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An Offline Evaluation of the Autoregressive Spectrum
for Electrocorticography

Nicholas R. Anderson, Kimberly Wisneski, Lawrence Eisenman,
Daniel W. Moran, Eric C. Leuthardt, and Dean J. Krusienski*

Abstract—Electrical signals acquired from the cortical surface, or elec-
trocorticography (ECoG), exhibit high spatial and temporal resolution and
are valuable for mapping brain activity, detecting irregularities, and con-
trolling a brain–computer interface. As with scalp-recorded EEG, much
of the identified information content in ECoG is manifested as amplitude
modulations of specific frequency bands. Autoregressive (AR) spectral es-
timation has proven successful for modeling the well-defined and com-
paratively limited EEG spectrum. However, because the ECoG spectrum
is significantly more extensive with yet undefined dynamics, it cannot be
assumed that the ECoG spectrum can be accurately estimated using the
same AR model parameters that are valid for analogous EEG studies. This
study provides an offline evaluation of AR modeling of ECoG signals for
detecting tongue movements. The resulting model parameters can serve as
a reference for related AR spectral analysis of ECoG signals.

Index Terms—Autoregressive (AR) spectrum estimation, electrocor-
ticography (ECoG).

I. INTRODUCTION

Autoregressive (AR) modeling is a commonly used technique for
spectral estimation of biosignals because it exhibits several advantages
over other spectral estimation techniques in this domain; however, its
effectiveness is dependent upon proper parameterization [13]. The pri-
mary advantage of AR modeling for spectral estimation is its inherent
capacity to model the peaky spectra that are characteristic of biosignals.
Even so, suitable model order selection for complex biosignals such as
EEG, and particularly, electrocorticography (ECoG), is not necessarily
straightforward. In order to use AR modeling for estimation and track-
ing of the ECoG spectrum, it is imperative to determine and validate a
suitable model order.

The AR filter is an all-pole model making it very good at resolv-
ing sharp changes in the spectra [12]. Conversely, the fast Fourier
transformation (FFT) is a widely used nonparametric approach that is
very accurate and efficient but lacks spectral resolution for short data
segments. The key difference between EEG and ECoG is that ECoG
exhibits a much larger functional, spectrum and therefore requires a
higher sampling rate [6], [14]. Because of the increased number of
samples and added spectral complexity provided by ECoG, it is not
appropriate to simply apply a standard AR model order used for EEG
to ECoG data.

AR modeling has been used successfully for EEG but has not been
evaluated extensively for use with ECoG. Because of its superior reso-
lution for short data segments, AR modeling is preferred for real-time
control of an EEG-based brain–computer interface (BCI) [11]. While
other ECoG feature extraction techniques have been examined [10],
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TABLE I
INDIVIDUAL SUBJECT RESULTS

AR modeling continues to be preferred for ECoG motor experiments
due to its efficacy for EEG. However, there has been no documented
quantification as to how to best choose an appropriate AR model order
to accurately model the ECoG dynamics for motor experiments. Re-
cent ECoG motor studies [2]–[9] have implemented AR model orders
ranging from 3 to 30.

Typically, the optimal model order of an AR filter is evaluated by
assessing the residual error of the model. These computational meth-
ods, such as the Akaike information criterion, can provide a reasonable
model order in certain contexts. However, these methods are not de-
signed to track signal dynamics and may produce suboptimal estimates
for tracking multiple narrow frequency bands. This issue along with
other AR model issues for modeling EEG has been evaluated in the
context of BCI [15]–[17]. While the issue of AR model order can
be easily resolved for EEG due to its well-defined spectral content,
much of the relationships and dynamics of the ECoG spectrum have
not been characterized. As the AR method becomes more common-
place for tracking the ECoG spectrum, it is imperative to validate the
EEG-derived methods demonstrated in initial ECoG studies in order to
establish a suitable parameterization and qualify the resulting spectral
estimates in this new context.

