N=N0 new weight vectors around it, 
governed by equation (3). The starting value of a(n) is kept 
high so that the algorithm searches the space to find the 
global valley and slowly it decreases to fine tune the 
solution. The following table summarizes the CRS 
algorithm. 

(1) 
(2)
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III. EXPERIMENTAL EXAMPLES 
In this section two experimental examples are presented 

to demonstrate the performance of structured stochastic 
optimization algorithms on system identification problems 
that have multi-modal mean-squared-error (mse) surfaces.  
The learning characteristics shown below were produced by 
ensemble averaging over fifty independent trials and time 
averaging over a window of size 100. 

Example 1. (IIR system, matched order, colored noise input, 
SNR=20dB): This example is taken from [3].  The adaptive 
system is excited by a colored noise input obtained by 
filtering white noise.  The transfer functions of the plant 
Hp(z), the adaptive filter Hf (z), and the coloring filter Hc(z) 
are given by: 

                              Hp (z−1) = 1

(1− 0.7z−1)2
  (4) 

                     Hf (n,z−1) = b0(n )

1+a1(n )z−1 +a2(b )z−2  (5) 

                      Hc (z−1) = (1− 0.7z−1)2 (1+ 0.7z−1)2  (6) 

It has been shown previously that two minima exist on the 
mse surface for this example [3].  The learning 
characteristics for a population size of 25 are shown in figure 
1 for standard particle swarm optimization (PSO), for 
modified particle swarm optimization (MPSO) [6] (that 
includes mutation and re-randomization about gbest each 
time a new gbest is found) and the genetic algorithm (GA).  
Figure 2 shows the same experiment using the CRS 
algorithm.  It can be seen from figure 1 that the standard 
PSO algorithm converges quickly, but tends to “stagnate” 
considerably above the –20 dB noise floor.  Both the MPSO 
algorithm and the GA converge to the –20 dB noise floor, 
although the MPSO algorithm reaches the noise floor faster.  
From the results shown in figure 2 it appears that the CRS 
algorithm reaches the noise floor faster than the algorithms 
shown in figure 1, although the improved rate of 
convergence is marginal. 

Example 2. (IIR system, reduced order, colored noise input:  
For this example the plant is given by: 

                           Hp (z−1) = 1

(1− 0.6z−1)3
  (7) 

                   Hf (n,z−1) = b0(n )

1+a1 (n )z −1 +a2(b )z −2  (8) 

                   Hc (z−1) = (1− 0.6z−1)2 (1+ 0.6z−1)2  (9) 

The adaptive system is excited by a colored input generated 
by filtering white noise with the coloring filter given by 
equation (9).  The coloring, in combination with the reduced 
order, creates the bimodal error surface shown in figure 3 
[3]. The experimental results for this example using a 
population of 25 and 50 are shown in figures 4 and 5, 
respectively.  As in the previous example, the PSO algorithm 
tends to stagnate at a level above the noise floor, whereas the 
MPSO and the GA algorithms are both able to reach the 
global minimum.  In this case the global minimum, 
approximately –17.0 dB, is determined by the mismatch 
between the second order adaptive system and the third order 
plant. In this case too the CRS algorithm performs somewhat 
better than the other algorithms with a comparable 
population size. 

IV. CONCLUSIONS 
The population-based methods discussed here appear to 

be able to locate global minima.  In general on nonconvex 
error surfaces population based methods out perform 
gradient based algorithms [6][7][8].  In both examples the 
CRS algorithm performs better than the PSO algorithm, 
although it is not yet known if this is a general result. 
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Figure 1.  Performance of stochastic search algorithms for 

Example 1.   (Population = 25) 
 

  
Figure 2.  Performance of CRS algorithm for Example 1. 

 

 
 

Figure 3.  Mean squared error surface for Example 2. 

 
Figure 4.  Performance of stochastic search algorithms for 

Example 2. (Population = 25) 

 

 
Figure 5.  Performance of stochastic search algorithms for 

Example 2. (Population = 50) 
 

 
Figure 6.  Performance of the CRS algorithm for Example 2  

     

Noise floor –20dB. 
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