Physics 722/822 9/25/2018

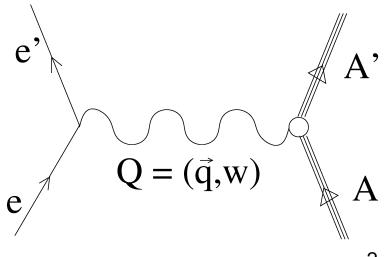
Larry Weinstein

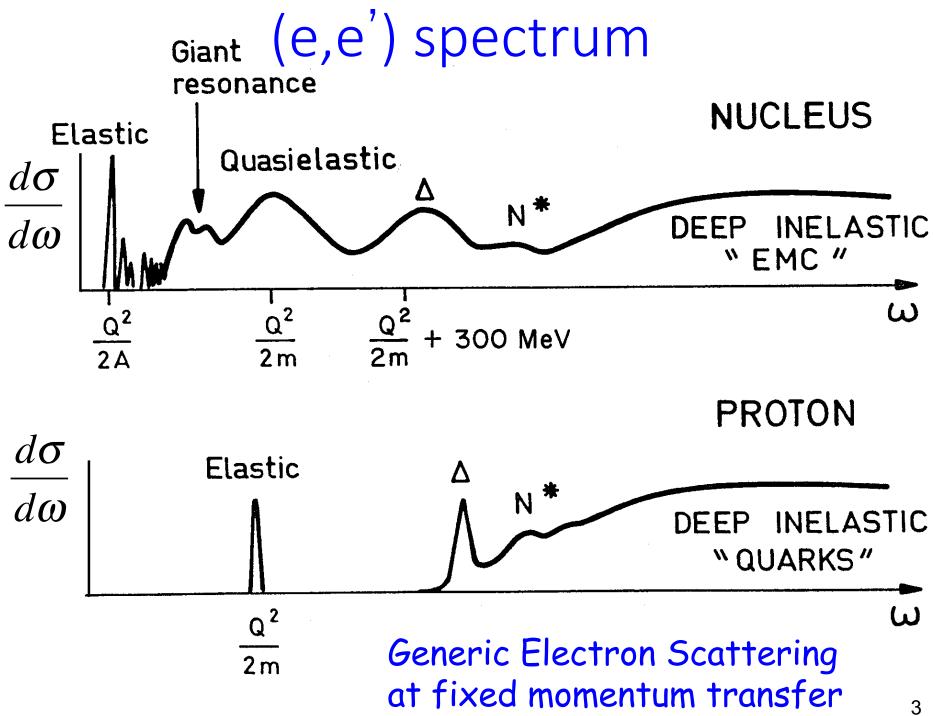
Why use electrons and photons?

- Probe structure understood (point particles)
- Electromagnetic interaction understood (QED)
- Interaction is weak ($\alpha = 1/137$)
 - Perturbation theory works!
 - First Born Approx / one photon exchange
 - Probe interacts only once
 - Study the entire nuclear volume

BUT:

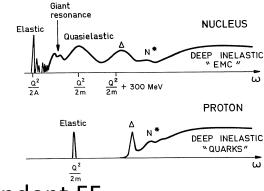
- Cross sections are small
- Electrons radiate





Experimental goals:

- Elastic scattering
 - structure of the nucleus
 - Form factors, charge distributions, spin dependent FF
- Quasielastic (QE) scattering
 - Shell structure
 - Momentum distributions
 - Occupancies
 - Short Range Correlated nucleon pairs
 - Nuclear transparency and color transparency
- Deep Inelastic Scattering (DIS)
 - The EMC Effect and Nucleon modification in nuclei
 - Quark hadronization in nuclei



Energy vs length

Select spatial resolution and excitation energy independently

- Photon energy v determines excitation energy
- Photon momentum q determines spatial resolution: $\lambda \approx \frac{\hbar}{-1}$

Three cases:

- Low q
 - Photon wavelength λ larger than the nucleon size (R_p)
- Medium q: 0.2 < q < 1 GeV/c
 - $\lambda \sim R_{\rm p}$
 - Nucleons resolvable
- High *q*: q > 1 GeV/c
 - $\lambda < R_{\rm p}$
 - Nucleon structure resolvable

 \boldsymbol{Q}

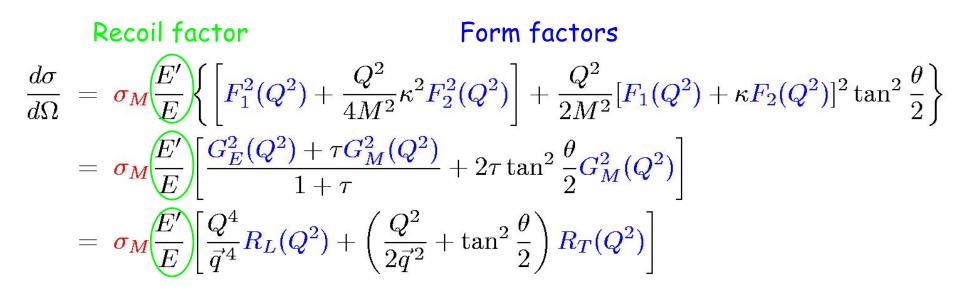
Inclusive electron scattering (e,e')

$$\begin{aligned} k'^{\mu} &= (E', \vec{k}\,') \\ \text{Lab frame kinematics} \\ k^{\mu} &= (E, \vec{k}\,) \end{aligned} \qquad \begin{array}{c} p'^{\mu} &= (E_p, \vec{p}_p) \\ \text{(not detected)} \\ q^{\mu} &= (\omega, \vec{q}\,) \\ q^{\mu} &= k^{\mu} - k'^{\mu} \end{array} \qquad \begin{array}{c} p'^{\mu} &= (E_p, \vec{p}_p) \\ \text{(not detected)} \\ p^{\mu} &= (M, \vec{0}\,) \end{array} \end{aligned}$$

Invariants:

$$p^{\mu}p_{\mu} = M^{2} \qquad p_{\mu}q^{\mu} = M\omega$$
$$Q^{2} = -q^{\mu}q_{\mu} = |\vec{q}|^{2} - \omega^{2} \qquad W^{2} = (q^{\mu} + p^{\mu})^{2} = p'_{\mu}p'^{\mu}$$

Elastic cross section $(p'^2 = m^2)$



Mott cross section

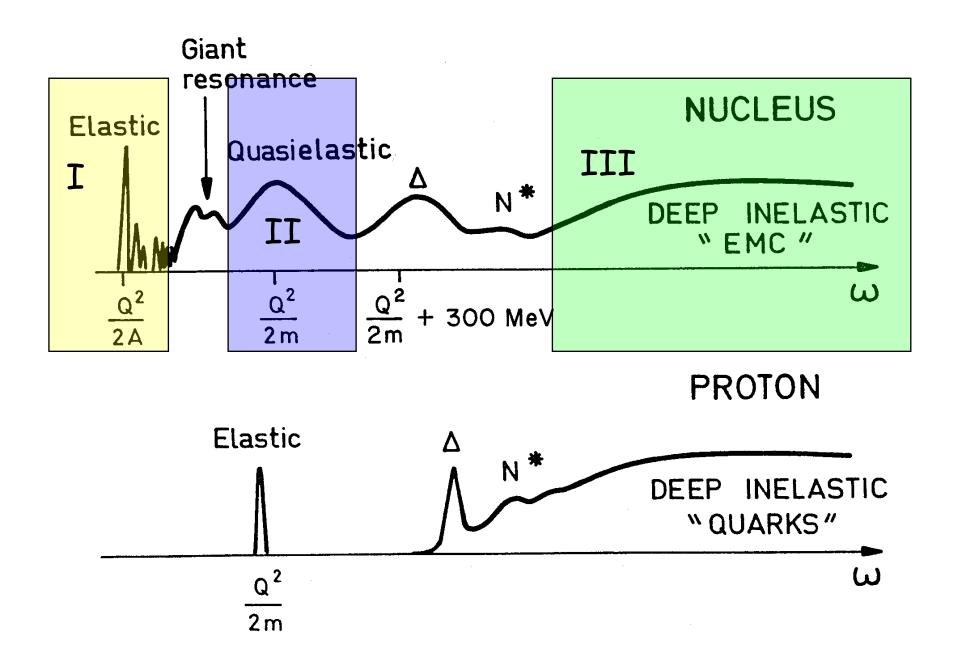
$$\boldsymbol{\sigma}_{\boldsymbol{M}} = \frac{\alpha^2 \cos^2\left(\frac{\theta_e}{2}\right)}{4E^2 \sin^4\left(\frac{\theta_e}{2}\right)}$$

 F_1, F_2 : Dirac and Pauli form factors G_E, G_M : Sachs form factors (electric and magnetic) $G_E(Q^2) = F_1(Q^2) - \tau \varkappa F_2(Q^2)$ $\tau = Q^2/4M^2$ $G_M(Q^2) = F_1(Q^2) + \varkappa F_2(Q^2)$ κ = anomalous magnetic moment R_L, R_T : Longitudinal and transverse response fn

