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Abstract — It is known that ceriain classes of nonlinear
systems can be represented by one of three cascade models: 1)
a linear filter followed by a memoryless nonlinearity
{Wiener model), ii) a memoryless nonlinearity followed by a
linear filter (Hammerstein model), or iii} a linear filter, a
memoryless nonlinearity, and a second linear filter (LNL
model). In this paper we consider LNL adaptive systems
with an FIR linear system at the input stage and a FIR
linear system at the output stage. Then combining the
linear input stage and the memoryless nonlinear stage of the
LNL model is considered, resulting in the series-cascade of a
Wiener system with a linear output stage.  Adaptive
algorithms are derived for these structures and experimental
exarmples are shown to illustrate their performance.

1. Introduction

Many nonlinear systems can be represented using one of
three models shown in Figure 1 [1]. If the memory size of
the linear component in the Wiener model or the
Hammerstein model is small it may be desirable to model
them using Volterra filters, by virtue of its modularity.
Similarly, depending on the memory size of the linear
components in the LNL model, it may be desirable to
represent it by a single Volterra filter, or a cascade of a
Volterra filter followed by linear system, or a cascade of a
lingar system followed by a Volterra filter.
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Figure 1. (a) Wiener model, (b) Hammerstein model, and (c)

LNL model.

In this work, we consider LNL systems with FIR linear
sysiem at the input stage and a FIR at the output stage. In
particular, we consider the two models shown in Figure 2
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Figure 3. Cascade of Volterra and FIR filter structures.

and 3 to represent such a system. The nonlinear filter in
Figure 2 can be implemented with a memoryless
Polynomial filter. Filter-1 of Figure 3 is a noniinear filter
with memory, which can be implemented with a Volterra
filter . The configurations considered can be categorized into
two ways; one particular case in each of these categories is
developed in this paper:

Hammerstein Model + Linear system: Volterra filter + FIR
LNL Model: FIR + memoryless Polynomial filter + FIR

A disadvantage of series-cascade adaptive architectures for
system identification is that there is no reference signal at
the output of each stage in the cascade. Hence the adaptation
of the filter modules in the cascade prior to the the cutput
stage have to rely on the joint error signal efn].

2. Joint Adaptation Schemes

In this section joint adaptation schemes for the cascade
structures described above are detived. In the experiments
presented in Section 3 the normalized least mean squares
(NLMS) method is used for adaptation, The NLMS
algorithm requires the derivative of the emor-squared with
respect to the filter coefficients for updating the tap weights.
These derivatives for each section of the cascade structure are
derived in the following subsections, and the tap-update
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equations for the joint adaptation scheme based on NLMS
algorithm are developed.

2.1 Cascaded Volterra and FIR filter Structure
Let v and w be the coefficient vectors, and y and z be
the input vectors of the Volterra filter and the FIR filter
respectively (see figure 6). The outputs of the two filters
z[k] and d[k] are given by equations (1) and (2), respectively:

z[k] = v' [kly[k], 1)
d[k] = w' [k]z[k],(2) 2
where [kl = [yolk], yiIK], ... yulKI T,
and z{k] = [ z[k], g[k-1]...., z[k- M,+1] ] ™.

If r{k] is the reference signal for the cascade, then the error,
¢(n) is given by:
e[k} = rik] ~ dik, (3

The gradients V,, and V, of ¢, at instant k with respect to w
and v can be calculated according to:

V.l k]l = -2e[k] z[k], (4)
V.et [k]= -2e[k] (V, z[k])w(k]. (5)
Also,  z{n]=v"[n] y[n] and V z[n}]= y[n].
Combining the above relations results in:
Y[K] = V, 2{k] = [y[k], yik-1],..., y[k-M,+1]1 ]. {6)
Y is a N xM,; matrix. Defining vector q[k] = Y[k] w(k]
and using it in equations (5) and (6) we get,
V.2’k] = -2¢[k] glk]. "N

Table 1 summarizes the joint NLMS adaptaticn algorithm
for the two sections. The computational requirements for
this cascade structure are summarized as foltows:

Number of tap-weights; | N +M,

Memory units: NM,

Additions: 2N +3M,+N M,-1
Multiplications: M, +3N +4M,+N M,+4
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Figure 4, Volterra Filter + FIR filter cascade strructure.