II. METHODOLOGY

A. Data Collection

The subjects in this study were four individuals with intractable
epilepsy who underwent temporary placement of intracranial electrode
arrays to localize seizure foci prior to surgical resection. All subjects
had normal cognition, were right handed, and gave informed consent.
The study was approved by the Human Research Protection Organi-
zation of Washington University Medical Center. Each subject had a
64-electrode grid placed over the frontal–parietal–temporal region in-
cluding parts of sensorimotor cortex (refer to Table I). These grids
consisted of electrodes with an exposed diameter of 2 mm and an in-
terelectrode distance of 1 cm. Grid placements and duration of ECoG
monitoring were based solely on the requirements of the clinical eval-
uation, without any consideration of this study. Following placement

0018-9294/$25.00 © 2009 IEEE

Authorized licensed use limited to: Dean Krusienski. Downloaded on June 10, 2009 at 11:14 from IEEE Xplore.  Restrictions apply.



914 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 56, NO. 3, MARCH 2009

of the subdural grid, each subject had postoperative anterior–posterior
and lateral radiographs to verify its location.

Each subject sat in a hospital bed about 75 cm from a video screen. In
the experiments, ECoG was recorded from either 16 or 64 electrodes
using the general-purpose BCI system BCI2000 [18]. All electrodes
were referenced to an inactive electrode, amplified, bandpass filtered
(0.5–500 Hz), digitized at 1200 Hz, and stored. The amount of data
obtained varied from subject to subject and depended on the subject’s
physical state and willingness to continue.

For each run, the subject was asked to perform one of two tasks
in response to the corresponding visual cue. The two tasks were to
protrude the tongue and open and close the hand contralateral to the
electrode grid. During a run, the subject continuously repeated the task
in response to the visual cue that lasted 3 s (i.e., a trial) and rested for an
equal amount of time while the screen was blank between consecutive
trials. A total of three 2–3 min runs were performed. These movements
versus rest tasks are representative of typical BCI motor screening tasks
that are designed to identify potential BCI control signals by localizing
differences between the baseline resting state (no movement) and the
brain activity resulting from physical movement.

B. Data Processing

For this study, the data from the actual tongue movement and rest-
ing intervals were used to evaluate the AR model parameterization.
Between 36 and 45 tongue protrusion trials were analyzed for each
subject. The parameters of importance include the model order, data
segment length, sampling rate, and the desired frequency range. Be-
cause the data were originally sampled at 1200 Hz and the AR model
order evaluation is very sensitive to the comparatively low signal-to-
noise ratio at the higher end of this spectrum, the desired frequency
range was selected as 0.5–300 Hz. The AR models were derived via
the Burg method [12] and the spectra were computed in 1 Hz bins. The
model order was varied from 5 to 100 and data segment length was
varied from 25 to 500 ms, with a 16.7 ms overlap. For comparison pur-
poses, the FFT was also computed for the various segment lengths using
a Hanning window and zero padding to produce 1 Hz frequency bins.

For both spectral estimation methods, each 1 Hz spectral bin was
power normalized using the mean and standard deviation of the respec-
tive bin across both conditions (tongue movement versus rest). The
power-normalized bins were then averaged into 1–40, 41–70, 71–100,
101–200, and 201–300 Hz composite bins. The normalization was used
to compensate for the power-law decay of the ECoG spectrum when
averaging across frequency bins so that the inherently larger powers at
the lower frequencies do not dominate and artificially skew the aver-
ages. For each composite frequency bin, the run average for each task
condition was determined and used to compute the r2 correlation (i.e.,
the proportion of the variance of the signal accounted for by the task)
between the two task conditions.

III. RESULTS

For each subject, the electrode location that produced the highest r2

for the tongue movement task was selected as optimal. These locations
were found to correspond directly to the tongue area of the senso-
rimotor cortex as verified by radiographs. For each subject’s optimal
electrode location, the maximum r2 in each frequency band and the cor-
responding model parameters that produced these values are provided
in Table I.

