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Abstract
Objective. Recently, paradigms using code-modulated visual evoked potentials (c-VEPs) have
proven to achieve among the highest information transfer rates for noninvasive brain—computer
interfaces (BCIs). One issue with current c-VEP paradigms, and visual-evoked paradigms in
general, is that they require direct foveal fixation of the flashing stimuli. These interfaces are
often visually unpleasant and can be irritating and fatiguing to the user, thus adversely impacting
practical performance. In this study, a novel c-VEP BCI paradigm is presented that attempts to
perform spatial decoupling of the targets and flashing stimuli using two distinct concepts: spatial
separation and boundary positioning. Approach. For the paradigm, the flashing stimuli form a
ring that encompasses the intended non-flashing targets, which are spatially separated from the
stimuli. The user fixates on the desired target, which is classified using the changes to the EEG
induced by the flashing stimuli located in the non-foveal visual field. Additionally, a subset of
targets is also positioned at or near the stimulus boundaries, which decouples targets from direct
association with a single stimulus. This allows a greater number of target locations for a fixed
number of flashing stimuli. Main results. Results from 11 subjects showed practical classification
accuracies for the non-foveal condition, with comparable performance to the direct-foveal
condition for longer observation lengths. Online results from 5 subjects confirmed the offline
results with an average accuracy across subjects of 95.6% for a 4-target condition. The offline
analysis also indicated that targets positioned at or near the boundaries of two stimuli could be
classified with the same accuracy as traditional superimposed (non-boundary) targets.
Significance. The implications of this research are that c-VEPs can be detected and accurately
classified to achieve comparable BCI performance without requiring potentially irritating direct
foveation of flashing stimuli. Furthermore, this study shows that it is possible to increase the
number of targets beyond the number of stimuli without degrading performance. Given the
superior information transfer rate of c-VEP paradigms, these results can lead to the development
of more practical and ergonomic BCls.

Keywords: brain—computer interface, steady-state visual evoked potentials, code-modulated
visual evoked potentials, electroencephalogram

(Some figures may appear in colour only in the online journal)

1. Introduction

Brain—computer interfaces (BCls) are systems that directly
decode brain activity to communicate user intent [1]. One of
the most promising approaches for scalp electro-
encephalogram (EEG)-based BClIs utilizes flashing stimuli to
elicit visual-evoked potentials (VEPs) over the occipital cor-
tex. BCIs based on steady-state visual evoked potentials
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(SSVEPs) have been extensively studied and have proven to
be among the most flexible and robust approaches [2]. The
performance and reliability of SSVEP detection have been
improved with advanced multichannel analysis techniques
such as canonical correlation analysis (CCA) [3]. A variation
known as the code-modulated VEP (c-VEP) [4] employs
stimuli that flash according to binary, pseudo-random
sequences known as m-sequences. Because m-sequences have

© 2015 I0OP Publishing Ltd  Printed in the UK


mailto:nick.waytowich@gmail.com
http://dx.doi.org/10.1088/1741-2560/12/3/036006
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-2560/12/3/036006&domain=pdf&date_stamp=2015-04-15
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-2560/12/3/036006&domain=pdf&date_stamp=2015-04-15

J. Neural Eng. 12 (2015) 036006

N R Waytowich and D J Krusienski

an autocorrelation of nearly zero for non-zero shifts of the
sequence, each target can be flashed using distinct time-
shifted versions of a single reference m-sequence. This
eliminates potential steady-state stimulus frequency biases
and allows for straightforward extension to larger numbers of
targets compared to standard SSVEP. Thus, c-VEP paradigms
have provided among the highest information transfer rates
(ITRs) for noninvasive BCIs [5].

