Nuclear Physics - Problem Set 7 - Solution

Problem 1)

a) Plug and chug:

$$
\begin{aligned}
& g_{A}=\langle p \uparrow| \sum_{3 q} I_{+} \sigma_{2}|n \uparrow\rangle= \\
& \left.\left.\frac{1}{\sqrt{3}}\left\langle\sqrt{2 u t} u t d \downarrow-\frac{u \uparrow u \downarrow+u \downarrow u t}{\sqrt{2}} d t\right| \sum_{3 q} I_{+} \sigma_{z} \frac{1}{\sqrt{3}} \right\rvert\, \sqrt{2} d t \text { dt } u \downarrow-\frac{d \uparrow d+d \downarrow d t}{\sqrt{2}} u t\right\rangle=
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{3}\left\langle\sqrt{2} u_{\uparrow} u_{\uparrow} d_{\downarrow}-\frac{u_{\uparrow} u_{\downarrow}+u_{\downarrow} u_{\uparrow}}{\sqrt{2}} d\| \| \sqrt{2}\left(u_{\uparrow} u_{\downarrow}+u_{\downarrow} u_{\uparrow}\right) d \uparrow+\frac{u_{\uparrow} u_{\downarrow}+u_{\downarrow} u_{t}}{\sqrt{2}} d t-2 \frac{u_{\uparrow} u_{\uparrow}^{t} d_{\downarrow}}{\sqrt{2}}\right) \\
& =\frac{1}{3}\left\langle\sqrt{2} u t u t d-\frac{u t u_{i}+u_{\downarrow} u t}{\sqrt{2}} d \| 3 \frac{u t u_{t}+u_{\downarrow} u t}{\sqrt{2}} d t-\sqrt{2} u t u t d\right\rangle \\
& -\frac{-2-3}{3}=-\frac{5}{3}
\end{aligned}
$$

Plugging in our result from last week, we get for the proton $\Delta u-\Delta d=4 / 3$ $+1 / 3=5 / 3$, the same result (never mind the minus sign).
b) Yup, the result for a) would predict $5 / 18$ for the difference $\Gamma_{1}{ }^{p}-\Gamma_{1}{ }^{n}$ between proton and neutron, which is equal to the value from last week. Of course, both of them are somewhat off: The "true" value of g_{A} is 1.26 (only 75% of our result), and the value for the Bjorken sum rule is even smaller than what you get for this value (0.21) at finite Q^{2} (because of pQCD corrections).

Problem 2)

a) E_{0} is the mass difference between neutron and proton, which is 1.2933 MeV . We get for the life time
$\tau_{n}=\frac{6 \sigma^{3} \hbar}{0.47 E_{0}{ }^{5}}\left(\frac{g_{V}^{2}}{(\hbar c)^{2}}+3 \frac{g_{A}^{2}}{(\hbar c)^{6}}\right)^{-1}=7.201 \sigma^{7} s\left[\left(\frac{g^{2}}{(\hbar c)^{6}}+3 \frac{g_{A}^{2}}{(\hbar c)^{6}}\right) / G e V^{4}\right]^{-1}$
For g_{V} I get $g_{V}=-G_{F} \cos \theta_{C}$ and for g_{A} I get $g_{A}=5 / 3 G_{F} \cos \theta_{C}$
b) Using $\frac{G_{F}}{(\hbar c)^{3}}=1.1661 \sigma^{-5} \mathrm{GeV}^{-2}$ and $\cos \theta_{\mathrm{c}}=0.98$, I get
$\tau_{n}=7.2010^{-7} s\left[\left(\frac{q^{2}}{(\hbar c)^{6}}+3 \frac{g_{A}^{2}}{(\hbar c)^{6}}\right) / G e V^{4}\right]^{-1}=\frac{7.20 \cdot 1 \sigma^{7} s}{\cos ^{2} \theta_{c}}\left[\left(1+3 \frac{25}{9} \frac{G_{F}^{2}}{(\hbar c)^{6}} / G e V^{4}\right]^{-1}=59 \xi\right.$

If I use $g_{A}=1.261 G_{F} \cos \theta_{\mathrm{c}}$ instead, I get 956s. That's not too far off the 887 s quoted.