Notes on form factors

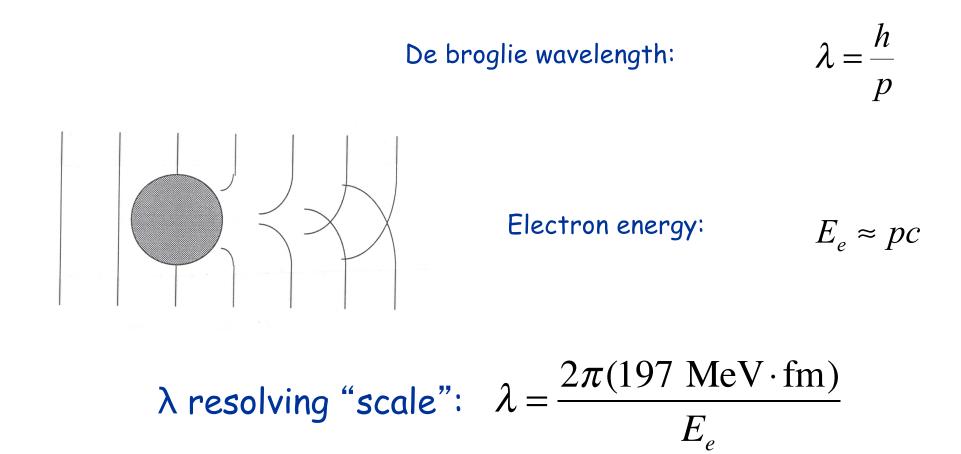
- G_E , G_M , F_1 and F_2 refer to nucleons
 - $F_1^{p}(0) = 1$, $F_2^{p}(0) = \kappa_p = 1.79$
 - $F_1^n(0) = 0$, $F_2^n(0) = \kappa_n = -1.91$
 - $G_E^p(0) = 1$, $G_M^p(0) = 1 + \kappa_p = 2.79$
 - $G_E^n(0) = 0, G_M^n(0) = \kappa_n = -1.91$
- R_L and R_T refer to nuclei

Electron-nucleus interactions

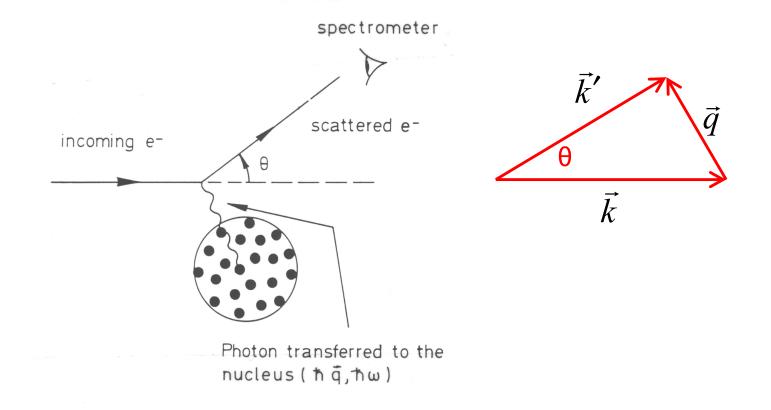


Electrons as Waves

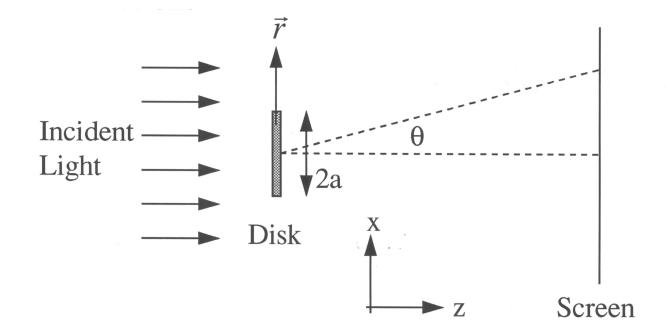
Scattering process is quantum mechanical



Analogy between elastic electron scattering and diffraction



Simple analogy for elastic electron scattering.... Classical Fraunhofer Diffraction

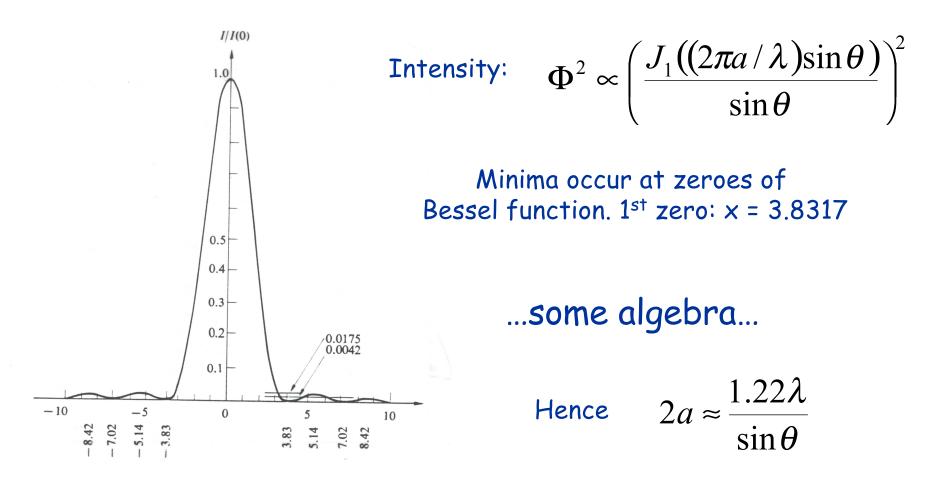


Amplitude of wave at screen:

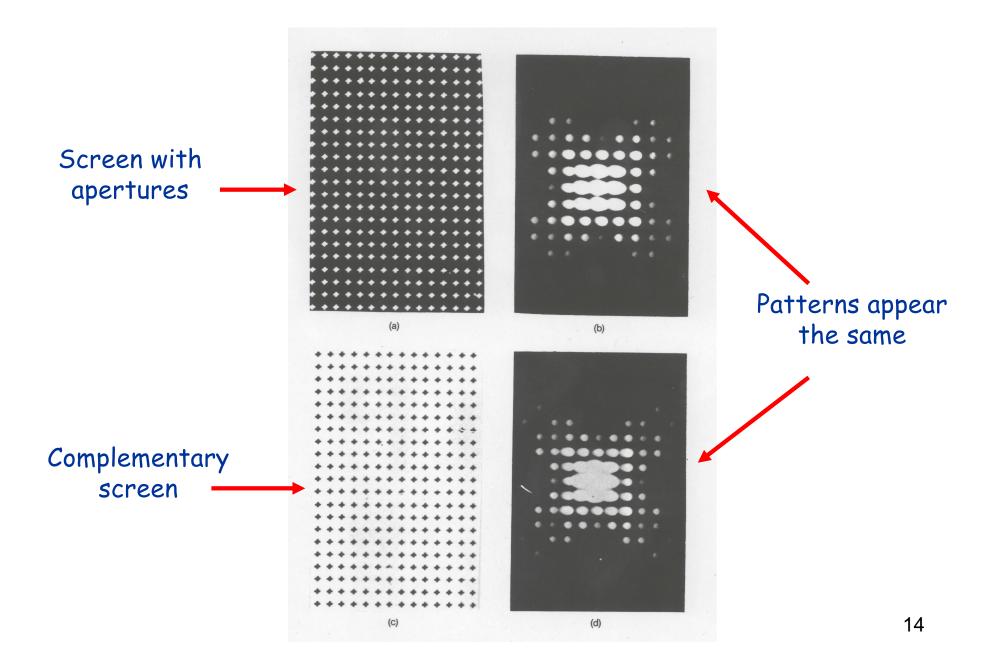
$$\Phi \propto \int_{0}^{a} \int_{0}^{2\pi} \exp(ibr\cos\phi) r d\phi dr$$