Visual irritation and fatigue from prolonged visual sti-
mulation is an often overlooked issue that can significantly
affect usability of VEP-BCls in real-world scenarios [6, 7]. In
the seminal study that yielded impressively high noninvasive
BCI ITRs, Bin et al used a matrix of 32 targets that simul-
taneously flashed according to a time-shifted m-sequence [4].
The matrix was additionally encompassed by 28 compli-
mentary flashing non-target stimuli for a total of 60 simulta-
neously flashing stimuli. Although this paradigm produced a
comparatively high ITR for a noninvasive BCI, it generates a
visual cacophony that is not visually pleasing or desirable for
long-term use. Traditional solutions to this problem have been
to reduce the saliency or obtrusiveness of the visual stimuli
such as utilizing high-frequency stimulation (>35 Hz) [8, 9],
high duty-cycle stimulation (<50% duty cycle) [10], or low-
contrast stimulation (0-10% contrast) [11]. Although these
approaches can reduce the reported visual fatigue, they gen-
erally compromise performance. For example, with the high-
frequency stimulation, Muller er al [8] reported average
accuracies near 69% with an average ITR of 46.8 bits min™'
with frequencies greater than 30 Hz, compared to average
accuracies of 91% and an average ITR of 92.8 bits min~'
using c-VEP [12].

SSVEP BClIs that do not require direct foveation of the
flashing stimuli have also been developed. These paradigms
are ultimately designed for individuals who are unable to
control their gaze, such as with locked-in syndrome [13].
Typically, these paradigms require the user to fixate their eye-
gaze on a central, inactive position while focusing covert
attention on a flashing target located in their parafoveal vision
(i.e., 2 ~ 5 degrees of visual angle from foveal center [14]).
While these paradigms achieve some degree of effectiveness,
they generally suffer from a dramatic drop in performance
compared to direct-gaze approaches, even when implement-
ing a small number of targets [13, 15-17].

The present study proposes a novel c-VEP paradigm that
incorporates two distinct concepts that spatially decouple the
targets from the flashing stimuli. The first concept spatially
separates the targets from the stimulus such that fixation of
the target does not require direct foveation of the flashing
stimuli, nor does it require covert attention. For the second
concept, while traditional SSVEP and c-VEP paradigms
generally require a unique stimulus per target location, the
proposed paradigm allows for target locations associated with
the boundaries of the stimuli. This effectively decouples the
targets from association to a single stimulus and increases the
number of possible targets for a fixed number of distinct
stimuli.

To evaluate both of these concepts, the flashing stimuli
form a ring that encompass the spatially separated non-

flashing targets, i.e., the user’s ‘workspace’. Targets are also
uniquely positioned at or near the boundaries of adjacent
stimuli. The user attends to a non-flashing target and the non-
foveal flashing stimuli modulate the EEG. Several target
configurations are evaluated and compared to the traditional
direct-foveal (i.e., superimposed) target approach using the
same interface. The results indicate that comparable perfor-
mance can be attained using the traditional direct-foveal and
the proposed non-foveal approaches, and that boundary tar-
gets can be as effectively discriminated as traditional non-
boundary targets. These findings provide important insights
for the development of more ergonomic and practical visual
flashing paradigms for BClIs.

2. Methodology

2.1. Experimental paradigm

The proposed paradigm utilizes c-VEP stimuli that form a
circular ring encompassing the non-flashing targets as shown
in figure 1. The ring is segmented into four distinct arcs that
are each flashed according to time-shifted versions of a single
m-sequence. An m-sequence length of 63 was selected for
purposes of comparison to the results from Bin et al [4].
While a shorter m-sequence can be used for this four- sti-
mulus configuration, the length 63 m-sequence was imple-
mented to maintain the same stimulus interval and temporal
dynamics as Bin’s landmark study. Because there are only
four stimuli in the present paradigm, the m-sequence was
circularly shifted by 15 bit intervals (0.25 s) for each adjacent
stimulus to minimize undesirable EEG correlations due to
smaller temporal shifts. During flashing, the segments of the
ring alternate between pure black and white according to the
shifted m-sequence. The background is 50% gray tone.

Both offline and online experiments were conducted to
evaluate the new paradigm. In the offline experiment, EEG
data were collected during foveal fixation on 25 different
target locations (see figure 1(a)) to test the effects of target
position and distance from the stimuli on performance.
Fixation crosses were placed in three concentric rings (eight
crosses per ring) at varying radii from the center of the ring.
Eight of the 25 targets were superimposed directly on the
stimuli for direct comparison of traditional direct-foveal sti-
mulation and parafoveal stimulation. Targets were also placed
at or near the boundaries of adjacent stimuli to determine if
the combination of these stimuli could create discriminable
EEG patterns and effectively double the number of possible
targets for a given number of stimuli.

