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Free	neutron	decay	

The	free	neutron	decay	is	a	reaction	that	produces	a	proton	and	leptons	through	the	weak	
interaction:	

𝑛" → 𝑝% + 𝛽( + 𝜈* 	

To	understand	this	weak	decay,	first	we	need	to	recall	Fermi’s	Golden	Rule,	which	is	the	
connection	between	reaction	rate,	transition	matrix,	and	the	density	of	final	states:	
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where	W	is	the	reaction	rate,		𝑀12 	is	the	transition	matrix,	and	89
8:;

	is	the	final	density	of	states	in	
the	energy	interval	dE’.		Modifying	this	rule	for	weak	decay,	the	equation	becomes:	

𝑑𝑊 =
2𝜋
ℏ
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where	∆𝜙(𝐸*)	is	the	phase	space.		The	phase	space	is	related	to	the	final	density	of	states,	with	
E0	as	the	total	energy	available	to	decay,	Ee	as	the	electron	energy,	and	Eν	as	the	neutrino	
energy:	
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The	volume	is	in	6	dimensional	phase	space,	with	the	total	decay	energy,	E0=(MA	-	MA’),	fully	
relativistic	(MA	and	MA’	are	the	initial	and	final	nuclei).		Ee	and	Eν	add	up	to	the	mass	difference	
in	the	system,	so	the	4-momentums	are	conserved	in	the	decay.	

Next	we	use	𝑝𝑑𝑝 = 𝐸𝑑𝐸	for	relativistic	E2=p2	+m2	(this	relation	is	also	true	for	the	
nonrelativistic	case)	to	express	∆𝜙 𝐸* 	in	dE.		Then	we	can	do	the	integral	over	dEν	because	we	
want	the	answer	in	terms	of	E0	and	Ee,,	which	are	the	components	that	will	be	measured.		The	
delta	function	tells	us	that	Eν=E0-Ee.	
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From	here,	we	could	replace	pν	with	Eν	since	the	mass	of	the	neutrino	is	negligible,	but	written	
out	with	the	mass:	
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where	the	last	term	was	obtained	with	a	Taylor	expansion	of	the	square	root.		This	expansion	is	
valid	if	we	measure	the	spectrum	of	the	emitted	electron	energy	Ee	and	find	that	to	first	order	
Mfi	is	constant	with	respect	to	Ee.		Replacing	pe	and	Eν	gives	
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Detecting	the	mass	of	the	neutrino	

It	is	actually	quite	difficult	to	verify	the	mass	of	the	neutrino,	although	it	is	possible	from	the	
kinematics	of	β-decay.		From	the	probability	of	measuring	an	electron	in	the	interval	Ee	to	Ee	
+dEe,	we	can	graph	a	Kurie	Spectrum	from	the	expression:	

𝑃𝑟𝑜𝑏(𝐸* …𝐸* + 𝑑𝐸*)
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If	mν=0,	then	the	function	will	behave	as	E0	-	Ee,	decreasing	in	a	straight	line	as	Ee	increases,	
until	it	hits	the	Ee	line	at	E0.		This	means	all	the	decay	energy	can	be	delivered	to	the	electron.		If	
the	neutrino	is	not	massless,	then	at	high	Ee,	the	line	will	bend	until	it	crosses	the	Ee	line	
vertically	at	E0	-	mνc2,	exhibiting	quadratic	behavior	that	is	only	visible	at	a	low	count	rate.		This	
difference	is	caused	by	some	of	the	total	decay	energy	being	given	to	the	mass	fluctuations	of	
the	neutrino.	

However,	since	𝐸*~𝑀𝑒𝑉	and	𝐸@~𝑒𝑉,	there	is	a	large	energy	discrepancy.		This	makes	it	very	
hard	to	measure.		It	is	also	hard	to	measure	because	the	graph’s	change	in	behavior	only	occurs	
when	there	is	a	low	count	rate.		Even	so,	experiments	like	KATRIN	try	to	measure	the	neutrino	
mass.		They	built	a	spectrometer	to	measure	18.6	keV	electrons	from	the	beta-decay	of	tritium.	
Even	at	this	relatively	low	Ee,	the	sensitivity	needed	to	measure	mν	would	be	very	high.	