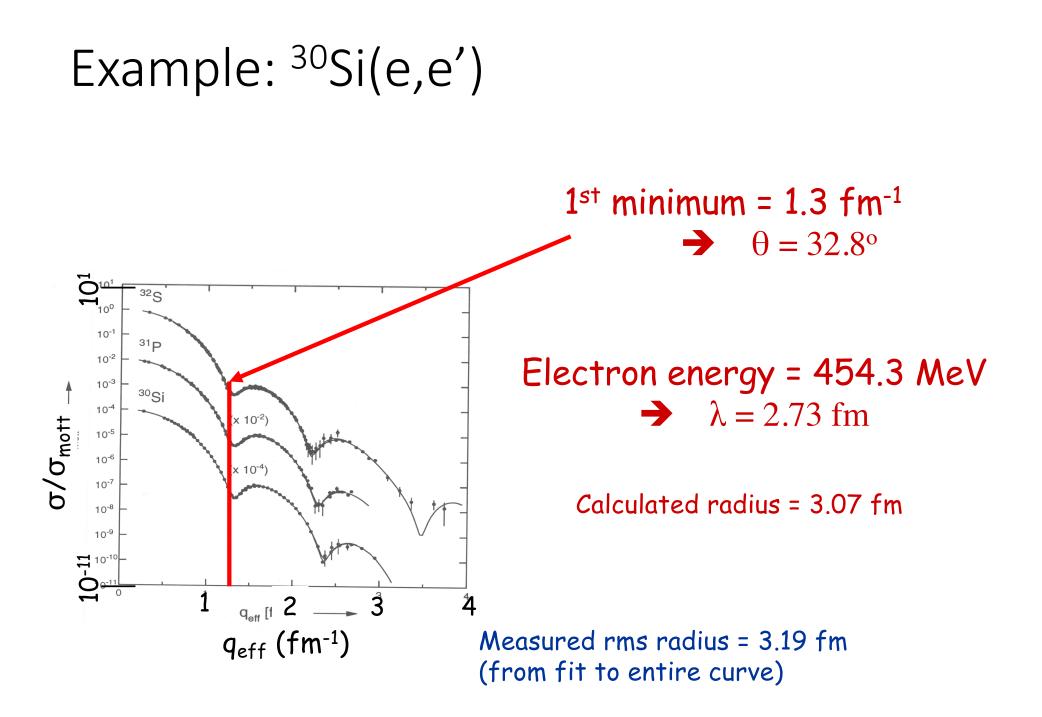
12

Classical Fraunhofer Diffraction



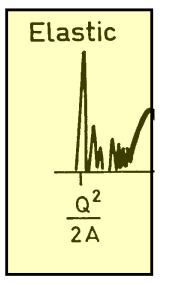
Excursion: Babinet's principle





 $(1 \text{ fm}^{-1} = 197 \text{ MeV/c})$

Elastic Electron Scattering from Nuclei (done formally)



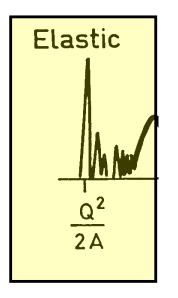
Ι.

Fermi's Golden Rule $\frac{d\sigma}{d\Omega} = \frac{2\pi}{\hbar} |M_{fi}|^2 D_f$ M_{fi} : scattering amplitude D_f : density of the final states (or phase factor) $M_{fi} = \int \Psi_f^* V(x) \Psi_i d^3 x$ $= \int e^{-k_f \cdot \mathbf{x}} V(\mathbf{x}) e^{-k_f \cdot \mathbf{x}} d^3 \mathbf{x}$ $= \int e^{iq \cdot x} V(x) d^3 x$

 $\rho(\mathbf{x})$

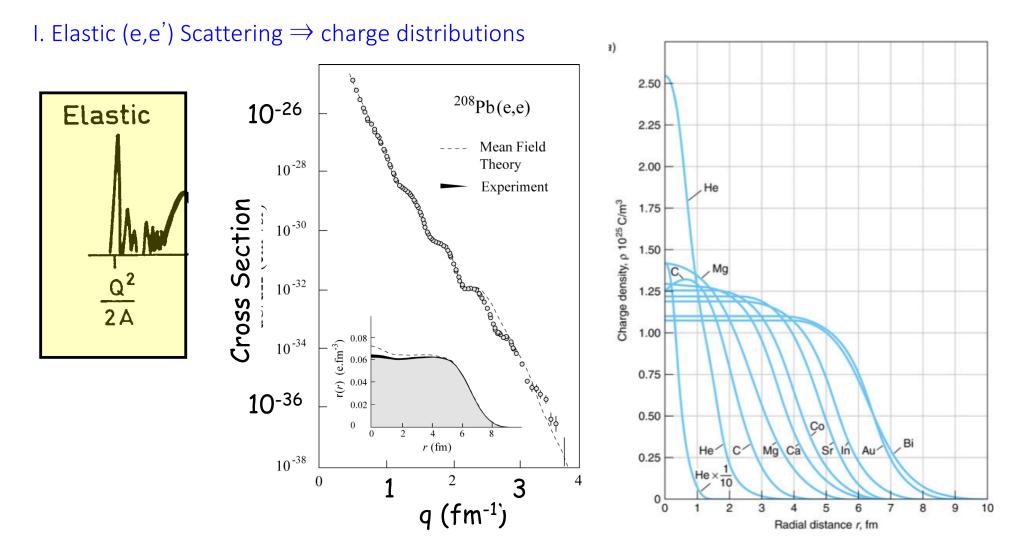
Plane wave approximation for incoming and outgoing electrons Born approximation (interact only once)

I. Elastic Electron Scattering from (spin-0) Nuclei



Form Factor and Charge Distribution Using Coulomb potential from a charge distribution, $\rho(x)$, $V(\mathbf{x}) = -\frac{Ze^2}{4\pi\epsilon_0} \int \frac{\rho(\mathbf{x}')}{|\mathbf{x}-\mathbf{x}'|} d^3 \mathbf{x}'$ $M_{fi} = -\frac{Ze^2}{4\pi\epsilon_0} \int e^{iq\cdot x} \left[\frac{\rho(x')}{|x-x'|} d^3 x' d^3 x \right]$ $= -\frac{Ze^2}{4\pi\epsilon_0} \left[e^{iqR} \left[\left[\frac{e^{iq\cdot x} \rho(x')}{|R|} d^3 x' \right] d^3 R \right] \right]$ $= -\frac{Ze^2}{4\pi\epsilon} \left[\frac{e^{iqR}}{R} d^3 R \left[e^{iq \cdot x'} \rho(x') d^3 x' \right] \right]$ $F(q) = \int e^{iq \cdot x'} \rho(x') d^3 x'$

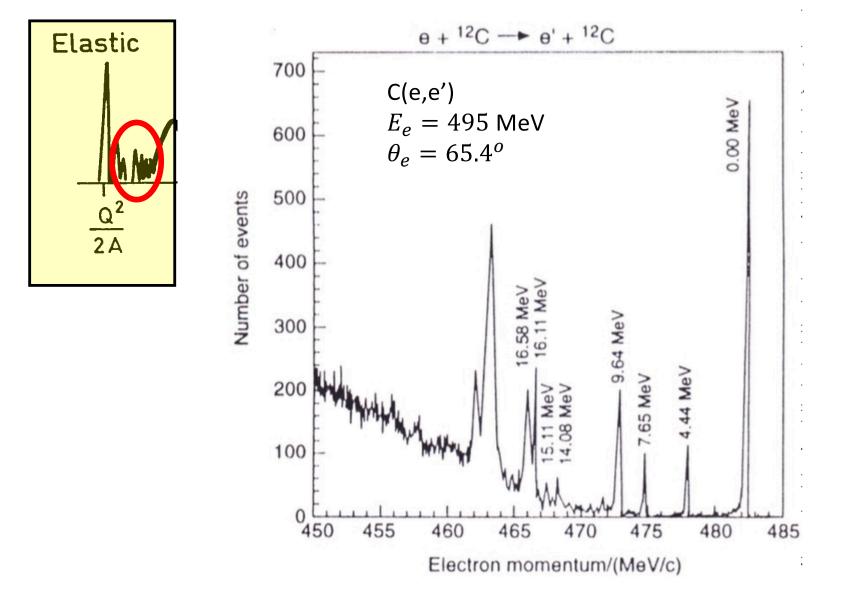
Charge form factor F(q)is the Fourrier transform of the charge distribution $\rho(x)$



Elastic electron scattering measured for many nuclei over a wide range of Q2(mainly at Saclay in the 1970s)

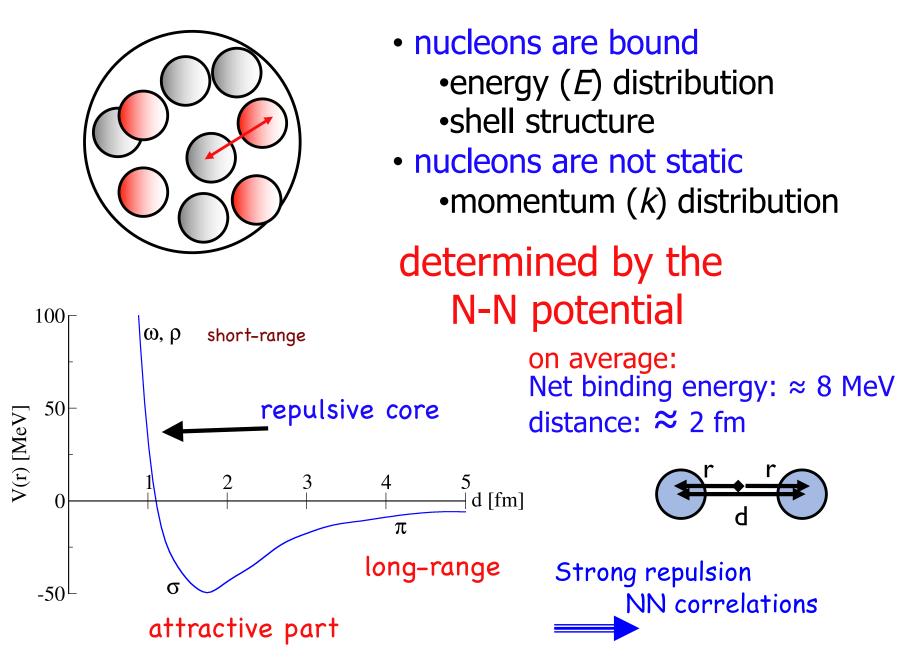
Measured charge distributions agree well with mean field theory calculations.

