Nuclear Physics - Problem Set 9 - Solution

Problem 1)

Following the hint, I first calculate the gradient of ψ :
$\stackrel{r}{\nabla} \frac{e^{-m r}}{r}=\frac{\partial}{\partial r} \frac{e^{-m r}}{r} \hat{r}=\left(-\frac{1}{r^{2}}-\frac{m}{r}\right) e^{-m r} r$. Using Gauß' theorem, I can
integrate the negative divergence of this result (= the Laplacian of ψ) over a sphere of radius R by integrating the expression itself over the surface of the sphere:
$-\iiint_{\text {Volume }} \operatorname{div}^{r} \frac{e^{-m r}}{r} d^{3} r=-\iint_{\text {Surface }}\left(-\frac{1}{r^{2}}-\frac{m}{r}\right) e^{-m r} \hat{r} \cdot d \vec{a}=4 \pi(1+m R) e^{-m \kappa}$.
The first term of the r.h.s. (the delta-function) of course simply yields 4π, and the remaining term yields

$$
\begin{aligned}
& -\iiint_{\text {Votume }} m^{2} \frac{e^{-m r}}{r} d^{3} r=-4 \pi m^{2} \int_{0}^{R} r e^{-m r} d r=-4 \pi m^{2}\left[r \frac{e^{-m r}}{-m}\right]_{0}^{R}+4 \pi m^{2} \int_{0}^{R} \frac{e^{-m r}}{-m} d r \\
& =4 \pi m \mathrm{Re}^{-m R}+4 \pi m^{2}\left[\frac{e^{-m r}}{m^{2}}\right]_{0}^{R}=4 \pi m \mathrm{Re}^{-m R}+4 \pi e^{-m R}-4 \pi=4 \pi(1+m R) e^{-m R}-4 \tau
\end{aligned}
$$

The last term cancels with the 4π from the delta-function, and both sides indeed turn out equal. Since ψ and therefore its derivatives are spherically symmetric, it follows that the l.h.s. and r.h.s. must be equal if their integrals over arbitrary spheres are equal.

Problem 2)

First, I rewrite the Tensor operator using all the hints given:

$$
\begin{aligned}
& S_{12}=3\left(\sigma_{1}^{+}\left(\frac{x-i y}{r}\right)+\sigma_{1}^{-}\left(\frac{x+i y}{r}\right)+\sigma_{1}^{z} \frac{z}{r}\right)\left(\sigma_{2}^{+}\left(\frac{x-i y}{r}\right)+\sigma_{2}^{-}\left(\frac{x+i y}{r}\right)+\sigma_{2}^{z} \frac{z}{r}\right)- \\
& -\left(2 \sigma_{1}^{+} \sigma_{2}^{-}+2 \sigma_{1}^{-} \sigma_{2}^{+}+\sigma_{1}^{z} \sigma_{2}^{z}\right) \\
& =3\left(\sigma_{1}^{+} \sin \theta e^{-i \varphi}+\sigma_{1}^{-} \sin \theta e^{+i \varphi}+\sigma_{1}^{z} \cos \right)\left(\sigma_{2}^{+} \sin \theta e^{-i \varphi}+\sigma_{2}^{-} \sin \theta e^{+i \varphi}+\sigma_{2}^{z} \cos \theta\right)- \\
& -\left(2 \sigma_{1}^{+} \sigma_{2}^{-}+2 \sigma_{1}^{-} \sigma_{2}^{+}+\sigma_{1}^{z} \sigma_{2}^{z}\right) \\
& \left.=3 \sin ^{2} \theta\left(\sigma_{1}^{+} \sigma_{2}^{+} e^{-2 i \varphi}+\sigma_{1}^{-} \sigma_{2}^{-} e^{2 i \varphi}+\sigma_{1}^{+} \sigma_{2}^{-}+\sigma_{1}^{-} \sigma_{2}^{+}\right)+\cos ^{2} \theta \sigma_{1}^{z} \sigma_{2}^{z}\right]+ \\
& +3 \sin \theta \cos \left[\left(\sigma_{1}^{+} \sigma_{2}^{z}+\sigma_{1}^{z} \sigma_{2}^{+}\right) e^{-i \varphi}+\left(\sigma_{1}^{-} \sigma_{2}^{z}+\sigma_{1}^{z} \sigma_{2}^{-}\right) e^{+i \varphi}\right]-2 \sigma_{1}^{+} \sigma_{2}^{-}-2 \sigma_{1}^{-} \sigma_{2}^{+}-\sigma_{1}^{z} \sigma_{2}^{z}
\end{aligned}
$$

