

Elastic Scattering

Nuclear Physics Group Seminar
February 12, 2015
S. Bültmann

Scattering Cross-Sections

- Describe the interaction (rate \dot{N}) of particles
- Consider a beam of cross-sectional area A and particle density n_{A} with particles having an average velocity v_{a}
- The particle flux describes the number of particles hitting the target per unit area and unit time

$$
\Phi_{a}=n_{a} \cdot v_{a}=\frac{\dot{N}_{a}}{A}
$$

- Consider a target of thickness d and particle density n_{b}
- The geometric cross-section is defined as

$$
\sigma_{b}=\frac{\dot{N}}{\Phi_{a} \cdot N_{b}}=\frac{\dot{N}}{\dot{N}_{a} \cdot n_{b} \cdot d} \quad \text { with } N_{b}=n_{b} \cdot A \cdot d
$$

Luminosity

- This geometric scattering cross-section can be re-written

$$
\sigma_{b}=\frac{\dot{N}}{\Phi_{a} \cdot N_{b}}=\frac{\dot{N}}{\mathcal{L}}
$$

- Here the luminosity is defined by

$$
\mathcal{L}=\Phi_{a} \cdot N_{b}=\dot{N}_{a} \cdot n_{b} \cdot d=n_{a} \cdot v_{a} \cdot N_{b}
$$

Luminosity

- Luminosity for colliding beams with N bunches is given by

$$
\mathcal{L}=\frac{N_{a} \cdot N_{b} \cdot N \cdot v / C}{4 \pi \sigma_{x} \sigma_{y}}
$$

with

- beam velocities v
- collider ring circumference C
- beam cross-section at collision point $4 \pi \sigma_{x} \sigma_{y}$

Interaction Rate

- The interaction rate depends on the interaction potential described by an operator \mathcal{H}
- The operator \mathcal{H} transforms the initial wave function ψ_{i} into the final wave function ψ_{f}
- The transition matrix element (transition probability amplitude) is given by

$$
\mathcal{M}=\left\langle\psi_{f}\right| \mathcal{H}\left|\psi_{i}\right\rangle
$$

Interaction Rate

- Consider a particle scattered into a volume V and momentum interval p^{\prime} and $p^{\prime}+\mathrm{d} p^{\prime}$
- The interaction rate also depends on the number of final states available
- Ignoring spin, the number of final states is given by

$$
\mathrm{d} n\left(p^{\prime}\right)=\frac{V \cdot 4 \pi p^{\prime 2}}{(2 \pi \hbar)^{3}} \mathrm{~d} p^{\prime}
$$

with $(2 \pi \hbar)^{3}$ the volume of phase space occupied by each particle

- Energy and momentum are connected by

$$
\mathrm{d} E^{\prime}=v^{\prime} \mathrm{d} p^{\prime}
$$

Interaction Rate

- The density of final states in the energy interval $\mathrm{d} E^{\prime}$ is given by

$$
\varrho\left(E^{\prime}\right)=\frac{\mathrm{d} n\left(E^{\prime}\right)}{\mathrm{d} E^{\prime}}=\frac{V \cdot 4 \pi p^{\prime 2}}{v^{\prime} \cdot(2 \pi \hbar)^{3}}
$$

- Fermi's Golden Rule connects the interaction rate per target particle and per beam particle with the transition matrix element and the density of final states

$$
\begin{aligned}
W_{f i} & =\frac{\dot{N}(E)}{N_{a} \cdot N_{b}} \\
& =\frac{2 \pi}{\hbar}|\mathcal{M}|^{2} \cdot \varrho\left(E^{\prime}\right)
\end{aligned}
$$

Feynman Diagrams

- Describe particle scattering through interacting currents
- A pictorial way of describing fermion and boson interactions
- Example electron-electron scattering