Inelastic Scattering from Nuclei

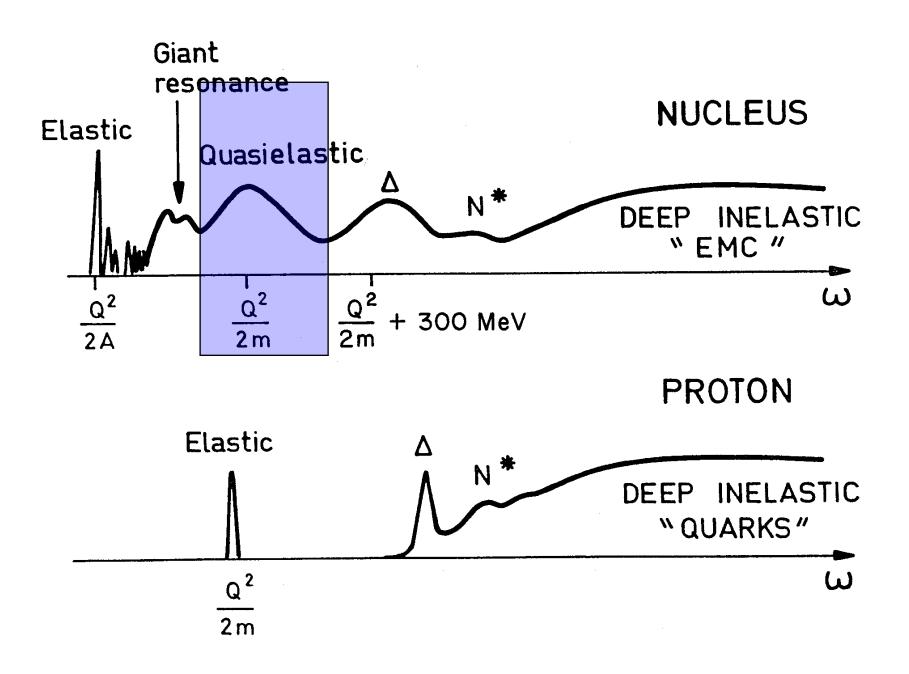


Measure spin/parity of excited states and transition matrix elements

Structure of the nucleus

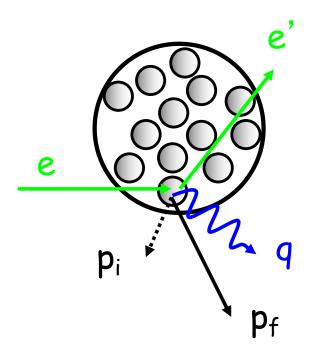


II. Quasielastic scattering



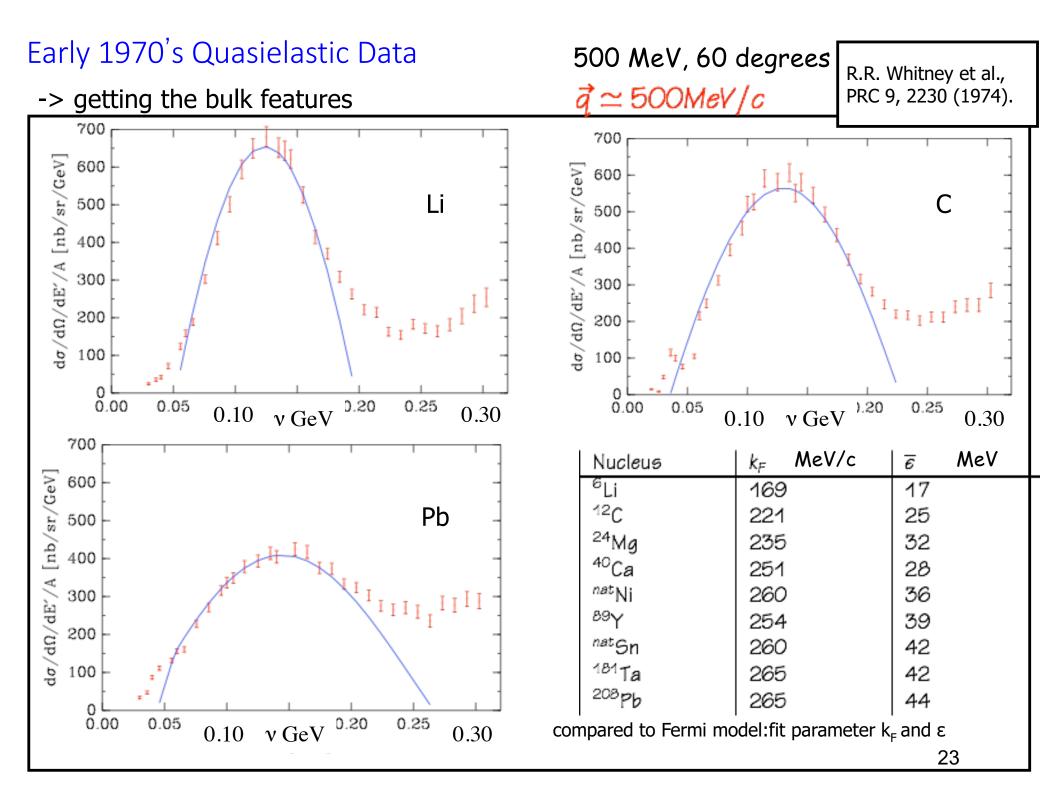
Fermi gas model:

how simple a model can you make ?



Initial nucleon energy: $KE_i = p_i^2 / 2m_p$ Final nucleon energy: $KE_f = p_f^2 / 2m_p = (\vec{q} + \vec{p}_i)^2 / 2m_p$ Energy transfer: $v = KE_f - KE_i = \frac{\vec{q}^2}{2m_p} + \frac{\vec{q} \cdot \vec{p}_i}{m_p}$ Expect: •Peak centroid at $v = q^2/2m_p + \varepsilon$

- •Peak width $2qp_{\text{fermi}}/m_{\text{p}}$
- •Total peak cross section = $Z\sigma_{ep} + N\sigma_{en}$



Scaling

•The dependence of a cross section, in certain kinematic regions, on a single variable.

•If the data scales, it validates the scaling assumption

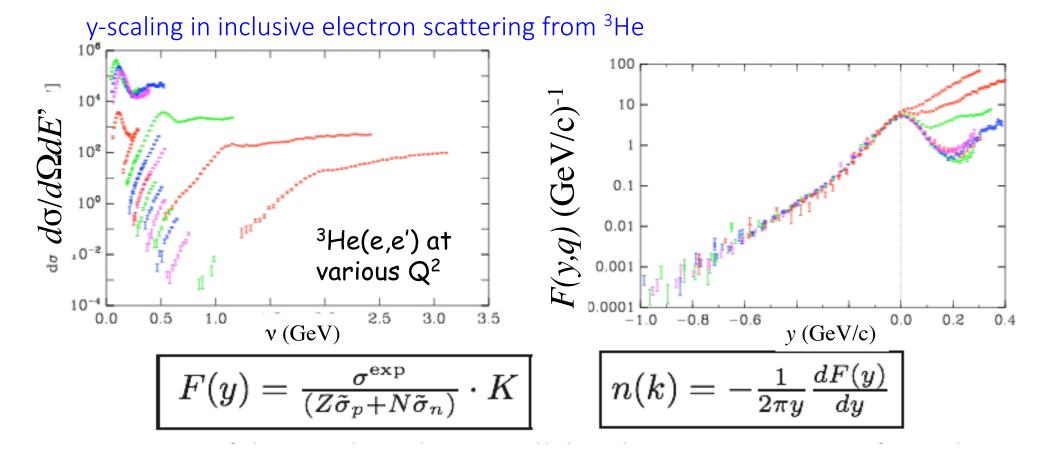
Scale-breaking indicates new physics

 At moderate Q² and x>1 we expect to see evidence for y-scaling, indicating that the electrons are scattering from quasifree nucleons

• y = minimum momentum of struck nucleon

 At high Q² we expect to see evidence for x-scaling, indicating that the electrons are scattering from quarks. (next lecture)

•x = $Q^2/2mv$ = fraction of nucleon momentum carried by struck quark (in infinite momentum frame)



Assumption: scattering takes place from a quasi-free proton or neutron in the nucleus.

