Nuclear Physics - Problem Set 4 - Solution

Problem 1)

The initial and final electron four momenta (ignoring the electron mass) are $p_{e}^{\mu}=\left(E_{e}, 0,0, E_{e}\right)$ and $p_{e}^{\prime \mu}=\left(E_{e}^{\prime}, E_{e}^{\prime} \sin \theta_{e}, 0, E_{e}^{\prime} \cos \theta_{e}\right)$, respectively (I chose the z-axis along the initial beam direction, and the x -axis in the direction of the outgoing electron). Calculating the 4-momentum transfer Q^{2} gives
$Q^{2}=-\left[\left(E_{e}-E_{e}^{\prime}\right)^{2}-\left(\vec{p}_{e}-\vec{p}_{e}{ }^{\prime}\right)^{2}\right]=-\left[\left(E_{e}-E_{e}^{\prime}\right)^{2}-\left(-E_{e}^{\prime} \sin \theta_{e}\right)^{2}-\left(E_{e}-E_{e}^{\prime} \cos \theta_{e}\right)^{2}\right]$
$=-\left[\left(E_{e}-E_{e}^{\prime}\right)^{2}-E_{e}^{\prime 2}-E_{e}^{2}+2 E_{e} E_{e}^{\prime} \cos \theta_{e}\right]=-\left[-2 E_{e} E_{e}^{\prime}+2 E_{e} E_{e}^{\prime} \cos \theta_{e}\right]=$
$2 E_{e} E_{e}^{\prime}\left(1-\cos \theta_{e}\right)=4 E_{e} E_{e}{ }^{\prime} \sin ^{2} \frac{\theta_{e}}{2}$
Let's call the mass of the nucleus m_{A}. In the initial state, it has four momentum $p_{A}^{u}=\left(m_{A}, 0,0,0\right)($ setting $\mathrm{c}=1) .4$-momentum conservation gives me the final 4momentum of the nucleus: $p_{A}{ }^{\prime \mu}=p_{A}^{\mu}+p_{e}^{\mu}-p_{e}{ }^{\prime \mu}$. The fact that the scattering is elastic requires that the invariant mass squared of this 4 -momentum equals the mass of the nucleus, m_{A} :

$$
\begin{aligned}
& m_{A}^{2}=p_{A}^{\prime 2}=p_{A}^{2}+\left(p_{e}^{\mu}-p_{e}^{\prime \mu}\right)^{2}+2 p_{A}\left(p_{e}^{\mu}-p_{e}^{\prime \mu}\right) \\
& =m_{A}^{2}-Q^{2}+2 m_{A}\left(E_{e}-E_{e}{ }^{\prime}\right)
\end{aligned}
$$

The first expression in the last line is the initial nucleus 4-momentum squared, the second term is using the definition of Q^{2} given in the problem, and the last is the scalar product between p_{A} and $\mathrm{p}_{\mathrm{e}}-\mathrm{p}_{\mathrm{e}}$ (which has only one term since the 3 -momentum part of p_{A} is zero). It follows immediately that $Q^{2}=2 m_{A}\left(E_{e}-E_{e}{ }^{\prime}\right)$ holds.

Setting both sides equal yields the answer for the final question:

$$
\begin{aligned}
& 4 E_{e} E_{e} \sin ^{2} \frac{\theta_{e}}{2}=2 m_{A}\left(E_{e}-E_{e}^{\prime}\right) \Rightarrow \\
& \left(4 E_{e} \sin ^{2} \frac{\theta_{e}}{2}+2 m_{A}\right) E_{e}^{\prime}=2 m_{A} E_{e} \Rightarrow \\
& E_{e}^{\prime}=\frac{E_{e}}{1+\frac{2 E_{e}}{m_{A}} \sin ^{2} \frac{\theta_{e}}{2}} \Rightarrow Q^{2}=\frac{4 E_{e}^{2} \sin ^{2} \frac{\theta_{e}}{2}}{1+\frac{2 E_{e}}{m_{A}} \sin ^{2} \frac{\theta_{e}}{2}}
\end{aligned}
$$

Problem 2)

Using the numbers given, we can calculate the virtual photon kinematics for both cases (all energies in MeV , all momenta in $\mathrm{MeV} / \mathrm{c}$):
$v=\{259.615,66.104\} ; Q^{2}=\{198386,250237\} ;|\vec{q}|=\sqrt{Q^{2}+v^{2}}=\{515.544,504.585\}$
Given some initial momentum $\mathbf{p}_{\mathbf{i}}$ for the proton, the final state Boron nucleus will move with momentum - $\mathbf{p}_{\mathbf{i}}$ and will have energy
$E_{\text {boron }}=\sqrt{M_{\text {boron }}^{2}+\vec{p}_{i}^{2}}=\sqrt{10252.5^{2}+200^{2}}=10254.497$. Momentum conservation requires $\vec{p}_{p, f \text { final }}=\vec{q}-\vec{p}_{\text {Boron, final }} \Rightarrow\left|\vec{p}_{p, \text { final }}\right|=q \pm 200=\{715.544,304.585\}$ for the two cases where the initial proton moves along \mathbf{q} and the Boron moves opposite or vice versa. Finally, the energy of the final proton must be

$$
E_{p}=M_{\text {Carbon }}+v-E_{\text {boron }}=11174.862-10254.497+v=\{1179.980,986.470\}
$$

All that remains to be shown is that these two energies are consistent with a proton of mass $938.27 \mathrm{MeV} / \mathrm{c}^{2}$ moving with the two final momenta calculated earlier: $M_{p}=\sqrt[!]{E_{p}^{2}-\vec{p}_{p, f \text { final }}^{2}}=\{938.2699999999999,938.2700000000002\}$ which is the expected result within the numerical uncertainties (I used Mathematica to calculate these numbers). Of course, since the magnitude of the q-vector is larger than 200 MeV in all cases, the final state proton will always move in the direction of that vector; in the second case, it just flips its direction.

Problem 3)

Using the formulae from lecture, problem 1 and the book I find
$\mathrm{Q}^{2}=3.413(\mathrm{GeV} / \mathrm{c})^{2}$ and $\mathrm{G}_{\mathrm{E}}^{\mathrm{p}}=\mathrm{G}_{\text {Dipole }}=0.0297$ and $\mathrm{G}_{\mathrm{M}}^{\mathrm{p}}=2.79 \mathrm{G}_{\text {Dipole }}=0.0828$.
Plugging it all in yields
$\mathrm{d} \sigma / \mathrm{d} \Omega=7.7410^{-36} \mathrm{~cm}^{2} / \mathrm{sr}=7.74 \mathrm{pb}$ (pico-barn) $/ \mathrm{sr}$.

