Standard Model

December 7, 2018

Weak Hypercharge and Weak Isospin 1

If one was to consider the world without gravity and the strong nuclear force, there would be 2 symmetries: The weak hypercharge Y_w and the weak iso-spin I_w .

There are three chiral (left-handed) iso-spin doublets for the quarks:

 $\begin{pmatrix} u \\ d' \end{pmatrix} \begin{pmatrix} c \\ s' \end{pmatrix} \begin{pmatrix} t \\ b' \end{pmatrix}$ And three doublets for the leptons: $\begin{pmatrix} \nu_e \\ e^- \end{pmatrix} \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix} \begin{pmatrix} \nu_\tau \\ \tau^- \end{pmatrix}$ Where $S = \frac{1}{2}$ and the third component of the weak iso-spin $I_3 = +\frac{1}{2}$ for the

top rows and $I_3 = -\frac{1}{2}$ for the bottom rows.

The weak Isospin has 12 chiral (right-handed) singlets with $I\ =\ I_3\ =\ 0$:

$$u_R, d_R, s_R, c_R, b_R, t_R, \nu_R, e_R^-, \nu_{\mu R}, \mu_R^-, \nu_{\tau}, \tau_R$$

The weak hypercharge can be defined by the equation: $Q = I_3 + \frac{1}{2}Y_w$

With this information the fermions can be arranged in the table below:

Fermion Family	Left- chiral Fermions	Electric Charge Q	Weak Isospin <i>T</i> ₃	Weak Hyper- Charge Y _W	Right- chiral Fermions	Electric Charge Q	Weak isospin <i>T</i> ₃	Weak Hyper- Charge Y _W
Leptons	$v_e^{}, v_\mu^{}, v_\tau^{}$	0	+1/2	-1	No interaction (if they exist)			
	e [¯] , μ [¯] , τ [¯]	-1	-1/2	-1	e_R^-, μ_R^-, τ_R^-	-1	0	-2
Quarks	u, c, t	+²/3	+1/2	+1/3	u _R , c _R , t _R	+²/3	0	+4/3
	d, s, b	-1/3	-1/2	+1/3	$d_R^{}, s_R^{}, b_R^{}$	-1/3	0	-²/3

2 Gauge Bosons

The gauge bosons correspond to operators in the weak hypercharge/isospin space. The W^+ boson corresponds to the I^w_3 lowering operator likewise: $W^- \rightarrow I^w_3$ raising, and $W^0 \rightarrow I^w_3$

Each boson couples to the isospin with the same coupling strength g and forms

Each boson couples we have an isospin triplet: $\begin{pmatrix} W^+ \\ W^0 \\ W^- \end{pmatrix}$

3 Mass Eigenstates

In experiment we don't measure isospin and hypercharge, but rather the mass eigenstates. The Higgs interactions causes the quark weak eigenstates to mix and form the mass eigenstates in the following way:

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} Cabbibo Mixing Matrix \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

Where the mixzing matreix can be formed with three mixing angles and a phase shift.

The neutrinos, however, $\begin{pmatrix} & & \\ & & \end{pmatrix}$

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} \text{Mixing Matrix} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

The boson's also have mass eigenstates formed by a mixing of the weak eigen-

states
$$\begin{pmatrix} \gamma \\ Z^0 \end{pmatrix} = \begin{pmatrix} \sin(\theta) & \cos(\theta) \\ \cos(\theta) & -\sin(\theta) \end{pmatrix} \begin{pmatrix} W^0 \\ B^0 \end{pmatrix}$$