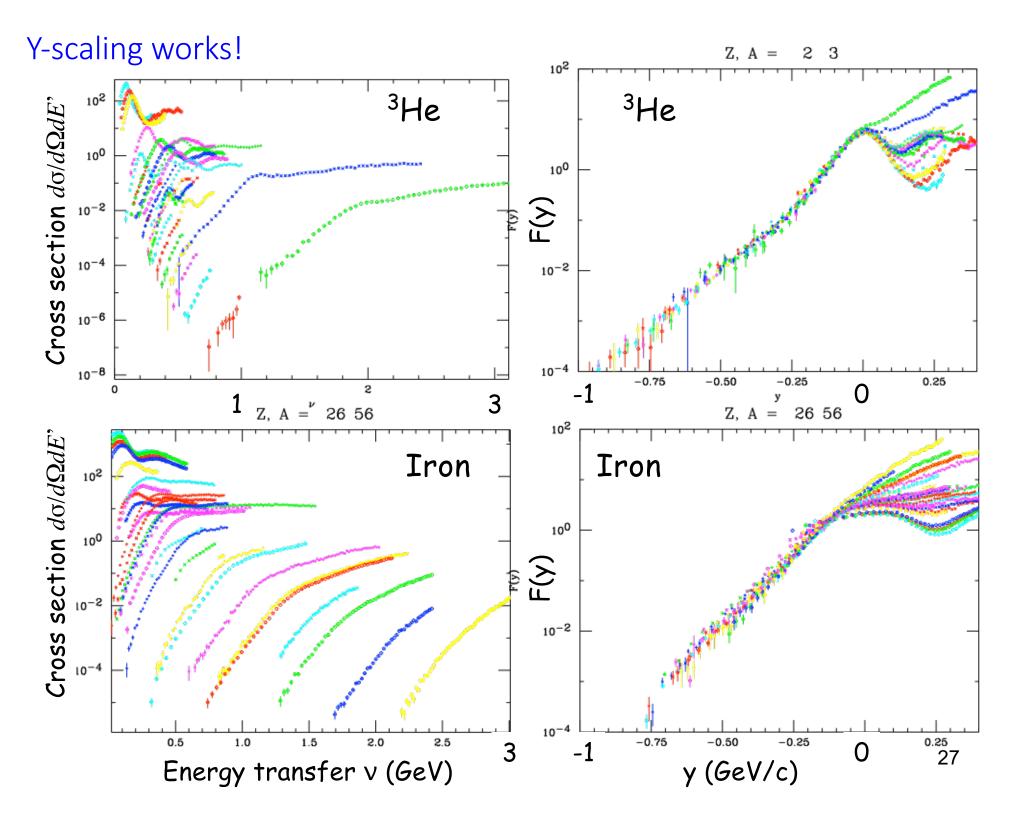
y is the momentum of the struck nucleon parallel to the momentum transfer: $y \approx -q/2 + mv/q$ (nonrelativistically)

IF the scattering is quasifree, then F(y) is the integral over all perpendicular nucleon momenta (nonrelativistically).

Goal: extract the momentum distribution n(k) from F(y).

Assumptions & Potential Scale Breaking Mechanisms

- No Final State Interactions (FSI)
- No internal excitation of (A-1)
- Full strength of Spectral function can be integrated over at finite *q*
- No inelastic processes (choose y<0)
- No medium modifications (discussed later)



Get more information: Detect the knocked out nucleon (e,e'p)

coincidence experiment

measure: momentum, angles

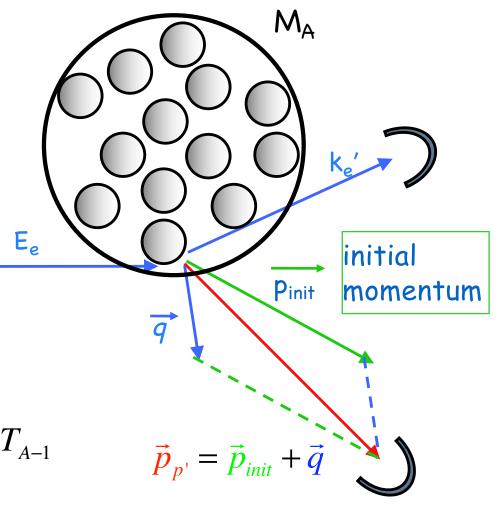
electron energy: E_e proton: $\vec{p}_{p'}$ scattered electron: $\vec{k}_{e'} = |\vec{k}_{e'}|$

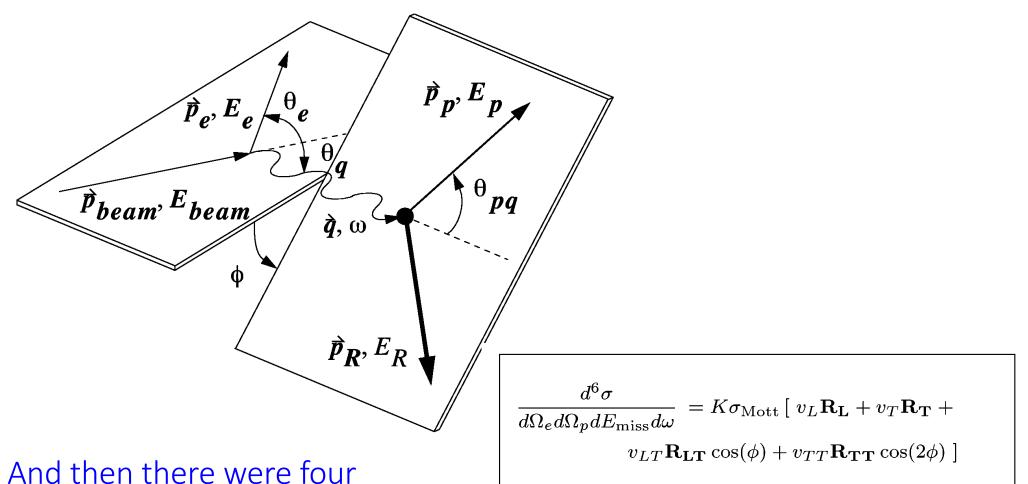
reconstructed quantites: missing energy: $E_m = v - T_{p'} - T_{A-1}$

missing momentum: $\vec{p}_m = \vec{q} - \vec{p}_{p'}$

in Plane Wave Impulse Approximation (PWIA): direct relation between measured quantities and theory:

$$|E| = E_m \quad \vec{p}_{init} = -\vec{p}_m$$





(response functions, that is)

where

(When you include electron and proton spin, there are 18. Yikes!)

(And if you scatter from a polarized spin-1 target, there are 41. Double Yikes!!)

K = (phase space) $\sigma_{Mott} = (relativistic Rutherford scattering)$ $v = v (q, \omega)$ (electron kinematics) Fach R now depends on more variab

Each R now depends on more variables $R = R(q, \omega, p_{miss}, E_{miss})$

(e,e'p) Plane Wave Impulse Approximation (PWIA)

- 1. Only one nucleon absorbs the virtual photon
- 2. That nucleon does not interact further
- 3. That nucleon is detected

 $\frac{d\sigma^{\text{fi}}}{dE_1 dQ_1 dE_2 dQ_2} = KS(\vec{k}, E) \frac{d\sigma^{\text{free}}}{dQ}$ Cross section factorizes:

Single nucleon pickup reactions [eg: (p,d), (d,³He) ...] are also sensitive to S(p,E) but only sensitive to surface nucleons due to strong absorption in the nucleus DWIA: If the struck nucleon interacts with the rest of the

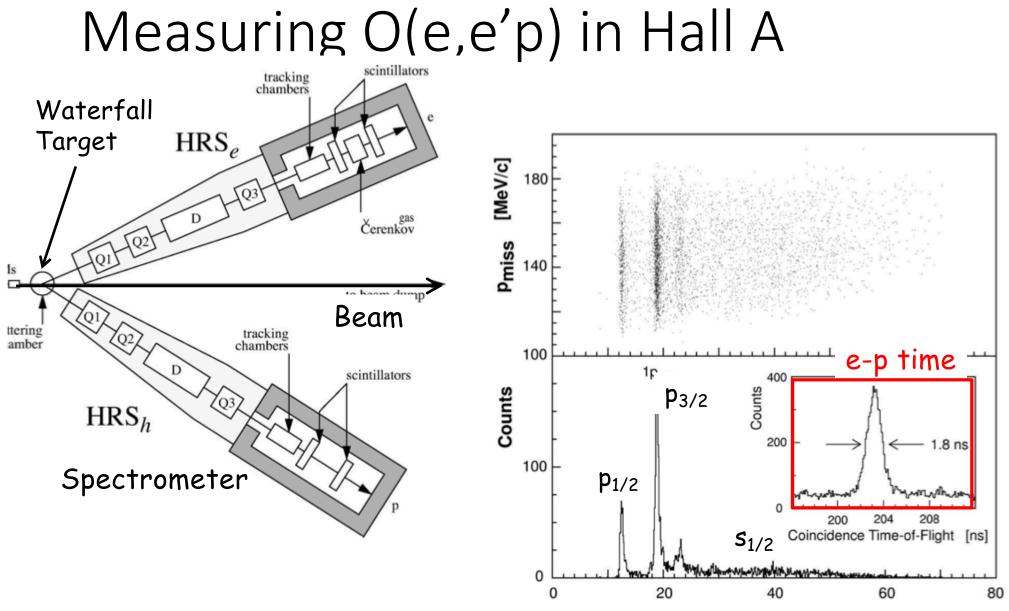
nucleus, then the cross section still factorizes (usually) but we measure a distorted spectral function.