	

Beta	Decay	of	the	Nucleus	

When	the	nucleon	is	inside	the	nucleus,	the	expression	for	weak	decay	needs	to	be	modified.		
The	phase	space	∆𝜙 𝐸* 	needs	to	be	multiplied	by	the	Fermi	function	𝐹(𝑍;, 𝐸*).		This	Fermi	
function	helps	explain	how	the	emitted	electron	or	positron	will	interact	with	the	rest	of	the	
nucleus.		When	the	nucleon	decays	inside	the	nucleus,	the	emitted	e-	or	e+	does	not	appear	far	
away	from	the	nucleus.		Since	the	Weak	Interact	is	a	zero	length	interaction,	the	emitted	β	
particle	will	appear	inside	the	nucleus.		While	this	β	particle	will	ignore	the	Strong	Interaction	



because	it	is	a	lepton,	it	will	still	interact	with	the	Coulomb	potential	created	by	the	surrounding	
protons.			

Recall	that	the	Coulomb	potential	is	a	well	that	gets	shallower	as	the	distance	from	the	nucleus	
increases	by	1/r.		This	well	will	create	a	shift	in	the	phase	space	depending	on	the	charge	of	the	
lepton.		Electrons	will	use	the	energy	from	where	it	was	produced	to	give	it	a	boost	while	it	is	
inside,	but	the	energy	will	fall	back	after	it	leaves	the	nucleus.		A	positron	will	have	a	lower	
energy	inside	and	gain	energy	as	it	comes	out	of	the	nucleus.	

Then	the	total	decay	rate	will	be:	
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The	integral	really	only	contains	“accounting”	information;	all	the	real	physics	is	stored	in	the	
transition	matrix	𝑀12.		Next,	we	can	normalize	every	𝑝	and	𝐸	to	the	electron	mass	me	so	that	

𝜀 = :
XUYZ

,	which	will	make	everything	dimensionless.		This	will	lead	to	a	factor	of	 𝑚*𝑐3 \.		

Recalling	that	the	decay	rate	is	equal	to	the	inverse	of	the	lifetime	of	the	particle,	τ	=	τ1/2/ln2:	
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We	can	then	replace	the	integral	with	an	f-factor:	

𝑓 𝑍;, 𝐸" = 𝜀*3 − 1𝜀*𝑑𝜀* 𝜀" − 𝜀* 3 −
𝑚@
3

2
𝐹(𝑍;, 𝜀*)

_T

`

	

Substituting	this	into	the	previous	equation	and	multiplying	both	sides	by	τ1/2/ln2	gives	

1 =
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\𝑐b

2𝜋Eℏc ln 2
𝑀12

3𝑓 ∗ 𝜏`/3	

where	𝑓 ∗ 𝜏`/3	is	called	the	ft	value.		The	ft	value	conveys	more	distinctive	information	than	the	
half-life	because	it	also	tells	how	the	matrix	elements	behave.		It	doesn’t	explain	them,	but	
organizes	the	half-life.		Sometimes	it	is	recorded	as	log`"(𝑓𝑡)	which	ranges	from	approximately	
3	to	22.	

	

How	to	calculate	𝑴𝒇𝒊?	

The	transition	matrix	elements	can	be	calculated	in	two	parts:	vector	and	axial.		Transitions	that	
happen	from	the	vector	part	are	called	Fermi	decays.		Transitions	from	the	axial	part	are	called	
Gamow-Teller	decays.		