In order to identify suitable generalized parameters across subjects,
for each subject, the r2 results were normalized to the maximum r2

(across all frequency bands and parameter combinations) and averaged

Fig. 1. Generalized tongue movement versus rest r2 correlations produced
by the various parameter combinations of window length and AR model order
[including FFT in the first column (FT)]. For each of the four subject’s optimal
electrode location, the r2 results were normalized to the maximum r2 (across
all frequency bands and parameter combinations) and averaged across subjects.
Values near 1 indicate that the parameter combination provides a high relative
correlation between the resulting feature and the task for all subjects.

across subjects. This average normalized r2 is shown in Fig. 1 and in-
dicates the generalized movement versus rest r2 correlations produced
by the various parameter combinations. Values near 1 indicate that the
parameter combination provides a high relative correlation between the
resulting feature and the task for all subjects.

A repeated measures analysis of variance (ANOVA) was performed
on the normalized r2 results for each frequency bin using model or-
der, window length, and user as factors. Because the shorter window
lengths do not produce results for all model orders, which would in-
accurately skew the statistics, only window lengths 100–500 ms were
used in the ANOVA. The ANOVA indicated significant differences
for all factors tested (p < 0.0001). The significance of the individual
parameters for each factor was evaluated using a post hoc Tukey–
Kramer test. A window length of 500 ms performed significantly better
(p < 0.05) than window lengths of 100 and 200 ms for all frequency
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TABLE II
TOP AR MODEL ORDERS AND SIGNIFICANT DIFFERENCES

bins. The significant differences for model order as determined by the
Tukey–Kramer test (p < 0.05) for each frequency bin are provided in
Table II.

IV. DISCUSSION

The results in Fig. 1 and the statistical analysis indicate a general
increase in performance for increasing window sizes, with the 500 ms
window clearly providing the best performance. When detection speed
is an issue, such as for continuous BCI control applications, the maxi-
mum allowable window size should be selected to avoid a compromise
in performance. There is not a distinct trend relating window length
to model order. The results suggest that the appropriate model order is
highly dependent on the frequency band.

The frequency ranges that are commonly used for motor screening
and BCI control are 0–40, 71–100z, and 101–200 Hz [6]. Model orders
of 5 and 10 appear to best track the dynamics of the two compos-
ite low-frequency bands, respectively. This could be due to the fact
that comparatively few distinct spectral peaks reside in these ranges,
which would correspond to the findings of other EEG and ECoG
model order studies [8], [20]. Model orders above 30 appear to be
suitable for the 101–200 and 201–300 Hz ranges. This could be due
to the fact that these comparatively higher model orders are capable
of capturing the more discrete and separable frequency bands asso-
ciated with distinct physiological processes at the higher frequency
ranges [19]. Additionally, it is possible that higher model orders are re-
quired for these ranges due to the comparatively lower signal-to-noise
ratios.

The 71–200 Hz range shows the maximum r2 for each subject
(Table I) and underscores the potential reliability for ECoG BCI of
this frequency band. It is interesting to note that this is the frequency
range that has provided good results for ECoG across many studies
with different model orders [3], [5]. This indicates that this band may
be most neurophysiologically relevant for ECoG. Interestingly, the top
AR model performed significantly better than the FFT in all frequency
bands except 101–200 Hz, where the FFT performed marginally better.
However, the FFT did not yield the highest r2 for any subject in this
band. It is difficult to pinpoint a reason as to why this was the sole
range that the FFT results were significantly consistent in comparison
to the AR models, but the results support the use of the FFT for this
frequency range in Miller et al. [9].

Further investigation in this area is necessary to reveal the precise
functional relationships and dynamics within the ECoG spectrum.