Transition Amplitudes

- Initial and final state particles have wave functions
- Vertices have dimensionless coupling constants
- Electromagnetic interactions $\Rightarrow \sqrt{ } \alpha \propto e$
- Strong interactions $\Rightarrow \sqrt{ } \alpha \propto \sqrt{ } \alpha_{\text {s }}$
- Virtual particles have propagators
- Virtual photon has propagator $\propto 1 / q^{2}$
- Virtual boson of mass m has propagator $\propto 1 /\left(q^{2}-m^{2}\right)$
- Transition amplitudes for electron-electron or electronnucleon scattering have a virtual photon as propagator and two vertices, resulting in

$$
\mathcal{M} \propto e^{2} / q^{2}
$$

with q^{2} the 4-momentum transfer squared

Electron-Nucleon Scattering Kinematics

- Electron with incident 4-momentum $k=(E, 0,0, E)$ and scattered 4-momentum $k^{\prime}=\left(E^{\prime}, E^{\prime} \sin \theta, 0, E^{\prime} \cos \theta\right)$
- Nucleon with incident 4-momentum $P=(M, 0,0,0)$ and scattered 4-momentum $P^{\prime}=\left(M+v,-E^{\prime} \sin \theta, 0, E-E^{\prime} \cos \theta\right)$
- Exchanged virtual photon with 4-momentum $q=k-k$,
- Invariant virtual photon mass squared is given by

$$
q^{2}=-Q^{2}=-4 E E^{\prime} \cdot \sin ^{2}(\theta / 2)
$$

with θ the scattering angle in the lab frame E the incident electron energy
E ' the scattered electron energy
$\nu=E-E$, the energy transfer
M the nucleon rest mass

Electron-Nucleon Scattering Kinematics

- Invariant mass squared of the final state nucleon is given by

$$
W^{2}=M^{2}+2 M v-Q^{2}
$$

- In elastic scattering $W=M$, which yields $Q^{2}=2 M v$

Scattering Cross-Sections

- Rutherford cross-section for scattering of point-like particles (no recoil)

$$
\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)_{\mathrm{R}}=\frac{Z^{2} \alpha^{2}(\hbar c)^{2}}{4 E^{2} \cdot \sin ^{4}(\theta / 2)}=\frac{4 Z^{2} \alpha^{2}(\hbar c)^{2} E^{\prime 2}}{Q^{4}}
$$

- Mott cross-section accounting for spin s of electron

$$
\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)_{\mathrm{M}}^{*}=\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)_{\mathrm{R}} \cdot\left(1-\beta^{2} \sin ^{2}(\theta / 2)\right) \quad \text { with } \beta=v / c
$$

- Helicity $h=\frac{\boldsymbol{s} \cdot \boldsymbol{p}}{|\boldsymbol{s}| \cdot|\boldsymbol{p}|}$ is conserved for relativistic particles

Nuclear Form Factors

- Experimental data only agree with Mott cross-section for very low \boldsymbol{q}
- The spatial extension of nuclei can be accounted for by form factors $F\left(\boldsymbol{q}^{2}\right)$

$$
\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)_{\exp }=\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)_{\mathrm{M}}^{*} \cdot\left|F\left(\boldsymbol{q}^{2}\right)\right|^{2}
$$

- The form factors are the Fourier transform of the charge distribution $f(x)$

$$
F\left(\boldsymbol{q}^{2}\right)=\int \mathrm{e}^{i \boldsymbol{q} x / \hbar} f(x) \mathrm{d}^{3} x
$$

(Born approximation and no recoil)

Nuclear Form Factors

- For spherical symmetric cases the charge distribution only depends on the radius r

$$
F\left(\boldsymbol{q}^{2}\right)=4 \pi \int \frac{\sin |\boldsymbol{q}| r / \hbar}{|\boldsymbol{q}| r / \hbar} f(r) r^{2} \mathrm{~d} r
$$

Nuclear Form Factors

Nuclear Form Factors

Charge distribution $f(r)$	Form Factor $\boldsymbol{F}\left(\boldsymbol{q}^{2}\right)$
point $\delta(r) / 4 \pi$ exponential $\left(a^{3} / 8 \pi\right) \cdot \exp (-a r)$ Gaussian $\left(a^{2} / 2 \pi\right)^{3 / 2} \cdot \exp \left(-a^{2} r^{2} / 2\right)$ homogeneous $\left\{\begin{array}{cc}3 / 4 \pi R^{3} & \text { for } r \leq R \\ 0 & \text { for } r>R\end{array}\right.$ sphere a	1 constant $\left(1+q^{2} / a^{2} \hbar^{2}\right)^{-2}$ dipole $\exp \left(-q^{2} / 2 a^{2} \hbar^{2}\right)$ Gaussian $3 \alpha^{-3}(\sin \alpha-\alpha \cos \alpha)$ oscillating with $\alpha=\|q\| R / \hbar$