The	transition	matrix	is:	

|𝑀12| = 𝑔o < 𝑓 𝜏± 𝑖 > 	+	𝑔t < 𝑓 𝜏±𝜎 𝑖 >	

Where	𝑔o		and	𝑔t	are	the	vector	and	axial	coupling	constants,	𝜏±	is	the	isospin	ladder	operator,	
and	<f|	and	|i>	are	expressed	in	terms	of	the	final	and	initial	nucleons.		If	we	simply	
approximate	the	nucleus	as	having	only	proton	and	neutron	quark	arrangements,	then	a	β-	
decay	would	look	like:	
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Where	N	in	𝑔o/tx 	is	for	neutron,	n	and	p	sum	over	the	nucleons	in	the	initial	and	final	nucleus	
with	nucleon	counts	A	and	A’,	respectively.		The	isospin	ladder	operator	turns	the	neutrons	into	
protons	for	the	β-	decay.		This	contains	the	wave	function	of	the	nucleons	inside	the	nucleus,	
which	tells	us	about	the	nuclear	structure	and	the	Weak	Force.	Since	there	is	no	angular	
momentum	operator,	the	original	neutron	will	convert	to	a	proton	that	can	be	in	the	same	or	in	
a	different	orbit.	

	

Decay	selection	rules	

Below	are	the	selection	rules	for	the	overall	nuclear	spin,	J,	and	parity,	π,	that	tell	which	decays	
are	allowed.	

Fermi	transition	(first	term):	

	 ΔS=0	because	the	operator	has	no	angular	momentum.	

Δπ=0	because	the	operator	has	no	parity.	

ΔJ=0	for	nuclear	spin	J.	

Gamow-Teller	transition	(second	term):	

	 ΔS=0	or	ΔS±1	

	 ΔP=0	

	 ΔJ=0,	±1	

	 Can	transition	from	1	→	1,	but	not	from	0	→0	

Example:	free	neutron	decay	starts	with	neutron	spin	=	1/2	and	ends	with	proton	spin	=	1/2.		
Since	there	is	no	spin	change,	both	Fermi	and	Gamow-Teller	can	apply	to	this.	

	



But	it	is	also	possible	to	violate	these	transition	rules.		These	are	called	“forbidden”	transitions.		
This	is	done	by	transferring	orbital	angular	momentum	L.		You	try	to	find	the	lowest	level	of	
orbital	transfer	needed	to	permit	the	transition.	

For	Fermi	transition:		ΔJ=	ΔL.		(ΔL	will	tell	you	how	many	times	it	is	forbidden)	

For	Gamow-Teller	transition:	ΔJ=	ΔL	+1	(in	the	usual	sense	of	angular	momentum	addition).	

Example:	Potassium-40	contributes	to	some	of	the	radiation	in	the	human	body.		The	Potassium	
has	Jπ	=	4-.		Then	40K	decays	to	calcium-40,	which	is	a	doubly	magic	nucleus.		Calcium	has	Jπ	=	0+,	
which	is	true	for	all	doubly	magic	nuclei.		To	transfer	from	40K	to	40Ca,	you	need	to	change	J,L	
four	times!		This	is	not	possible	as	a	Fermi	transition	because	the	parity	would	still	be	negative,	
since		

𝑝1
𝑝Y
= (−1)∆y	

Hence,	the	only	possibility	is	a	3-times	forbidden	Gamow-Teller	transition.	

Sometimes	you	can	have	transitions	that	are	only	Fermi	or	only	Gamow-Teller,	but	if	the	
selection	rules	for	both	are	satisfied	then	both	transitions	will	happen.	

	

You	can	also	have	super	allowed	decays.		This	happens	when	the	initial	and	final	wave	functions	
(including	spin)	have	a	perfect	overlap.		This	means	that	after	a	nucleon	decays,	the	
transitioned	nucleon	will	have	the	same	quantum	numbers	that	it	had	before.		This	means	the	
corresponding	nuclear	states	between	which	the	transition	occurs	are	in	the	same	isospin	
multiplet.		The	ft	values	of	these	transitions	are	roughly	the	same	as	the	ft	value	of	a	free	
neutron.		Most	of	these	transitions	are	β+	decays.	