The aforementioned results represent a preliminary analysis and are
intended to serve as a starting point for parameterization of AR spectral
estimation in ECoG studies. It is anticipated that similar parameters
will be adequate for tracking the ECoG spectra from other areas of
the sensorimotor cortex; however, additional motor screening data are
necessary.

REFERENCES

[1] B. Graimann, J. E. Huggins, S. P. Levine, and G. Pfurtscheller, “Toward
a direct brain interface based on human subdural recordings and wavelet-
packet analysis,” IEEE Trans. Biomed. Eng., vol. 51, no. 6, pp. 954–962,
Jun. 2004.

[2] E. A. Felton, J. A. Wilson, J. C. Williams, and C. P. Garell, “Elec-
trocorticographically controlled brain-computer interfaces using motor
and sensory imagery in patients with temporary subdural electrode im-
plants. Report of four cases,” J. Neurosurg., vol. 106, no. 3, pp. 495–500,
2007.

[3] G. Schalk, J. Kubanek, K. J. Miller, N. R. Anderson, E. C. Leuthardt,
J. G. Ojemann, D. Limbrick, D. Moran, L. A. Gerhardt, and J. R.
Wolpaw, “Decoding two-dimensional movement trajectories using elec-
trocorticographic signals in humans,” J. Neural Eng., vol. 4, pp. 264–275,
2007.

[4] G. Schalk, K. J. Miller, N. R. Anderson, J. A. Wilson, M. D. Smyth,
J. G. Ojemann, D. W. Moran, J. R. Wolpaw, and E. C. Leuthardt, “Two-
dimensional movement control using electrocorticographic signals in hu-
mans,” J. Neural Eng., vol. 5, pp. 75–84, 2008.

[5] E. C. Leuthardt, K. J. Miller, G. Schalk, R. N. Rao, and J. G. Ojemann,
“Electrocorticography-based brain computer interface—The seattle expe-
rience,” IEEE Neural Syst. Rehabil. Eng., vol. 14, no. 2, pp. 194–198,
Jun. 2006.

[6] E. C. Leuthardt, G. Schalk, J. R. Wolpaw, J. G. Ojemann, and D. W.
Moran, “A brain–computer interface using electrocorticographic signals
in humans,” J. Neural Eng., vol. 1, no. 2, pp. 63–71, 2004.

[7] C. M. Chin, M. R. Popovic, A. Thrasher, T. Cameron, A. Lozano, and
R. Chen, “Identification of arm movements using correlation of electro-
corticographic spectral components and kinematic recordings,” J. Neural.
Eng., vol. 4, pp. 146–158, 2007.

[8] T. N. Lal, T. Hinterberger, G. Widman, M. Schröder, J. Hill,
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Resolving Superimposed MUAPs
Using Particle Swarm Optimization

Hamid Reza Marateb* and Kevin C. McGill, Member, IEEE

Abstract—This paper presents an algorithm to resolve superimposed ac-
tion potentials encountered during the decomposition of electromyographic
signals. The algorithm uses particle swarm optimization with a variety of
features including randomization, crossover, and multiple swarms. In a
simulation study involving realistic superpositions of two to five motor-unit
action potentials, the algorithm had an accuracy of 98%.

Index Terms—Alignment, decomposition, electromyography, particle
swarm optimization, superposition.

I. INTRODUCTION

The electromyographic (EMG) signal is made up of discharges
called motor-unit action potentials (MUAPs). Whenever two or more
MUAPs occur within a sufficiently short time interval, their waveforms
overlap and superimpose. The problem of identifying the MUAPs in-
volved in a superimposition and finding their precise timing is known
as resolving the superimposition [1]–[6]. This problem can be formu-
lated as an optimization problem, namely, that of finding the set of
MUAPs templates and their alignment that gives the best match to the
superimposition. Finding the solution is challenging because of the
large number of possible combinations and alignments and because
there are often many local extrema of the objective function.