2.1.1. Target location grouping. The stimulus-ring design
allows for unique characterization of c-VEP stimulation by
exploiting spatial asymmetries produced by the surrounding
ring stimuli and the encompassed target locations. The targets
shown in figure 1(a) can be grouped by location such that
attending to a particular location will elicit either direct-foveal
(<1 degree of visual angle from foveal center), near-foveal
(1 >~ 2 degrees of visual angle from foveal center), or
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Direct-Foveal
(locations 1-8)

1) 8-Class (all)
2) 4-Class (even)

Near-Foveal | 3

8-Class (all)

Parafoveal
(locations 17-24)

) (
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) (
(locations 9-16) | 4) 4-Class (even)

) (
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5) 8-Class (all)
6) 4-Class (even)

Figure 1. Workspace and target locations/groupings. (a) Four flashing c-VEP stimuli form a ring that encompass non-flashing targets
indicated by the fixation crosses (+). During flashing, the segments of the ring alternate between pure black and white according to the shifted
m-sequence. All 25 target locations used for offline evaluation are shown. Target locations are also placed directly over the stimuli to
represent traditional direct-gaze stimulation. Only a single target is visible at any time for the offline experiments. (b) Target numbering for
groupings. The odd numbers in blue represent the boundary targets and the even numbers in green represent the non-boundary targets. This
numbering scheme is used to designate the concentric rings and the various 4- and 8-class classification configurations. (c) Target groupings

for classification according to (b).

parafoveal (2 ~ 5 degrees of visual angle from foveal center)
visual stimulation. While there is no precise delineation of
these foveal categorizations, the prescribed visual angles fall
within the generally accepted ranges for foveal vision [14].

Additionally, targets can also be grouped as boundary,
being on or adjacent to the boundary of two c-VEP stimuli; or
non-boundary, on or adjacent to a single stimulus. As can be
seen in figure 1(a), the targets that are in the boundary group
lie on the diagonals of the ring and the non-boundary targets
are on the horizontals and verticals of the ring. These
boundary conditions were included to explore the effects of
having two distinct and equally prominent stimuli represent-
ing the target, which has implications for increasing the
number of possible target locations for a fixed number of
flashing stimuli. The center target is equidistant from all ring
stimuli and was included for comparison purposes, but was
not included in the present analysis.

Based on this categorization scheme, several 8-target and
4-target classification groupings were considered, which are
listed in figure 1(c). These 8- and 4-class configurations were
used in the offline analysis to assess the quality of non-foveal
c-VEP stimulation as a control signal for a BCI, as well as to
explore the utility of the boundary targets in the 8-class
configuration. While a wide variety of other groupings can be

considered, particularly for offline analysis, the focus of the
present study is to examine the effects of target distance from
the stimuli and the impact of targets at or near the stimulus
boundaries.

2.2. Data collection

A single experimental session was collected from twelve able-
bodied subjects (five females, seven males, ages 21-28) for
offline evaluation of the proposed paradigm. The subjects
varied in previous BCI experience with seven subjects having
no prior experience. This study was approved by Old
Dominion University’s Institutional Review Board and each
subject gave informed consent before participating. Subjects
reported no history of epilepsy or seizures, which can be
induced in susceptible individuals by flashing stimuli. Data
for one subject was excluded because the subject failed to
comply with the task, and thus data from eleven subjects were
analyzed. Five subjects (three females, two males) partici-
pated in a second session for an online evaluation of the
proposed c-VEP paradigm in which real-time target selection
feedback was provided.

For both the online and offline sessions, EEG was
recorded using a 16-channel g.USBAmp amplifier and active
electrodes (Guger Technologies, Austria) primarily placed
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Figure 2. The EEG electrode montage used for the study. The
locations are based on the international 10-20 system.

over the occipital and parietal-occipital regions of the brain as
shown in figure 2. Signals were digitized at 600 Hz and stored
on a hard disk. All EEG channels were referenced to the left
ear-lobe and FPz was used as the ground. The EEG data
recording was synchronized with the c-VEP task using UDP
communication protocol with BCI2000 general-purpose BCI
software [18].