2.2 The General Cascaded LNL Structure

Let u and x, be the coefficient vector and the input
vector, respectively, for FIR fiiter-1. Simitarly define v and
y for the Polynomial filter, and w and z for FIR filter-2 (see
figure 5). The outputs of the three filters ylk], z(k] and d[k]
are given by equations (8), (9) and (10), respectively:

ylk] = u"[k] x[kl, (8)

z{k] = v'[k] y[K], ©
d[k} = w'lk] z[k], (10)
where  x[k] = [ a[k], x[k-1],..., x[k- M,+1] 17,
ylkl = [ yIk], y*[kL...., y"[k117,
and z{k] = [ z[K], z[k-11,..., z[k- My+1] 17,

If K] is the reference signal for the cascade, then error, e is
given by: ‘
e[k] = r[k] - d[k]. . an

The gradient V, V, and V of €, at instant k, with respect
to w, v and u respectively can be calculated according to:

V. e2k] = -2e[k] z[K), (12)
V., e}kl = -2e[k] (V, 2[kDwlK], (13)
V.e’[k]= -2e[k] (V, z[k])w[k]. (14)

The procedure for calculating V,&” is the same as that used in
Section 3.1, which given by:

V.e’[k] = -2e[k] qlk], (15)
where, g is calculated using Equations (16) — (18):
z[n] = v'[n] y[n], (16)
V.z[n] = y[n], (17)
where  Y[k] =V, z[k] = [y[k].¥[(k-1],..., yfk- M,+1]],
and qlk] = Y[k] w[k]. (18)

To calculate V e we start by defining vector a[n] given by
equation (19):

a[n] = {1, 2yin], 3y*n],....... , NyM'[a]] T (19)

We have V, y'[n] = iy"'[n] V, y[n). Using this and
equations (16) and (19) we get,

V. z[n] = v'[n] (aln] ¥, y[n]) = (v[n] a[n]} V, y{n]. (20)

Defining scalar #[n] = v'[n]. a[n] and vsing it in equation
(20) we get,

V, z[n] = b[n] V y[nl. 20
We have V, y[n] = x[n] from equation {8),

equation (21) results in,
V., z[n] = b{n] x[n]. (22)
Defining a M, xM, matrix,

Using this in

X[k] = [B[k]x[k], blk-1]x[k-11,......., b[k-M+11x[k-M+1]],
and using this in equation (22) and we get,

Vv, 2k} = X[K]. (23)
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Defining a M, length vector, p[k] = X[k].w[k] and using
equations (14) and (23} we get,

V.e’lk] = -2¢[k] p(k]. 25

Table 2 summarizes the joint NLMS adaptation of the
three sections. The computatinal requirements for this
cascade structue are as follows:

o
sik}

Number of tap-weights: | M +N+M,
Memory units: (M, +N)M,
Additions; 2ZM +3N+3M,+ MM,+NM,-3
Multiplications: 4M +6N+3M,+M M. +NM,+4

R A ! ikl

- b ——— Py | # .
PR N I — Fgta | f Fga | K

* B
’zl i), e Ao i f ay

b Y Ao i 7 _ ik

Figure 5. Cascade of FIR, memoryless polynomial and FIR filters.

3. Experimental Results

The cascade structures described in Section 2 were tested
for the identification of a nonlinear system. Figure 6 shows
the model of the echo path that was used for the
simulations, in which the loudspeaker was modeled as a
Wiener model and the.acoustic echo path by a linear filter,
sgnf i
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Figure 6. Model of the echo path.

Modeling the loudspeaker: The loudspeakér was
modeled with a FIR filter with memory length 8 in series
cascade with a memoryless nonlinearity of order 5 [2]. The
first coefficient of. the FIR filter was kept at value 1 and
remaining 7 coefficients were generated randomly and were
kept small, so that the gain due to the memory of this FIR
filter is about 25%. This makes sure that if the magnitude
of the input to the loudspeaker is within 0.8, i.e., the
magnitude of the input to the static nonlinearity is within
1.0. The amplifier was modeled by the nonlinear function
fx) =x-0.5%> + 0.02x%, which approximates a hyperbolic
tangent. The amplifier is nearly linear for an input [-0.3,
0.3], but starts saturating outside this range.

Modeling the linear part of the echo path: The
envelope of the impulse response of the room typically has
a peak, and decays exponentially on either side. Also, it has
been noted that an echo path transfer function usually
exhibits an all-pass characteristic. For all simulations in an
FIR filter of memory length 64 was used. A small random
number was added to each coefficient. For all simulations
an all-pass filter with two complex conjugate poles at
‘0.9 and two zeros at 1.1111¢%9% was used [3].

A babble signal was used as a test signal for the
simulations presented here. Since the main purpose is to
identify the nonlinear components in the echo path, the
instantaneous magnitude of the input signal was kept in the
range [0.3,0.8], so that the loudspeaker operates in its
nonlinear region. A Gaussian noise of variance 0.001 was
added to the echo signal, corresponding to a SNR of 21 d&B
for the echo signal.

Experiment 1: Since he lengths of the linear section in
the loudspeaker and the echo path are M,=8 and M,=64, the
AEC should have a length of at least M = M,+M,-1 = 71.
As a baseline experiment an FIR filter of length 71 was used
for acoustic echo cancellation. during the . first 20,000
iterations the babble input was de-amplified by 0.375 so that
the input remained in the range [-0.3,0.3), and the
loudspeaker operated in its linear region. For the next
20,000 iterations the de-amplification was removed and the
loudspeaker was driven into its nonlinear region. The echo
return loss (ERLE) [3] plot for this simulation is shown in
figure 7. The FIR filter achieved an ERLE of 22.5 dB in the
linear region. In the nonlinear region the ERLE is only 17
dB, which shows that failure t compensate for the
nonlinearity results in a significant loss of performance.

