Nuclear Physics - Problem Set 8 - Solution

Problem 1)

a) The first part of the given wave function of course fulfills the equation
 Quantum Mechanics. For the second part, we use the expression for the Laplacian in spherical coordinates as given in the problem:

$$
H_{0} f(\theta, \varphi) \frac{e^{j k r}}{r}=-h^{2} \frac{\dot{\dot{x}}^{2}}{2 m} f(\theta, \varphi) \frac{e^{j k r}}{r}=
$$

$$
=-\frac{h^{2}}{2 m}\left[f(\theta, \varphi) \frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r} \frac{e^{j k r}}{r}+\left(\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial f(\theta, \varphi)}{\partial \theta}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} f(\theta, \varphi)}{\partial \varphi^{2}}\right) \frac{e^{j k r}}{r}\right]
$$

$$
=-\frac{h^{2}}{2 m}\left[f(\theta, \varphi) \frac{1}{r^{2}} \frac{\partial}{\partial r}\left((i k r-1) e^{i k \eta}\right)+\frac{1}{r^{2}}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial f(\theta, \varphi)}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} f(\theta, \varphi)}{\partial \varphi^{2}}\right) \frac{e^{i k r}}{r}\right]
$$

$$
=-\frac{h^{2}}{2 m}\left[f(\theta, \varphi) \frac{1}{r^{2}}(i k+(i k r-1) i k) e^{i k r}+\frac{1}{r^{2}}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial f(\theta, \varphi)}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} f(\theta, \varphi)}{\partial \varphi^{2}}\right) \frac{e^{i k r}}{r}\right]
$$

$$
=\frac{1}{2 m} p^{2} f(\theta, \varphi) \frac{1}{r} e^{j k r}-\frac{h^{2}}{2 m} \frac{1}{r^{2}}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial f(\theta, \varphi)}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} f(\theta, \varphi)}{\partial \varphi^{2}}\right) \frac{e^{j k r}}{r}
$$

The first part of the last expression is indeed of the form $\mathrm{H} \psi=\mathrm{E} \psi$ with the same eigenvalue E , while the second part falls off with an additional factor $1 / r^{2}$ and therefore becomes negligible in the limit $r->\infty$, as long as the angular derivatives inside the parentheses are well-behaved (finite).
b) This is a simple plug-in problem:

$$
\begin{aligned}
& j_{r}=\frac{\mathrm{h}}{2 m i}\left[\psi^{*}\left(\frac{\partial}{\partial r^{\prime}} \psi\right)-\left(\frac{\partial}{\partial r^{*}} \psi\right) \psi\right]= \\
& =\frac{\mathrm{h}}{2 m i}\left[f^{*}(\theta, \varphi) \frac{e^{-i k r}}{r}\left(\frac{\partial}{\partial r} f(\theta, \varphi) \frac{e^{i k r}}{r}\right)-\left(\frac{\partial}{\partial r} f^{*}(\theta, \varphi) \frac{e^{-i k r}}{r}\right) f(\theta, \varphi) \frac{e^{i k r}}{r}\right] \\
& =\frac{\mathrm{h}}{2 m i} \left\lvert\, f(\theta, \varphi)^{2}\left[\frac{e^{-i k r}}{r}\left(\frac{\partial}{\partial r} \frac{e^{i k r}}{r}\right)-\left(\frac{\partial}{\partial r} \frac{e^{-i k r}}{r}\right) \frac{e^{i k r}}{r}\right]\right. \\
& =\frac{\mathrm{h}}{2 m i} \left\lvert\, f(\theta, \varphi)^{2}\left[\frac{e^{-i k r}}{r}\left((i k r-1) \frac{e^{i k r}}{r^{2}}\right)-\left((-i k r-1) \frac{e^{-i k r}}{r^{2}}\right) \frac{e^{k r}}{r}\right]\right. \\
& =\frac{2 i p r}{2 m i} \frac{1}{r^{3}}|f(\theta, \varphi)|^{2}-\frac{p}{m} \frac{\mid f(\theta, \varphi)^{2}}{r^{2}}=\left.\psi \psi\right|^{2}
\end{aligned}
$$

Problem 2)

a) Since this is a non-relativistic situation, I find (with $\mathrm{E}=2.5 \mathrm{MeV}$) $\mathrm{k}_{\text {out }}=\left(2 \mu \mathrm{c}^{2} \mathrm{E}\right)^{1 / 2} / \hbar \mathrm{c}=\left(\mathrm{m}_{\text {protonc }} \mathrm{c}^{2} 2.5 \mathrm{MeV}\right)^{1 / 2} / \hbar \mathrm{c}=48.4 \mathrm{MeV} / \hbar \mathrm{c}=$ $=0.245 \mathrm{fm}^{-1}$ (remember, μ is $\mathrm{m}_{\text {proton }} / 2$ here). The cross section is $\frac{d \sigma}{d 2}=\left|f_{0}(\theta)\right|^{2}=\frac{1}{k^{2}} \sin ^{2}\left(\delta_{o}\right)=9.78 f^{2}{ }^{2}=97.8 \mathrm{mk}$
b) I use equation 17.7 on page 290 of Povh et al. with $\mathrm{k}_{\text {out }}=\left(2 \mu \mathrm{c}^{2} \mathrm{E}\right)^{1 / 2} / \hbar \mathrm{c}=$ $0.245 \mathrm{fm}^{-1}$ and $\mathrm{a}=1.6 \mathrm{fm}$. Subtracting the last term on the rhs from both sides and taking the tan on both sides, I get a transcendental equation that I can solve for $|\mathrm{V}|$. The numerical solution I find is
$\left|\mathrm{V}_{\mathrm{o}}\right|=33.355 \mathrm{MeV}$. (Just plug it in the equation to convince yourself that this is correct.)
This result is a very rough approximation, although it is at least the right order of magnitude (compare to the plot on page 291 - you'd have to average out the exponential, negative potential at $\mathrm{r}>0.8 \mathrm{fm}$ and the repulsive core at smaller r).