e' p'
$$A-1$$

e $Q = (\vec{q}, w)$ A

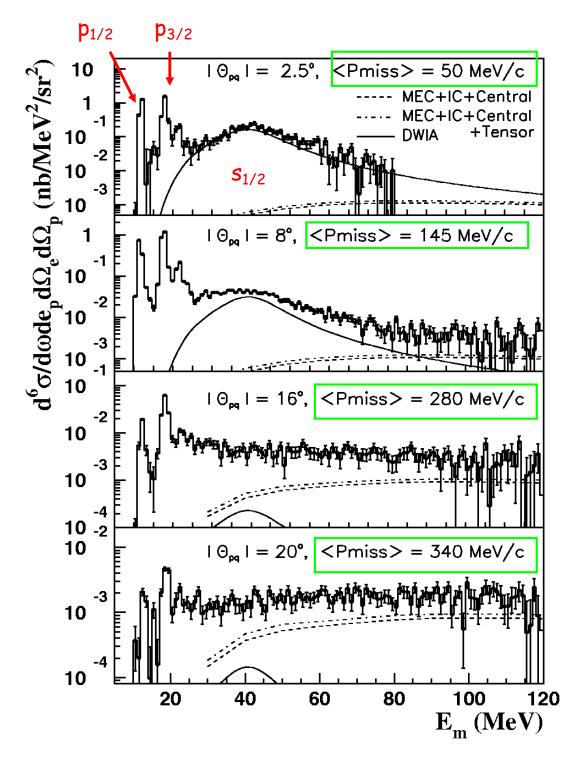
e'

 $Q = (\vec{q}, w)$

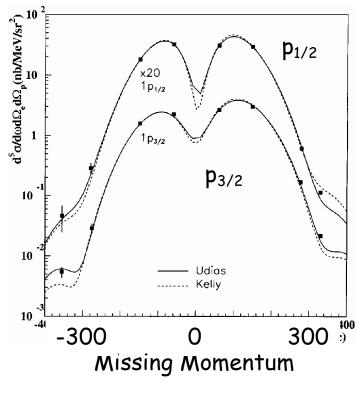


Fissum et al, PRC 70, (2004) 034606

E_{miss} [MeV]



O(e,e'p) and shell structure

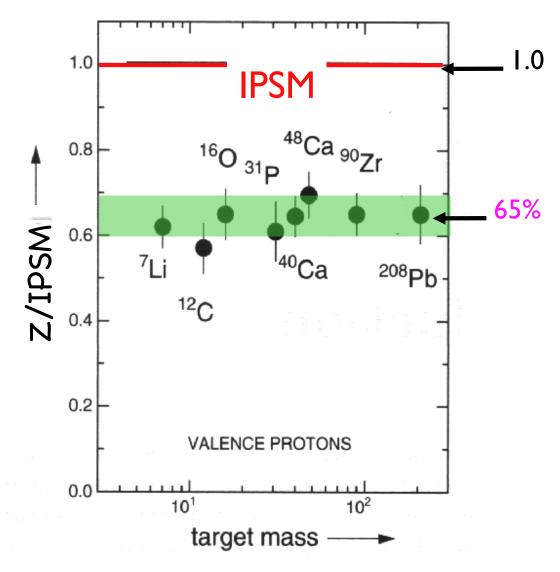


 $1p_{1/2},\,1p_{3/2}$ and $1s_{1/2}$ shells visible

Momentum distribution as expected for /= 0, 1 Fissum et al, PRC <u>70</u>, 034606 (2003)

But we do not see enough protons!

NIKHEF



(e,e'p) summary

- •Measure shell structure directly
- •Measure nucleon momentum distributions
- •But:
 - •Not enough nucleons seen!

Short Range Correlations (SRCs)

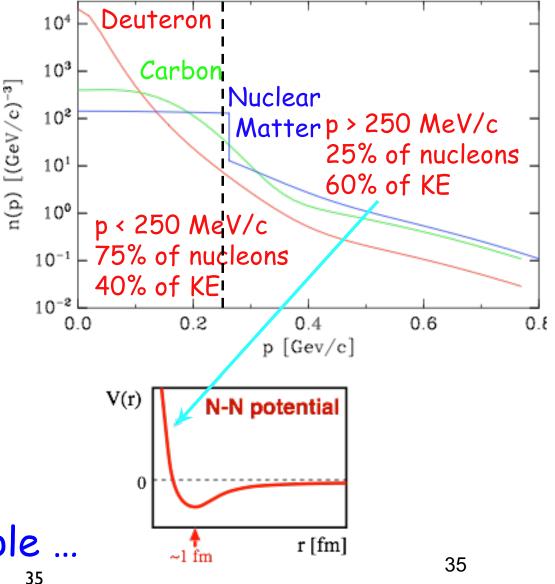
Mean field contributions: p < pFermi ≈ 250 MeV/c Well understood, Spectroscopic Factors ≈ 0.65

High momentum tails: p > pFermi Calculable for few-body nuclei, nuclear matter. Dominated by two-nucleon short range correlations

Poorly understood part of nuclear structure NN potential models not applicable at p > 350 MeV/c

Uncertainty in SR interaction leads to uncertainty at p>p_{Fermi}, even for simplest systems

Nucleons are like people ...

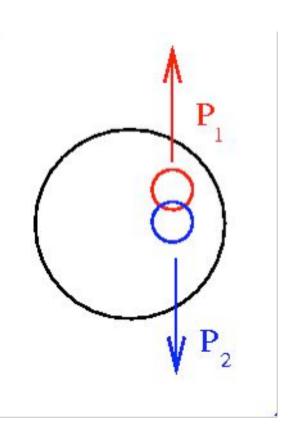


What are Correlations?

Average Two Nucleon Properties in the Nuclear Ground State Not Two-Body Currents

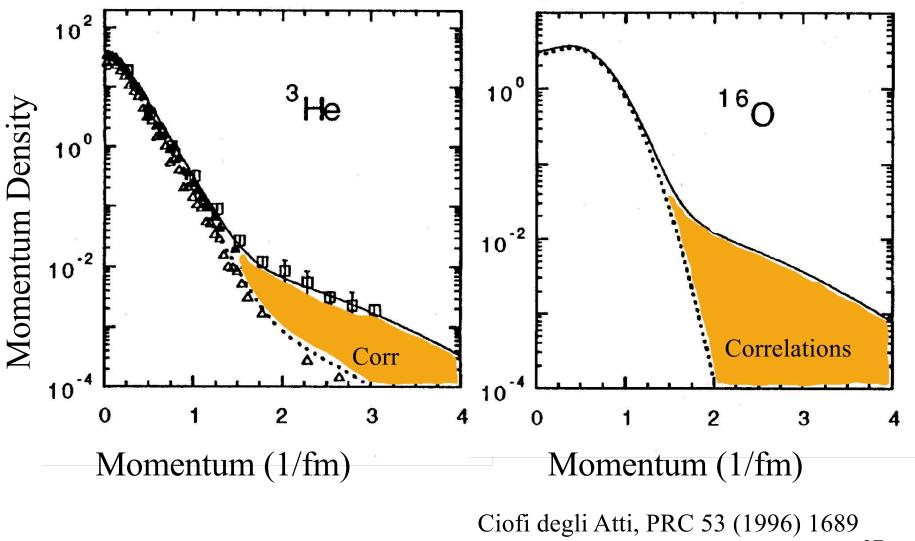
An Experimentalist's Definition:

- A high momentum nucleon whose momentum is balanced by one other nucleon
 - NN Pair with
 - Large Relative Momentum
 - Small Total Momentum
- Whatever a theorist says it is

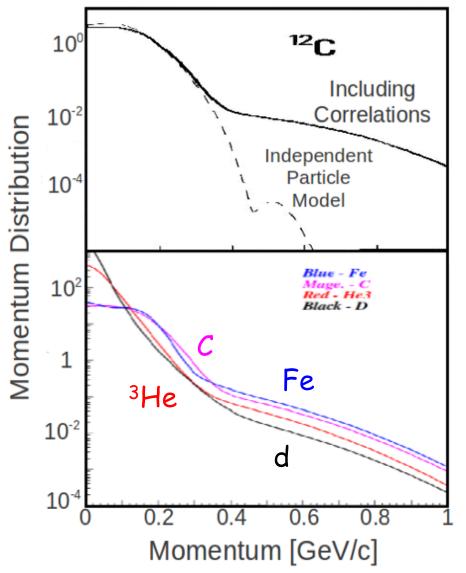


Why are Correlations Interesting?