Stimulus onsets for each m-sequence were synchronized
using a digital trigger signal generated from an Arduino Mega
microcontroller board with an Atmel ATmegal280 micro-
controller that was connected to the recording computer. The
m-sequence stimuli were displayed using DirectX (Microsoft
Inc.). In both sessions, the c-VEP ring paradigm was dis-
played on a 40-inch LCD monitor with a refresh rate
of 60 Hz.

Subjects sat in a darkened room in a comfortable chair,
approximately 60cm from the monitor. The stimulus ring
subtended 45.2 Hx45.2W (radius = 50 cm) from the center.
The parafoveal targets (locations 17-24) were centered 4.2 cm
(4.0 degrees of visual angle) from the inner edge of the stimulus
ring. The near-foveal targets (locations 9-16) were centered
lcm (1.0 degree of visual angle) from the inner edge of the
stimulus. The location of the subjects’ gaze was recorded and
verified using a TOBII X60 eye tracker, which was positioned
directly below the monitor. The average radial standard devia-
tion of the eye gaze for each target location and subject was
computed to be 0.54 cm, which confirms that the subjects’ gaze
remained consistently fixated on the prescribed target locations.

2.2.1. Offline experiment. For the offline experiment, EEG
data were collected for all 25 target locations. During the
experiment, a single white fixation cross (i.e., target) was
displayed at a time. Subjects were instructed to maintain
visual fixation and attention on the cross during the

stimulation period while refraining from unnecessary
movements and frequent eye-blinks. Subjects attended to
the target for 30 complete m-sequence cycles (31.5s) while
the segments of the ring simultaneously flashed with the
respective lagged version of the m-sequence. After the 30-
cycle stimulation interval, there was a 4s pause while the
target appeared in a new location and the process was
repeated. Each of the 25 target locations were presented in
random order to mitigate any anticipation and order biases.
After 8 consecutive 30-cycle stimulation periods, a 1-2 min
rest period was given. All 25 target locations were presented 4
times each totaling 126 s of data for each target location. The
total session length for the offline experiment was
approximately 1 h.

2.2.2. Online experiment. For the online experiment, two of
the 4-class groups were used to evaluate the performance of
the foveal and parafoveal target locations (groups 2 and 6,
respectively, from the table in figure 1(c)). A training and
testing session were conducted during a single larger session
for 5 subjects that previously participated in the offline
experiment. Only two 4-class conditions were evaluated
online to keep the overall session length (training and testing)
manageable in comparison to the prior offline session.

The training session was used to generate the c-VEP
template waveforms for target identification. The training
session was similar to the offline experiment except that only
8 total target locations were trained (the union of groups 2 and
6 as shown in the table in figure 1(c)). During training, only
one target at a time was shown for 30s with a 4s blank
interval. Presentation of each target position was again
randomized. After completion of four repetitions of each of
the 8 target locations, a custom Matlab script was used to
generate the c-VEP templates as described in section 2.3.2.
These templates were then utilized for classification during
the online testing session. The online training session lasted
approximately 25 min including rest periods.

Each of the 4-class conditions (i.e., foveal and parafo-
veal) was tested separately. During a trial, all four target
locations from the particular condition were simultaneously
displayed to the subject. A trial commenced with a 2's cue
period that indicated the intended target by highlighting it in
blue as shown in figure 3(b). Next, EEG data were collected
during a 6s stimulation period. This was followed by a 2s
feedback period where target classification was performed
and the predicted target was presented to the subject by
highlighting the target in green as shown in figure 3(c). The
ring stimuli started flashing 1s into the cue period and
remained flashing throughout the stimulation period. This was
done to mitigate any transient ERP responses from the
stimulus onset. The total trial (cue-stimulation-feedback)
lasted 10s. Figure 3(a) shows the timing protocol of a
single online trial. After the feedback period, another trial
commenced with a new target location. Sixteen trials
constituted one run and two runs were performed for
each 4-class condition. The online testing session lasted
approximately 10 min, resulting in an overall online session
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Figure 3. (a) Timing protocol for an online trial. A two second cue segment highlights the target to attend to in blue (b). One second into the
cue period, the ring stimuli started to flash. Data is collected for 6 s during the stimulation followed by a two second feedback period where

the selected target is highlighted in green (c).

length of approximately 45 min including a 10 min interval
for classifier calibration between the training and testing
session.

