Nuclear Physics - Problem Set 2 - Solution

Problem 1)

a) According to our formula for the Fermi momentum, we have
$p_{F}^{p}=\left(\frac{3 \pi^{2} \hbar^{3} Z}{V}\right)^{\frac{1}{3}}=\left(\frac{3 \pi^{2} \hbar^{3} Z}{\frac{4 \pi}{3} R^{3}}\right)^{\frac{1}{3}}=\left(\frac{9 \pi Z}{4}\right)^{\frac{1}{3}} \frac{\hbar}{R_{p}}=251.41 \mathrm{MeV} / \mathrm{c} \quad \Rightarrow \quad T_{F}^{p}=33.68 \mathrm{MeV}$
and $\quad p_{F}^{n}=\left(\frac{9 \pi N}{4}\right)^{\frac{1}{3}} \frac{\hbar}{R_{n}}=276.96 \mathrm{MeV} / \mathrm{c} \quad \Rightarrow \quad T_{F}^{n}=40.82 \mathrm{MeV}$
for the maximum (Fermi) kinetic energies of each species. (These numbers turn out higher than the "canonical" $250 \mathrm{MeV} / \mathrm{c}$ and 33 MeV for neutrons because Uranium has a large p-n imbalance). The average Fermi energies are $3 / 5$ of these values, so the overall Fermi energy is $92 \cdot 3 / 5 \cdot 33.68=1859 \mathrm{MeV}$ for the protons and $146 \cdot 3 / 5 \cdot 40.82=3576 \mathrm{MeV}$ for neutrons. The Coulomb energy of a charged sphere is $\frac{3}{20 \pi \varepsilon_{o}} \frac{q^{2}}{R}=\frac{3 e^{2}}{20 \pi \varepsilon_{o} R} Z^{2}$ (see the solution to Homework problem set 1) which yields an additional 1075.4 MeV . The combined Coulomb and kinetic energy of the protons equals 2934 MeV (a bit smaller than the "Fermi energy" of the neutrons alone), yielding a total binding energy of ${ }^{238} \mathrm{U}$ of $\mathrm{B}=238 \mathrm{~V}_{\mathrm{o}}+6510 \mathrm{MeV}$. Of course we would have expected both energies to be the same, because otherwise the overall binding energy could be reduced by converting (through β^{-}decay) some neutrons to protons. However, the Fermi gas model does not account properly for the details of nuclear binding.
b) The experimental value for B is $\mathrm{B}=-1801.7 \mathrm{MeV}$ and therefore the total potential energy should be -8312 MeV or $\mathrm{V}_{\mathrm{o}}=-34.9 \mathrm{MeV}$ per nucleon. That is substantially deeper than the "average" of -28 MeV mentioned in the lecture, which has to do with the fact that ${ }^{238} \mathrm{U}$ is a doubly even nucleus and that it has a larger average density than typical nuclei.
c) The least bound neutron is of course right at the "Fermi edge" and therefore has kinetic energy $T_{F}{ }^{n}=40.82 \mathrm{MeV}$. Hence, its overall energy should be $T_{F}{ }^{n}+V_{o}=+6 \mathrm{MeV}$, which is greater than zero. One should expect that this neutron simply flies off! However, the actual separation energy is $E_{s}^{n}=m\left({ }^{238} U\right)-m\left({ }^{237} U\right)-m\left({ }^{1} n\right)=-6.1528 \mathrm{MeV}$ which makes a whole lot more sense. The difference comes about because we have to subtract from the 6 MeV the amount of energy it takes to squeeze the remaining 237 nucleons into a volume which is just $1 / 238$ smaller. This may seem like a small difference, but since it affects the kinetic energy of all remaining 237 nucleons, it actually adds up to quite a lot 15.3 MeV (64 keV per nucleon) for a "predicted" neutron separation energy of -9.3 MeV . This would bring the two results in much better agreement.

Problem 2)

All of the nuclei given are either one nucleon shy of or one nucleon above a closed shell. This single nucleon then determines spin, parity and magnetic moment in the extreme single-particle picture. For the magnetic moment, we use the formula
$\frac{\mu}{\mu_{N}}=\left(g_{l} \pm \frac{g_{s}-g_{l}}{2 l+1}\right) j \quad$ where $\quad j=l \pm \frac{1}{2}$
For ${ }^{3} \mathrm{He}$, we have one neutron missing in the $1 \mathrm{~s}_{1 / 2}$ shell, which gives spin $\mathrm{J}=1 / 2$ and parity $\pi=+$. The magnetic moment is $\mu / \mu_{\mathrm{N}}=+1 / 2 \mathrm{~g}_{\mathrm{s}}=-1.91$ (experiment: -2.13).
For ${ }^{5} \mathrm{He}$, we have one extra neutron in the $1 p_{3 / 2}$ shell, which gives spin $\mathrm{J}=3 / 2$ and parity $\pi=-$. The magnetic moment is $\mu / \mu_{\mathrm{N}}=+3 / 2 \mathrm{~g}_{\mathrm{s}} / 3=-1.91$ (same as before).
${ }^{15} \mathrm{~N}$ has a single hole in the proton $1 \mathrm{p}_{1 / 2}$ shell, i.e. $\mathrm{J}=1 / 2$ and $\ell=1$ (parity $\pi=-$.). For a proton, $\mathrm{g}_{\ell}=1$ and we get $\mu / \mu_{\mathrm{N}}=(1-4.58 / 3) \cdot 1 / 2=-0.2633$.
For ${ }^{15} \mathrm{O}$, we have one neutron missing in the $1 \mathrm{p}_{1 / 2}$ shell, which gives spin $\mathrm{J}=1 / 2$ and parity $\pi=-$. The magnetic moment is $\mu / \mu_{\mathrm{N}}=-1 / 2 \mathrm{~g}_{s} / 3=+0.638$ (see book).
For ${ }^{17} \mathrm{~F}$, we have one extra proton in the $1 \mathrm{~d}_{5 / 2}$ shell, which gives spin $\mathrm{J}=5 / 2$ and parity $\pi=+$. The magnetic moment is $\mu / \mu_{\mathrm{N}}=5 / 2\left(1+\left[\mathrm{g}_{\mathrm{s}}-1\right] / 5\right)=+4.79$.
For ${ }^{41} \mathrm{Ca}$, we have one extra neutron in the $1 \mathrm{f}_{7 / 2}$ shell, which gives spin $\mathrm{J}=7 / 2$ and parity $\pi=-$. The magnetic moment is $\mu / \mu_{\mathrm{N}}=+7 / 2 \mathrm{~g}_{s} / 7=-1.91$ (same as always - you begin to see the pattern: a single neutron always makes $\mu / \mu_{\mathrm{N}}=-1.91$ if $\mathrm{j}=1+1 / 2$, no matter which angular momentum ℓ it has).
Finally, for ${ }^{131}$ In, we have one proton missing in the $1 g_{9 / 2}$ shell, which gives spin $\mathrm{J}=9 / 2$ and parity $\pi=+$. The magnetic moment is $\mu / \mu_{\mathrm{N}}=9 / 2\left(1+\left[\mathrm{g}_{\mathrm{s}}-1\right] / 9\right)=+6.79$. Again, the pattern becomes obvious: count 2.79 for the spin of the proton and one unit for each unit of ℓ but only if ℓ and s are parallel $(\mathrm{j}=1+1 / 2)$.