Responsible for high momentum part of Nuclear WF



Correlations should be universal

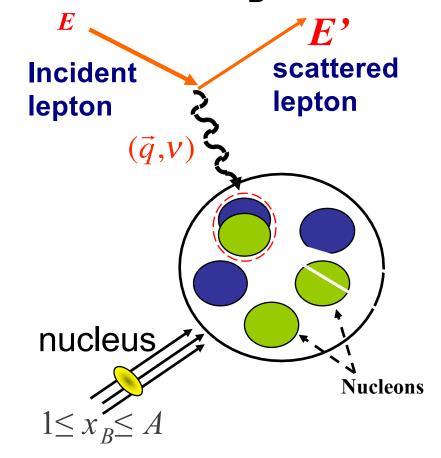


Many-body calculations predict that the high momentum distribution for all nuclei has the same shape: $n_A(k)/n_d(k) = a_2(A/d)$

O. Benhar, Phys Lett B **177** (1986) 135 C. Ciofi degli Atti, Phys Rev C **53** (1996) 1689.

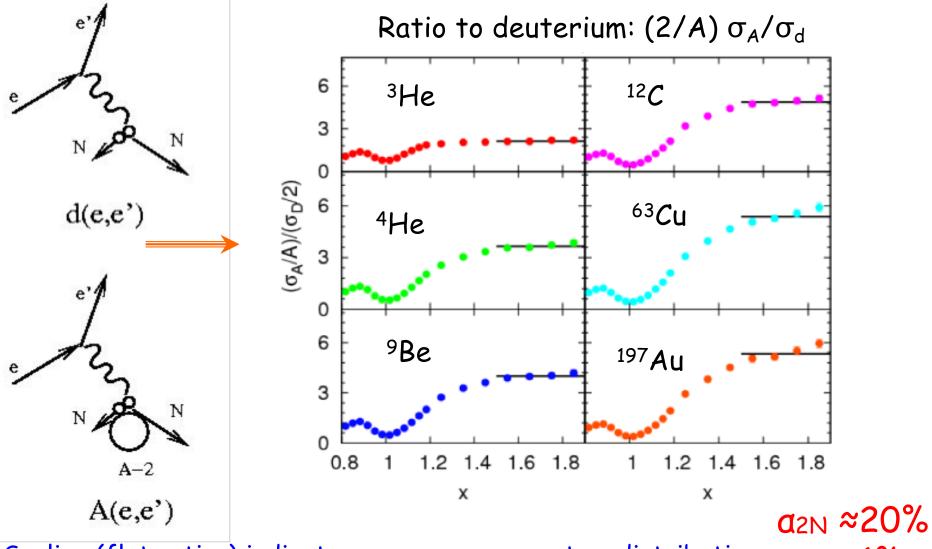
Inclusive Electron Scattering at x_B>1

- At fixed Q², x_B determines a minimum initial momentum for the scattered nucleon (remember yscaling?)
- If the momentum distributions of two nuclei have the same shape, then the ratios of their cross sections should be flat



momentum scaling $\leftrightarrow x_{\rm B}$ scaling

Correlations are Universal

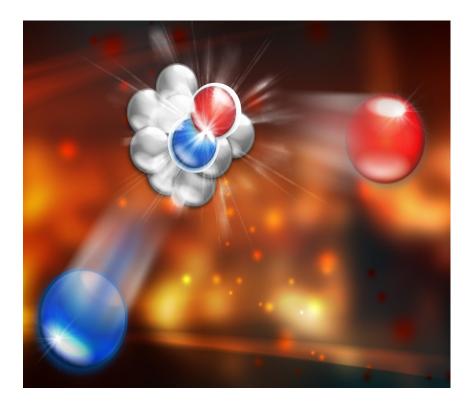


Scaling (flat ratios) indicates a common momentum distribution. 1 < x < 1.5: dominated by different mean field n(k) 1.5 < x < 2: dominated by 2N SRC n(k) Day et al, PRL 59, 427 (1987) Frankfurt et al, PRC 48 2451 (1993)

> Egiyan et al., PRL **96**, 082501 (2006) Fomin et al., PRL **108**, 092502 (2012)

Short Range Correlations (SRC)

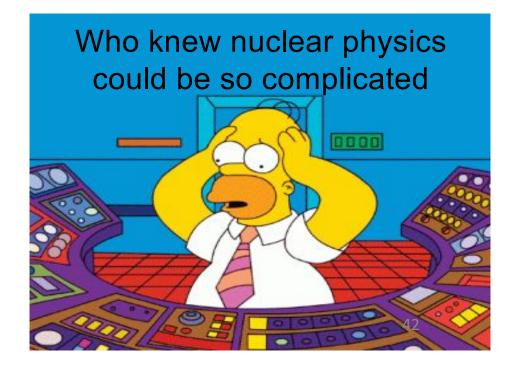
- 2N-SRC are pairs of nucleons that:
 - Are close together (overlap) in the nucleus.
 - Have high relative momentum and low center-of-mass (cm) momentum, where high and low is compared to the Fermi momentum of the nucleons (≈250 MeV/c in heavy nuclei)



Exclusive SRC Studies

A(e,e'pN): detect electron + two nucleons

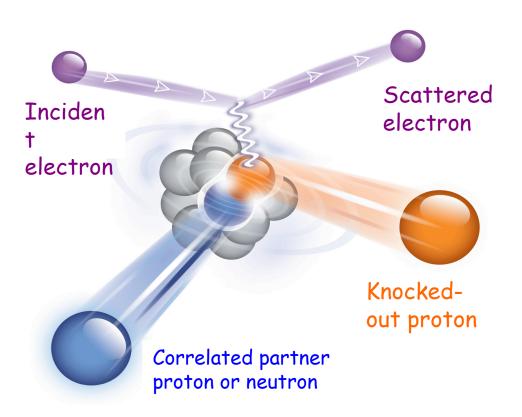
- Pros: Measure the both nucleons to characterize the 2N-SRC pairs
- Cons:
 - Interpretation difficulties:
 - Competing processes,
 - Final State Interactions (FSI)
 - Transparency.
 - Experimental difficulties:
 - Large backgrounds,
 - Low rates,
 - Large installation,
 - Dedicated detectors



Exclusive SRC Studies A(e,e'pN): detect electron + two nucleons

Measurement Concept:

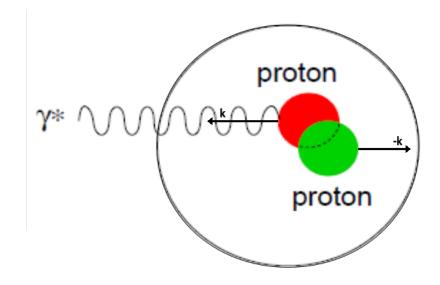
- Hit a high momentum proton hard (Q² > 1 GeV²)
- Reconstruct the initial (missing) momentum of the struck nucleon
- 3. Look for a recoil nucleon with momentum that balanced that of the struck proton



 $\vec{p}_{miss} = \vec{q} - \vec{p}_p = -\vec{p}_{ainitial}$

JLab Hall-A E01-015 (2004)

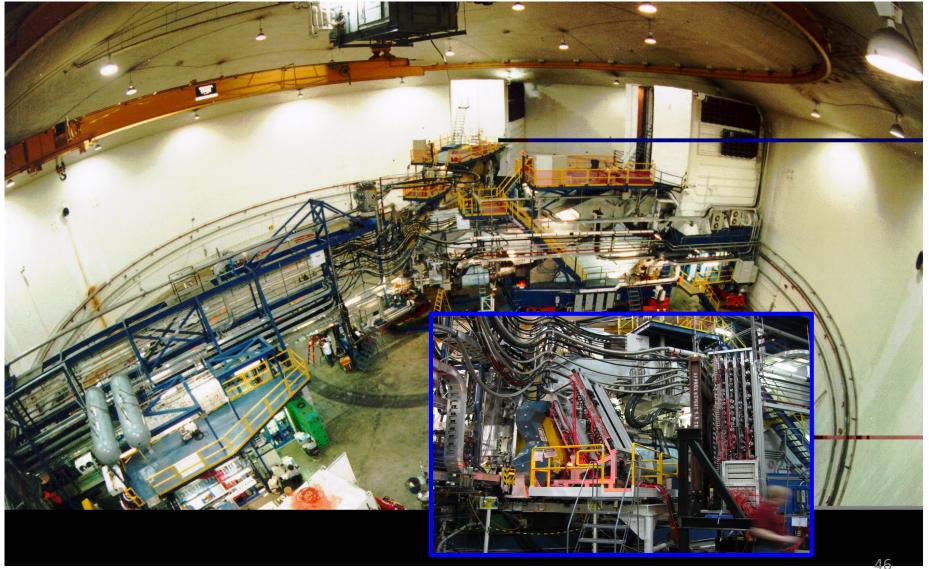
 Goal: Study both pn and pp SRC in ¹²C over an (e,e'p) missing momentum range of 300-600 MeV/c