2.2.3. Subjective evaluation. Following the online study,
each subject was asked to subjectively evaluate the direct-
foveal and the parafoveal conditions in terms of degree of
visual irritation. For each condition, the subjects provided a
numeric response to the following question: ‘on a scale from
1-10, please rate how visually irritating it is to continuously
stare at the target, with 1 representing not at all irritating and
10 representing extremely irritating’.

2.3. Data analysis

The analysis for this paradigm was based on Bin et al [4], in
which CCA was adopted for multichannel c-VEP classifica-
tion. Modifications to the method described in [4] were made
such that the asymmetries of the ring paradigm could be
exploited. Note that for the standard c-VEP BCI paradigm,
which requires direct foveal fixation of the targets, the prin-
ciple of equivalent neighbors [4] is employed and therefore
only one target template needs to be constructed. In contrast,
the various target locations in the present paradigm do not
have equivalently positioned neighboring stimuli, so optimal
spatial weights were computed using CCA for each target
location.

2.3.1. Canonical correlation analysis. To reliably detect EEG
responses to the flashing stimuli, a multivariate processing
technique known as CCA can be utilized to find linear
correlations between EEG data and a stimulating signal. CCA
has recently been adopted for multidimensional EEG analysis

and has proven to be extremely effective for SSVEP signal
processing [3, 19]. CCA has also been extended for c-VEP
classification [4].

CCA is a multi-dimensional correlation analysis techni-
que that finds underlying correlations between two sets of
data. It creates linear combinations of two multi-dimensional
data sets such that the mutual projection between the two data
sets is maximized. Given two multi-dimensional data sets X,
and Y, and their respective linear combinations x = X’ W, and
y = Y™W,, CCA determines the weight vectors W, and W,
that produce the maximum correlation between x and y. The
projected vectors x and y are known as canonical variants and
their correlation is known as the canonical correlation. The
weight vectors W, and W, that produce the highest canonical
correlation are found by solving the optimization problem:

maxp (x, y)

E[WXYTW |
=$%JE[WTXXTW e[ w)yT ' v
DXXTW B[ W |

In practice this can be solved using the singular-value
decomposition method to diagonalize the covariance matrices
as the maximum canonical correlation corresponds to the
square-root of the largest eigenvalue.

2.3.2. Offline experiment. Data from the offline experiment
were zero-phase band-passed filtered from 0.5-30 Hz using a
Chebychev type II IIR filter, as 30 Hz is the largest frequency
produced by a monitor with a 60 Hz refresh rate. All EEG
channels were then re-referenced to channel Fz to eliminate
potential hemispherical biases. Each 30-cycle stimulation trial



J. Neural Eng. 12 (2015) 036006

N R Waytowich and D J Krusienski

for each target location was extracted and concatenated to
create 126 s (4 trials x 31.5 s) EEG segments for each target.

Data from each of the target groups listed in Table from
figure 1(c) were aggregated, and target classification was
performed to test the offline performance for each condition.
For each condition, the 126 s data segments were separated
into training and testing groups where 80% (96 cycles) was
used for training and 20% (24 cycles) was used for testing.
This ratio was selected because it gave sufficient training data
to build the c-VEP templates for each target position. The c-
VEP target templates, M(f), were constructed using the
training data by first averaging the multichannel EEG data,
X (), across each m-sequence cycle to produce an averaged
multichannel response, Ry, for each of the k target locations
[4]. The resulting 1 s averaged responses were concatenated
100 times to produce a multichannel set S; with the same
dimensions as X(1): Sy = [Re Ri R ... Ry ].