A simple approach for resolving superimpositions is the peel-off
method, in which the MUAPs are successively aligned and subtracted
from the superimposition [7]. Unfortunately, the peel-off method often
fails to find the optimal solution, especially when the superimposition
involves destructive interference. McGill [8] presented an algorithm
that finds the optimal solution by discretizing the search space, using
a branch-and-bound approach to efficiently find the global discrete-
time optimum solution, and then using interpolation to find the nearest
continuous-time optimum. Florestal et al. [9] presented a probabilistic
method that uses a genetic algorithm to explore the search space. In this
paper, we present a different probabilistic approach based on particle
swarm optimization (PSO). Part of this paper has been presented in an
abstract form [10].
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II. ALGORITHM

A. Resolution Problem

The resolution problem can be stated as follows. Given a continuous-
time waveform w(t) and n continuous templates si (t), i = 1, . . . , n,
find the offsets x = (x1 , . . . , xn ) to minimize the squared error of
the residual between the given and reconstructed waveforms

f (x) =

∥∥∥∥∥w(t) −
n∑

i=1

si (t − xi )

∥∥∥∥∥
2

. (1)

Note that xi can take on noninteger values. This function can be
approximated using trigonometric polynomials as follows [8]:

f (x) ≈ f̃ (x) =
N /2∑

m =−N /2

∣∣∣∣∣w̃m −
n∑

i=1

s̃i ,m e−
j 2 πm x i

N

∣∣∣∣∣
2

(2)

where [w̃−N /2 , . . . , w̃N /2 ] is the discrete Fourier transform of the sam-
pled signal [w(0), . . . , w(N − 1)], [s̃i ,−N /2 , . . . , s̃i ,N /2 ] is the discrete
Fourier transform of the ith sampled template [si (0), . . . , si (N − 1)],
and all signals are assumed to be sufficiently zero-padded to avoid
wraparound difficulties associated with circular time shifts. This is
called the “known-constituent” problem since it is assumed that all
n templates are involved in the superimposition. In the “unknown-
constituent” problem, it is assumed that some subset of the n templates
is involved, and the objective is to determine the subset as well as the
offsets.

B. Particle Swarm Optimization

PSO is a population-based stochastic optimization algorithm, origi-
nally proposed to simulate the social behavior of a flock of birds [11].
PSO is easy to implement and has been successfully applied to a wide
range of optimization problems [12]. In this method, each “particle”
is a candidate solution that “flies” through the search space. The path
of each particle is influenced by its own experience and that of its
neighbors. In this paper, the neighborhood of each particle is the entire
swarm (star topology) [13].

Each particle i is characterized by these features:
1) xi : its current position;
2) vi : its current velocity;
3) yi : the personal best position it has found;
4) ŷi : the best position discovered by any of the particles so far.
At each iteration, these features are updated as follows:

xk
i = xk−1

i + vk−1
i (3)

yk
i =

{
yk−1

i , if f (xk
i ) ≥ f (yk−1

i )

xk
i , if f (xk

i ) < f (yk−1
i )

(4)

ŷk ∈
{
yk

1 , . . . ,yk
n p

}
|f (ŷk ) = min

(
f
(
yk

1

)
, . . . f

(
yk

n p

))
(5)

vk
i = wvk−1

i + c1r1 • (yk
i − xk

i ) + c2r2 • (ŷk − xk
i ) (6)

where f (x) is the objective function, k is the iteration number, np is the
number of particles in the swarm, and • denotes element-by-element
multiplication. The new velocity depends on the previous velocity and
the distances of the particle from the personal and neighborhood best
positions [13], with the coefficient ω being the inertia weight, c1 the
cognitive acceleration coefficient, c2 the social acceleration coefficient,
and r1 and r2 random vectors whose elements are uniformly distributed
in U (0, 1). A large value of inertia weight favors global search (“ex-
ploration”), while a small value favors local search (“exploitation”).
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