Nucleon Form Factors

- Scattering of nucleons with mass of about 938 MeV requires recoil effects to be accounted for

$$
\begin{aligned}
\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)_{\mathrm{M}} & =\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)_{\mathrm{M}}^{*} \cdot \frac{E^{\prime}}{E} \\
& =\frac{4 Z^{2} \alpha^{2}(\hbar c)^{2} E^{\prime 2}}{Q^{4}} \frac{E^{\prime}}{E} \cdot\left(1-\beta^{2} \sin ^{2}(\theta / 2)\right)
\end{aligned}
$$

Nucleon Form Factors

- Electron interaction with the magnetic moment μ of the nucleon needs to be included also
- The magnetic moment of a charged, point-like spin-1/2 particle is given by

$$
\mu=g \frac{e}{2 M} \frac{\hbar}{2} \quad \text { with } g=2
$$

- We obtain for the scattering cross section

$$
\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)=\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)_{\mathrm{M}} \cdot\left(1+2 \tau \tan ^{2}(\theta / 2)\right) \quad \text { with } \tau=\frac{Q^{2}}{4 M^{2} c^{2}}
$$

Nucleon Form Factors

- The magnetic moments of nucleon deviates from 2 because of the composite structure
- Measured values are

$$
\begin{aligned}
& \mu_{p}=\frac{g_{p}}{2} \mu_{N}=+2.79 \cdot \mu_{N} \quad \text { for the proton } \\
& \mu_{n}=\frac{g_{n}}{2} \mu_{N}=-1.91 \cdot \mu_{N} \quad \text { for the neutron } \\
& \text { with } \mu_{N}=\frac{e \hbar}{2 M_{p}}
\end{aligned}
$$

Nucleon Form Factors

- Charge and current distribution can be described by form factors as for nuclei
- Two form factors are needed to describe the charge and magnetic distributions
- The cross-section is given by the Rosenbluth formula
$\left(\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}\right)=\left(\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}\right)_{\mathrm{M}} \cdot\left(\frac{G_{E}{ }^{2}\left(Q^{2}\right)+\tau G_{M}{ }^{2}\left(Q^{2}\right)}{1+\tau}+2 \tau G_{M}{ }^{2}\left(Q^{2}\right) \tan ^{2}(\theta / 2)\right)$
- As $Q^{2} \rightarrow 0$ also $\tau \rightarrow 0$ and only $G_{E}{ }^{2}(0)$ remains above

$$
\text { with } \tau=\frac{Q^{2}}{4 M^{2} c^{2}}
$$

Nucleon Form Factors

- For the form factors we expect in the limit $Q^{2} \rightarrow 0$

$$
\begin{aligned}
& G_{E}^{p}(0)=1 \\
& G_{M}^{p}(0)=+2.79 \\
& G_{E}^{n}(0)=0 \\
& G_{M}^{n}(0)=-1.91
\end{aligned}
$$

Measuring Nucleon Form Factors

- To determine the two form factors independently, we need to measure the cross section at fixed values of Q^{2} and vary the beam energy (scattering angle)

$$
\begin{aligned}
& \left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right) /\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)_{\mathrm{M}} \\
& =\frac{G_{E}{ }^{2}+\tau G_{M}{ }^{2}}{1+\tau}+2 \tau G_{M}{ }^{2} \tan ^{2}(\theta / 2)
\end{aligned}
$$

Measuring Nucleon Form Factors

- Result of measurements revealed dipole structure

Nucleon Charge Distribution

- Spatial extend of nucleon charge can be found from measured form factors
- Fourier transform only applicable at low Q^{2}
- Dipole form factor corresponds to a diffuse and exponentially falling charge distribution

$$
\varrho(r)=\varrho(0) \mathrm{e}^{-a r} \quad \text { with } a=4.27 \mathrm{fm}^{-1}
$$

- The yields for the proton charge radius

$$
\sqrt{\left\langle r^{2}\right\rangle_{p}}=0.86 \mathrm{fm}
$$