CCA was then applied to find the best linear transforma-
tions of Sy and X;(¢) that maximize the mutual projection, i.e.,
Ws, and Wy such that p(W)g X, WSf S) is maximized. The
resulting Wy, are spatial weights that are used to combine the
multichannel templates to form the final template response for
each target position. The testing data were then utilized to
evaluate the target predictions for different observation
lengths.

The test data for each target location were separated into
trials (simulated observations) with integer cycle lengths from
1 cycle (1.05 s) to 6 cycles (6.3 s). The EEG for each trial was
processed using the spatial weights Wy, and classified for
target prediction [4]. For a given observation of test data, the
spatially filtered EEG was linearly correlated with each of the
target templates from a given condition and the template with
the maximum correlation was classified as the predicted
target. The average of a 6-fold cross-validation scheme was
used to determine the unbiased classification accuracy.

In order to assess the relative contribution of each
channel to classification performance, a leave-one-out scheme
was employed in which 14 of the 15 occipital channels were
used in the classification [5]. The left-out channel was iterated
through all channels. Left-out channels that resulted in a
major drop in classification accuracy contributed more to the
c-VEP response than left-out channels that resulted in little to
no drop in accuracy. Because it was observed that excluding
the worst performing channel generally boosted classification
performance, the best 14 channels were selected for analysis.
While CCA should theoretically assign an irrelevant channel
a weight near zero, it is generally not identically zero,
resulting in a noise component being added to the output of
the spatial filter. Thus, an additional channel selection
procedure may further boost CCA performance, particularly
for larger channel sets. This simple channel exclusion
procedure can be further optimized but is not expected to
significantly affect the overall results of the present analysis.

2.3.3. Online experiment. The online experiment consisted
of a training and testing session as part of a larger session.
After the training data were collected, the c-VEP target

Table 1. Offline accuracies.

Distance from ring Group # Avg. accuracy

1) 8-class (all)
2) 4-class (even)

99.2% (+1.4)
100% (+0.0)

Direct-foveal (locations 1-8)

3) 8-class (all)
4) 4-class (even)

96.6% (+6.0)
99.4% (£1.9)

Near-foveal (locations 9-16)

5) 8-class (all)
6) 4-class (even)

89.7% (+10.1)
95.5% (£8.3)

Parafoveal (locations 17-24)

templates for the target locations were constructed using
the same procedure implemented in the offline experiment
described in section 2.3.2. The CCA spatial weights for each
template were also constructed. During the online test, a 2's
cue instructed the subject to attend to a particular target
location, after which 6s of data were collected during the
stimulation period. The 6s observations were classified as
described in section 2.3.2 by filtering with Wy , correlating
with each target template, and selecting the target with
maximum correlation. As with the offline analysis, the
simulated performance was evaluated for cycle lengths 1-5,
where a cycle length of 6 represents the actual online
performance. However, unlike the 4-class offline analysis, no
cross-validation was performed to provide a more realistic
estimate of actual online performance.

3. Results

3.1. Offline experiment

The average accuracies for the offline experiment for each
condition are shown in table 1. The accuracies are based on a
6-cycle observation length (6.3s). The 8-class accuracies
ranged from 89.7-99.2% and all of the 4-class conditions
ranged from 95.5-100%. The average accuracies decreased
with the distance from the target for all conditions. The 8-
class parafoveal condition provided an average accuracy of
89.7% compared to 99.2% for the direct-foveal condition,
which was statistically significant using a paired t-test (p
<0.05). The 4-class parafoveal condition provided an average
accuracy of 95.5% compared to 100% for the direct-foveal
condition, which was not statistically significant.

The two leftmost panels of figure 4 show the average
offline performance as a function of the number of stimulus
cycles used for classification for the 8- and 4-class conditions,
respectively. In general, the performance monotonically
increases with the number of stimulus cycles, but this creates
a trade-off in terms of information transfer rate. For the 8-
class condition, there was a statistically significant difference
in accuracies between the foveal and parafoveal targets across
all observation lenghts (p < 0.05 using a paired t-test). There
was also a statistically significant difference between the near-
foveal and parafoveal targets across all but the largest
observation length. For the 4-class condition, there was a
statistically significant difference in accuracy between the
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Figure 4. Simulated average classification accuracies for the offline and online experiments as a function of observation length in # of
complete m-sequence cycles. The limits of the error bars indicate the minimum and maximum subject performance. A single m-sequence
cycle length is 1.05 s, thus the observation lengths range from 1.05 s to 6.3 s. The markers in the legend indicate statistically significant

differences ( p < 0.05) between each condition at each observation length.