JLab Hall-A Physicists Tend To Fill Empty Space[©]

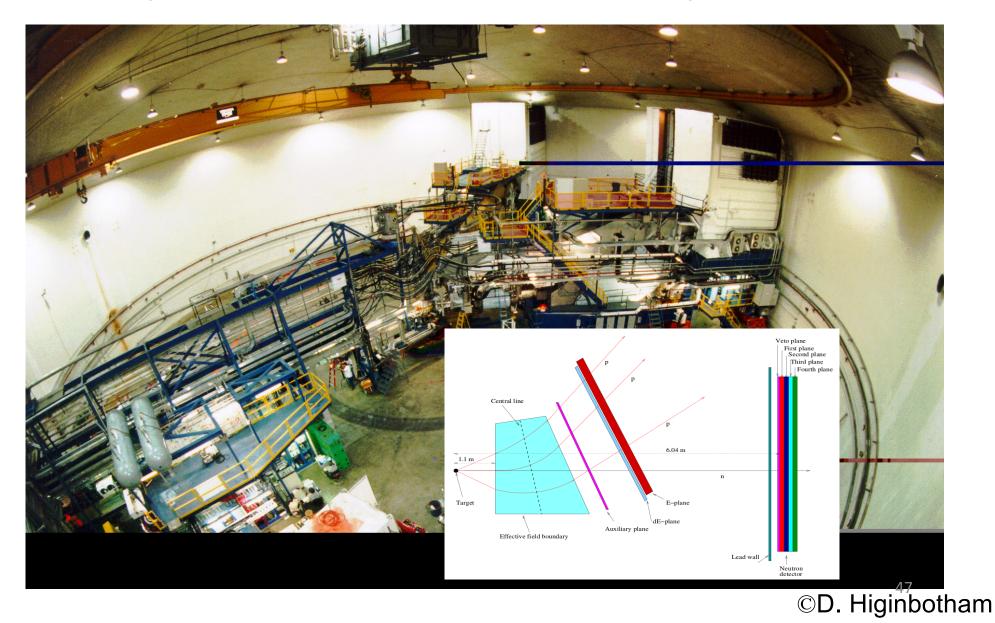
©D. Higinbotham

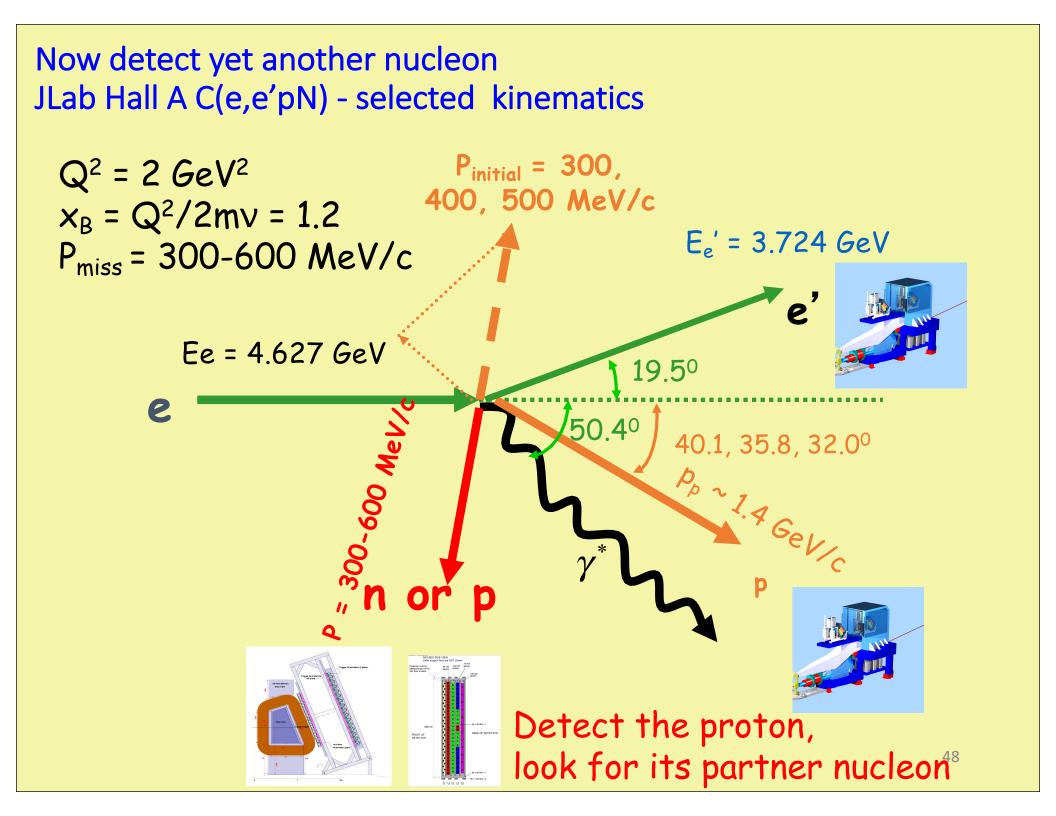
JLab Hall-A E01-015 Physicists Tend To Fill Empty Space[©]



©D. Higinbotham

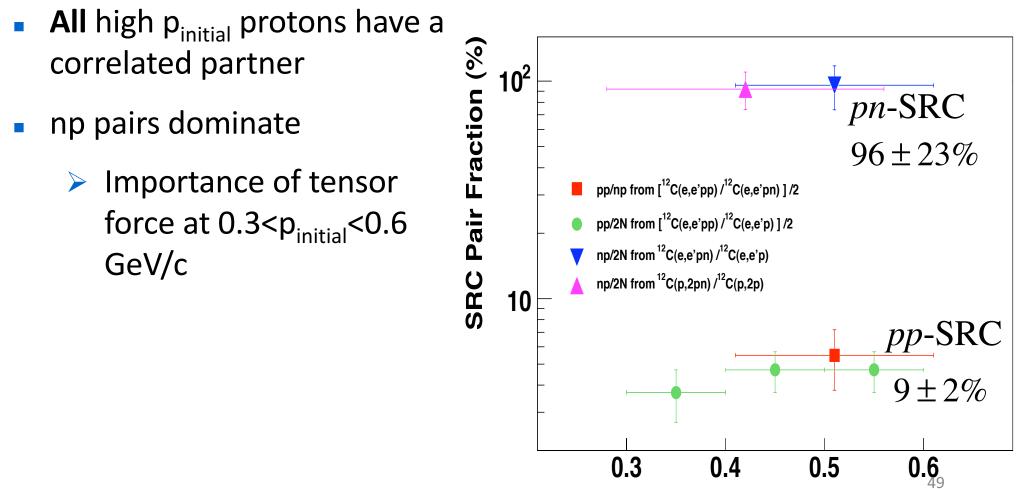
JLab Hall-A E01-015 Physicists Tend To Fill Empty Space[©]





JLab Hall-A E01-015 [pn and pp SRC Probabilities and the pp/np ratio]

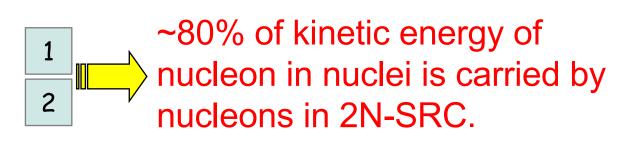
 The (e,e'pN)/(e,e'p) ratio gives the probability for a high momentum proton to be part of a pN-SRC pair.

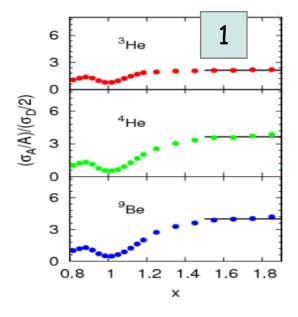


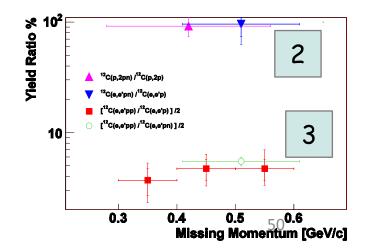
Missing Momentum [GeV/c]

2N-SRC from inclusive and exclusive measurements

- 1 The probability for a nucleon to have p≥300 MeV/c in medium nuclei is 20-25%
- ² More than ~90% of all nucleons with p≥300 MeV/c belong to 2N-SRC.
- ³ 2N-SRC dominated by np pairs







Quasielastic summary: (e,e'), (e,e'p) and (e,e'pN)

(e,e') scaling shows the electron is (mostly) scattering from single nucleons
(e,e') ratios measure the probability of short range correlations (SRC) in nuclei
(e,e'n) measures E and n distributions of single

(e,e'p) measures E and p distributions of single nucleons

 (e,e'pN) measures E and p distributions of nucleon pairs

The nucleus: 60-70% single particle – E + p dists measured $20\pm5\%$ SRC – starting to measure 10-20% LRC