Since both spins in the initial state point up, only terms containing σ^{-}and σ^{z} can contribute:
$\left.\left.S_{12}{ }^{3} \mathrm{~S}_{1}, \mathrm{~m}_{\mathrm{j}}=+1\right\rangle=\sqrt{\frac{1}{4 \pi}}\left\{\sin ^{2} \theta\left(\sigma_{1}^{-} \sigma_{2}^{-} e^{2 \dot{\psi}}\right)+\cos ^{2} \theta \sigma_{1}^{2} \sigma_{2}^{z}\right] \uparrow \uparrow\right\rangle+$
$+\sqrt{\frac{1}{4 \pi}} 3 \sin \theta \cos \delta\left[\left(\sigma_{1}^{-} \sigma_{2}^{z}+\sigma_{1}^{2} \sigma_{2}^{-}\right) e^{+i \varphi}\right]|\uparrow \uparrow\rangle-\sqrt{\frac{1}{4 \pi}} \sigma_{1}^{2} \sigma_{2}^{2}|\uparrow \uparrow\rangle=$
$\sqrt{\frac{9}{4 \pi}} \sin ^{2} \theta e^{2 i \varphi}|\downarrow \downarrow\rangle+\sqrt{\frac{1}{4 \pi}}\left(3 \cos ^{2}-1\right)|\uparrow \uparrow\rangle+\sqrt{\frac{9}{4 \tau}} \sin \theta \cos \theta e^{+i \varphi}|\downarrow \uparrow+\uparrow \downarrow\rangle$
We compare this now to the wave function for the D-state, inserting the correct expressions for the spherical harmonics and Clebsch-Gordon coefficients:
$\left.\left.\left|{ }^{3} \mathrm{D}_{1}, \mathrm{~m}_{\mathrm{j}}=+1\right\rangle=\sqrt{\frac{3}{5}} Y_{22} \downarrow \downarrow \downarrow\right\rangle-\sqrt{\frac{3}{10}} Y_{2}\left|\frac{\uparrow \downarrow+\downarrow \uparrow}{\sqrt{2}}\right\rangle+\sqrt{\frac{1}{10}} Y_{2} \downarrow \uparrow \uparrow\right\rangle=$
$\left.\sqrt{\frac{3}{5}} \sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{i 2 \phi}|\downarrow \downarrow\rangle+\sqrt{\frac{3}{10}} \sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{i \psi}\left|\frac{\uparrow \downarrow+\downarrow \uparrow}{\sqrt{2}}\right\rangle+\sqrt{\frac{1}{10}} \sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right) \right\rvert\,$

$$
=\sqrt{\frac{9}{32 \pi}} \sin ^{2} \theta e^{i 2 \psi}|\downarrow \downarrow\rangle+\sqrt{\frac{9}{32 \pi}} \sin \theta \cos \theta e^{i \psi}|\uparrow \downarrow+\downarrow \uparrow\rangle+\sqrt{\frac{1}{32 \pi}}\left(3 \cos ^{2} \theta-1\right)|\uparrow \uparrow\rangle
$$

Comparison shows exact agreement with exception of an overall normalization factor of $1 / \sqrt{ } 8$, q.e.d.