Foveal
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Figure 5. Confusion matrices for the three offline 8-class conditions (direct-foveal, near-foveal, parafoveal) for the 6.3 s observation length.
The color scale indicates the proportion of classifications, with the diagonals labeled with the proportion of correct classifications. It is
observed that there is no apparent bias in performance for the boundary target locations (odd numbers).

foveal and parafoveal targets only for the three shortest
observation lengths.

In order to compare the relative classification perfor-
mance of the targets at or near the boundaries of the stimuli,
figure 5 shows confusion matrices for each of the 8-class
conditions at the 6.3 s observation length. It is observed that
there is no apparent bias in performance for the boundary
target locations (odd numbers). Figure 6 shows the CCA
spatial weight topographies and template waveforms for the
foveal and parafoveal conditions, respectively, from a repre-
sentative subject (S1).

3.2. Online experiment

The accuracies of the online experiment for the direct-foveal
and parafoveal conditions are shown in table 2 for each
subject. Both conditions provided average online accuracies
of above 95%. The rightmost panel of figure 4 shows the
simulated average performance as a function of the number of
stimulus cycles used for the online data. Using a paired t-test,
there was a statistically significant difference in accuracies
between the conditions for the two shortest observation
lengths (p < 0.05). Table 2 also includes the responses to the
subjective evaluation of the perceived visual irritation on a
scale from 1(least)-10(most), termed the irritation index.

4. Discussion

While existing VEP BCI paradigms almost exclusively pre-
scribe visual targets that overlay or embody a single flashing
visual stimulus, this study demonstrates the potential for
spatially decoupling targets from individual flashing stimuli.
The offline results for the 4-class condition in figure 4 indicate
that there is no significant change in performance as the tar-
gets are positioned outside of direct foveal vision when an
observation length greater than 4.2s is used. The average
performance across all conditions is above 80% after 3
(3.15s) and 1 (1.05 s) stimulus cycles for the 8-class and 4-
class scenarios, respectively. This indicates that the ring
paradigm has the potential to achieve practical and competi-
tive performance without requiring direct foveation of the
targets.

Traditional VEP-BClIs generally associate a single target
with a single, unique stimulus, which tends to create more
visual discord for increasing numbers of targets. The pro-
posed 8-class paradigm also introduces the novel concept of
placing targets at or near the boundary of two adjacent sti-
muli. Figure 5 shows that there are no significant biases
between the boundary and non-boundary classifications for a
given condition. It can also be observed that



J. Neural Eng. 12 (2015) 036006

N R Waytowich and D J Krusienski

Target Foveal Parafoveal
# o :

uV
[=)

Average c-VEP Responses

2% :
0
-2

L L 1 L L

i
o
-
[=]

o
-

CeEEEEad

05 06
Time (s)

04 07 08 09 1

Figure 6. The CCA spatial weight topographies and template waveforms for the foveal and parafoveal conditions, respectively, from a
representative subject (S1). The leftmost column indicates the spatially paired foveal(parafoveal) target numbers according to figure 1(b). The
second and thrid columns show the CCA weight topographies for the foveal and parafoveal targets, respectively. The righmost column shows
the CCA template wavforms for the foveal (blue) and parafoveal (red) targets.

Table 2. Online accuracies (¢ = 6.3 s) and visual irritation index.

Foveal 4- Irritation Parafoveal 4- Irritation
class index class index
S1 100% 7 100% 5
S2 100% 8 100% 6
S9 96.9% 7 81.2% 3
S10 100% 8 96.9% 3
S11 100% 8 100% 5
Avg 99.4% 7.6 95.6 % 4.4

misclassifications generally occur at adjacent targets along the
diagonal, which is expected based on the design of the
workspace.