Experiment 2: Next the series cascade of a Volterra filter
and an FIR was tested. The Volterra filter used had a
memoty of M, = 8 and order of nonlinearity 3, thereby
requiring 164 filter coefficients The length of the FIR filter
was set to M, = 64. The ERLE plot of this filter is shown
figure 8. This cascade structure converged to 21 dB after
30,000 iterations, which is still 1.5 dB lower than the
ERLE obtained in the lincar region.

Experiment 3: LNL cascade structure was used for echo
cancellation. The FIR filters at the input the output stages
had lengths of M, = & and M, = 64. The Polynomial filter
had a nonlinearity of order N=5. The total number of taps
required for this filter is 77. The ERLE plot of this filter is
shown figure 9. This cascade structure converged to 20 dB
after 30,000 iterations, a level that is approximately 2.5 dB
lower than the ERLE obtained in the linear region. This
filter was able to account for 3 dB of the 5.5 dB nonlinearity
observed in Experiment 1.

A variation of Experiment 3 is presented in figure 10, in
which the same structure is trained with a backpropagation
algorithm commonly used in neural networks [4]. A
comparison of he training characteristics of figures 9 and 10

shows remarkable similarities. However, the back-
propagation algorithm has the potential to reduce
computational complexity. The application of the

backpropagation algorithm in cascaded nonlinear adaptive
filter structures is a subject of current research.

10-221



References
[11 A. E. Nordsjo and L. H. Zetterberg, Identification of certain time-
varying nonlinear Wiener and Hammerstein systems, /EEE Trans.on Sig.
Proc.. VOL 49, NO. 3, pp 577-592. March 2001.

[21 F X. Y. Gao and W. M. Snelgrove,, “Adaptive Linearization of
Loudspeaker,” Proc, ICASSP’91, pp. 3589-3592,

[3] H. Fan, and W, K, Jenkins, “An Investigation of an Adaptive IIR Echo
Canceller: Advantages and Problems”, [EEE Transactions on Acoustic,
Speech, and Signal Processing, Vol. 36, No. 12, December 1988.

[4] Bose N. Liang P., Neural Networks: Graphs and Algorithms,
McGraw-Hill Book Company. N.Y., 1996,

Table 1. Joint NLMS update for Volterra filter + FIR filter cascade

Additions Multiplications
Operation
1. ylk = [ yolk), y,Ik], ... o kI ] - M,
7. 2[k] = vI[k].y[k] N1 N,
3. zlk] = [ z[k], z[k-1],..., z[k-M+1] 1" - -
3 SECHGE M1 ™,
5. efk] = rk] - d(k] 1 -
6. k] = [ ylkl, yIk-1],.... y(k-M+1}] - -
7 glk] = Yik].w k] — LTI, MN
B v[k+1] = vIK] + (o, 7 (IqkII” + B)).qlK].e[K] 2N, TN +2
. wik+1] = WIK] + (et 7 UKV + 5). 2 k].e[k] TM; T M2
10.

Table 2. Joint NLMS update for FIR +memor

less polynomial filter + FIR cascade

Additions Multiplications
Operation

1, x(k] = [ xfk], x{k-11,..., x[k-M,;+1] ]’ - -
2. yik] = u'[k].x[k] M,-1 M
3. yik] = [ y[k} y[k]%. ., ykI) - N-1
4, z{k] = v'[k].y[k] N-1T N
5. z[k] = [ z[k], z[k-1},..., z[k-M,+1] T - -
6. d[k] = w'lk].z[k] M,-1 M,
7. e[k] = r[k] - dIk] 1 -
8. alk] = [1, 2 y[kl, 3y[k]%,..., Ny[kI" ] - N-1
9. blki = v'{k].alk N-1 N
10 x [k] = b[k] x[k - M,
T X[kl = (% IK], X,[k-1],..., % Jk- M+1]] - .

. plk] = X{k].w M, (M,-1} M.M,
13, Yik] = [ yik], y(k-1)...., ¥[k-M,+I]] - .
14 glk] = Y{k].wlk} N (M,-1) NM,
15, u[k+1] = ulk] + (o, / (Ip[k]IF + &)).p[k].e[k ZM, M, +2
16, v[k+1] = v[K] + (&, 7 (IqIKIIF_+ 8)).g[kl.e[K ZN IN+2
7. w[kt1] = Wikl + (o, 7 UIZIKIE + 8)).z[k} elk] Iy M, 52

Figure 7. ERLE of FIR-AEC with the loudspeaker operated in its linear
and the nonlinear regions.
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Figure 8. ERLE for cascade of Volterra and FIR filters.
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Figure 10. Neural network backpropagation training algorithm.
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