Example:	Mirror	Nuclei	

Consider	the	β-	decay	of	tritium	into	helium-3:	

𝐻`E → 𝐻𝑒3
E + 𝛽( + 𝜈* 	

Tritium	and	helium-3	have	basically	the	same	wave	equation;	the	only	difference	is	an	exchange	
of	nucleons.		Tritium	has	2	neutrons	and	one	proton,	so	to	transfer	to	helium-3,	the	isospin	of	
one	of	the	neutrons	is	increased,	releasing	an	electron	and	an	antielectron	neutrino.		The	new	
proton	will	have	the	same	quantum	numbers	that	it	had	as	a	neutron,	so	this	will	be	a	super	
allowed	transition.		Besides	the	free	neutron,	this	is	the	only	other	exception	to	the	rule	that	
protons	decay	to	neutrons	for	super	allowed	transitions.	

Example:	Isospin	Triplet	

Listed	in	order	of	energy,	we	have	N14	ground	state	with	Jπ	=	1+,	C14	ground	state	with	0+,	N14	
excited	state	with	0+,	and	O14	with	0+.		Since	O14	has	higher	energy	than	the	N14	excited	state,	



this	transition	can	occur.		It	is	a	0+	→	0+	transition,	so	it	must	be	a	pure	Fermi	decay.		Then	it	can	
decay	to	C14	which	is	also	a	Fermi	decay.		These	two	transitions	are	super	allowed	because	
protons	in	the	nucleus	β+	decay	into	neutrons	of	the	same	shell	level	(1p1/2).	

Because	the	ground	state	of	C14	is	only	above	the	ground	state	of	N14,	that	is	the	only	place	it	
could	transition	to	in	this	triplet.		However,	this	would	not	be	super	allowed	because	of	the	spin	
change.		This	is	an	allowed	Gamow-Teller	decay	because	ΔL=1	(the	nucleon	flips	its	spin).		
Thankfully,	this	transition	takes	a	very	long	time	(τ1/2	=	5730	years).		It	allows	for	carbon	dating	
of	objects	older	than	6000	years,	which	permits	us	to	place	objects	into	Earth’s	long	geological	
history.	

	

Why	do	forbidden	transitions	take	so	long?	

For	the	forbidden	transition	to	occur,	something	must	take	away	the	change	in	the	total	angular	
momentum	ΔJ.		This	cannot	occur	for	Fermi	decay	(ΔJ=0)	or	Gamow-Teller	decay	(ΔJ=0,±1).		You	
need	a	β±	and	νe	to	take	more	than	1	angular	momentum	unit	to	have	a	forbidden	transition.	

To	see	how	orbital	angular	momentum	could	do	this,	let’s	approximate	the	wave	of	the	
electron	as	a	plane	wave.	
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This	can	be	Taylor	expanded	to		
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Or	decomposed	as		

𝜓 𝑥 	≅ 	 𝑐* 𝑌�" 𝜃 𝑗� 𝑘𝑟 ≈ 𝑐* 𝑌�" 𝜃 𝑘𝑟 �			𝑓𝑜𝑟	𝑘𝑟 ≪ 1	

Here,	r	is	the	size	of	a	nucleon,	or	a	nucleus	at	most	(so	~fm)	and	k	is	on	the	order	of	MeV’s.		
This	means	𝑘𝑟~10(3.		So	the	higher	𝑙	is,	the	more	suppressed	the	decay	is.		The	ft	value	is	
related	to	the	inverse	square	of	the	transition	matrix,	which	squares	the	suppression	of	𝑙.		Since	
the	ft	value	is	directly	related	to	the	half-life,	we	see	that	this	will	increase	the	time	it	takes	for	
the	transition	to	happen,	making	it	live	longer.	

	

Further	reading	in	Povh	7th	edition:	

Chapter	4.3:		Fermi’s	“Golden	Rule”	

Chapter	16.6:	Beta	decay	of	the	Neutron,	transition	matrix	elements,	neutron	lifetime	

Chapter	18.6:	Beta	Decay	of	the	Nucleus,	decay	selection	rules,	neutrino	mass	