The overall 8-class offline results demonstrate that it is
possible to accurately detect and decode changes in the EEG
due to multiple stimuli associated with a single target,
although these results need to be verified using online
experiments. While EEG changes due to multiple non-foveal
stimuli have been utilized in the past, particularly with the
principle of equivalent neighbors from the c-VEP speller
introduced by Bin ef al [4], the present study utilizes stimuli

in a unique way such that there are more available targets than
stimuli. This may help to mitigate the limits on the number of
available traditional stimuli/targets imposed by the length of
the m-sequence, monitor refresh rate, etc. Additionally,
minimizing the number of required flashing stimuli may also
have implications in terms of visual irritation and fatigue,
although visual fatigue was not directly assessed in this study.
Further investigations can be conducted to explore the effects
of stimulus size, proximity, orientation, multiple boundaries,
etc on performance.

The CCA template waveforms presented in figure 6
indicate that there is not a clear visual relationship between
the foveal and parafoveal response templates. While the
foveal and parafoveal templates for some corresponding tar-
get locations appear highly correlated (e.g., the bottom tar-
gets), others do not appear to have a distinct temporal
relationship (e.g., the top targets). This is in contrast to Bin
et al (2011), where the responses for each target were con-
sistent due to the principle of equivalent neighbors (i.e., each
target had identical boundary stimulus configurations and
timing) [4]. Related to this point, it is not obvious how the
adjacent stimuli contribute to the boundary target responses.
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Again, each boundary stimulus has a different spatial orien-
tation and further analysis is needed to quantify the relative
contributions. Consistent with the differences in the CCA
response templates, the CCA spatial weight topographies are
similar between the foveal and parafoveal conditions for
certain target locations (e.g., bottom) and dissimilar for other
locations (e.g., top). The spatial weights with the largest
magnitudes are generally focused over the central-occipital
area for the foveal condition and more diffuse around the
central-occipital area for the parafoveal condition, which is
indicative of the contribution of peripheral vision. Similarities
between adjacent patterns may provide some indication of the
relative contributions of the adjacent stimuli to the boundary
targets. These patterns were generally similar for the other
subjects, but due to subtle differences between subjects, the
patterns are most distinct when visualizing a single subject’s
data compared to a grand average across subjects.

The 4-class online results show more of a deviation in
performance between the conditions for shorter observation
lengths compared to the equivalent offline condition. This can
be partially attributed to the comparatively lower performance
of subject 9 for the parafoveal condition and that fewer sub-
jects are represented in the average compared to the offline
results. However, there is also a discrepancy in the relative
performance ranges between the online and offline results,
particularly for the parafoveal condition. One likely expla-
nation is that the stimulus duration for the offline data was
longer and the cross-validation procedure included segments
of training data that did not begin from the stimulus onset and
were from the middle of the trials. Therefore, it is likely that
the simulated observations from the middle of the offline
trials are fully entrained to the stimuli and do not include any
transient effects of the stimulus onset. Thus, this offline
training data is more representative of the entrained EEG of
the later cycles and misleadingly indicates better performance
compared to the online condition where the EEG of the early
cycles may not be fully entrained. Nevertheless, the online
parafoveal condition still attains an average accuracy above
80% after 2 (2.1s) stimulus cycles. This may provide a
favorable trade-off between performance and visual irritation
since the online subjects universally rated the parafoveal
condition as less irritating as indicated in table 2.

In order to fully validate the paradigm, undirected free-
choice online experiments should be conducted to account for
practical use issues such as target scanning and reaction to
task-related feedback. Future work will more thoroughly
explore the effects of distance between the targets and stimuli,
increasing the number of stimuli/boundaries along the ring,
the use of shorter m-sequences, and larger N-class target
configurations that further exploit the combined concepts of
stimulus-target distance and boundaries. It is envisioned that
these stimulus-target decoupling concepts introduced in the
proposed paradigm will lead to the development of more
practical and ergonomic BCIs by reducing visual irritation

and potentially fatigue, as well as by increasing the number of
available targets for a fixed number of stimuli.
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