Deep Virtual Production of Pion Pairs

Dilini Bulumulla Old Dominion University ODU Nuclear Seminar

Project

 We are mainly considering two reactions, Charged and Neutral Pion Pairs

$$\bullet \quad ep \quad \rightarrow \quad e \quad 'p \quad '\pi \quad ^+\pi \quad ^-$$

- Isospin I=1, angular momentum J=1
 - *ρ*(770)
- Isospin I=0, angular momentum J=0
 - $f_0(500) = \sigma, f_0(980)$
- $\ \, \bullet \quad ep \ \rightarrow \ e \ 'p \ ' \ \pi^0 \ \ \pi^0 \ \$
 - Isospin zero, spin zero channel (I:J=0:0)
 - $f_0(500) = \sigma$, $f_0(980)$

CLAS12 Equipment in Hall B

Forward Detector (FD)

- TORUS magnet
- HT Cherenkov Counter
- Drift chamber system
- LT Cherenkov Counter
- Forward ToF System
- Pre-shower calorimeter
- E.M. calorimeter
- Forward Tagger
- RICH detector

Central Detector (CD)

- Solenoid magnet
- Silicon Vertex Tracker
- Central Time-of-Flight
- Central Neutron Det.
- MicroMegas

<u>Beamline</u>

- Photon Tagger
- Shielding
- Polarized Targets

CLAS12 Simulation and Reconstruction

• **GEMC – GEant4 Monte Carlo**

- The official detector simulation of CLAS12
- Developed by Maurizio Ungaro
- For more information <u>gemc.jlab.org</u>.
- Coatjava CLAS Offline Analysis Tools
 - Offline common tools for building CLAS12 reconstruction, calibration, and analysis software
 - developed by Gagik Gavalian
 - For more information

https://claraweb.jlab.org/clara/docs/clas/installation.html

Data : /work/clas12/rg-a/trains/v2/skim8_ep

skim8_5038.hipo skim8_5117.hipo skim8_5046.hipo skim8_5001.hipo skim8_5030.hipo skim8_5000.hipo skim8_5036.hipo

Coatjava version 5b.7.8

- Identify Electrons Fiducial cuts in PCAL + Tracking ECAL & HTCC cuts
- Identify Protons Tracking fiducial TOF
- Identify pions
 (Compare with Event Builder for sanity check)

RG-A Analysis: PCAL Fiducial

${\bf U}$, ${\bf V}$ and ${\bf W}$ for PCAL

EM shower is broad ; Remove events close to edges, as shower leaks out and sampling fraction not reliable for electron id

class

Calorimeter:

- High energy pions give a constant signal (Minimum ionizing)
- Electrons shower and stop: Sampling fraction = visible "energy" / momentum(from tracking)

For all negative particles

Just for Particle#0

E/p vs p plots of just particle #0

RG-A Analysis: Target Vertex

V_z distribution

HTCC number of photo electrons (all negative particles)

Before applying any cuts

After applying cuts

Fit function= Poisson \otimes Gauss_error Mean of 14 photo-electrons per electron track (id from ECAL)

Cuts

- PCAL U, V, W cuts
- U > 30 , 30 < V <390, 30 < W <390
- Energy_ECinner > 60 MeV
- 0.18 < ECAL_energy/p < 0.30</p>
- \succ -10.0 cm < V_z < 10.0 cm
- ➢ P > 2.0 GeV
- ➢ Nphe > 4.5

HTCC number of photo electrons for just particle#0

skim8_4013.hipo

Nphe*10 vs Etot/p for all negative particles

Nphe*10 vs Etot/p for just particle#0

RG-A Analysis: TOF vs momentum cl

Identifying Protons

 $\beta = (d/tof \cdot c) vs p \text{ for FTOF}$

 $Cut \rightarrow$

Beta vs p for CTOF

Pions, Kaons, Protons accidentals $\boldsymbol{\beta}_1(p) < \boldsymbol{\beta}(p) < \boldsymbol{\beta}_2(p)$

P1(P) · P(P) · P2(P)

 $\beta(kaon)(p) = \frac{p}{\sqrt{p^2 + m_K^2}}$ Similar for protons, deuterons,...

RG-A Analysis: Accidentals

Beam bunches separated by 4 ns. All timing based on highest energy electron in event Time of Flight = tof = $(t - t_e)_{FTOF}$

Accidental pions and protons visible

 $\beta = (d/tof \cdot c)$ in FTOF

- Some particles came from target at time offset n∆t = ±4ns, ±8ns...
- $\beta_n = (d/c) / (tof+n\Delta t), d_{FTOF} \sim 7m$
- Relativistic particles tof to FTOF ~ 23.3 ns Accidentals: 4ns/tof = 0.17 $\beta_n = 1/(1 + n \cdot 0.15)$
- Bleed-through (Halls A & C) at half integer values?

Identifying Photons

ECAL Y vs X plot for neutral particles before and after applying PCAL $U\,{>}\,30$, $30{<}\,V\,{<}\,390$, $30\,{<}\,W\,{<}390$

Identifying Photons

DC Fiducial Cut (Region2)

 $rth=(S-1)\frac{\pi}{3};$ $XS=\cos(rth)X + \sin(rth)Y;$ $YS= -\sin(rth)X + \cos(rth)Y;$ $\phi_{S} = \operatorname{atan2}(YS, XS - r_{cut}/2);$

$$(XS * XS + YS * YS > r_cut * r_cut)$$
 and $|\Phi_S| < \frac{\pi}{3}$

ECAL Φ vs θ distribution for negative particles

PCAL U > 30 , 30< V < 390 , 30 <W <390 PCAL_Doca< 3.0 DC_fiducial cut

Notice tilt due to solenoid field

> My acceptances are not really good. (Because we didn't finish it yet.)

- Back to event builder pid
- For now on, Used following cuts for every plots

electron – PCAL cuts (U > 30 , 30 < V < 390, 30 < W < 390) Region 2 DC fiducial cuts

Proton, $\pi^+ \pi^-$ - Region 2 DC fiducial cuts

Photon - PCAL cuts (U > 30, 30 < V < 390, 30 < W < 390)

Missing energy distribution for events with $H(e, e'p \pi^+ \pi^-)X$

Missing mass distribution X

Missing Energy $H(e, e'p \pi^+ \pi^-)X > -0.5$ and $H(e, e'p \pi^+ \pi^-)X < 0.8$ cut

 $H(e, e'p \pi^{+}\pi^{-})X$

Missing mass square distribution for proton

Missing Energy $H(e, e'p \pi^+ \pi^-)X > -0.5$ and $H(e, e'p \pi^+ \pi^-)X < 0.8$ cut

Missing mass of π^- distribution after applying

Missing Energy $H(e, e'p \pi^+ \pi^-)X > -0.5$ and $H(e, e'p \pi^+ \pi^-)X < 0.8$ cut

After Cut

Missing mass distribution after applying

Missing Energy $H(e, e'p \pi^+ \pi^-)X > -0.5$ and $H(e, e'p \pi^+ \pi^-)X < 0.8$ cut

H(e,e' p π)X (X=π+) хЗ Name h eppiminus Entries 584919 1.100 Mean 0.955 RMS 41509 Underflow Overflow 137464 Integral 405946.000 MANNER THE -0.5 0.5 1.0 1.5 2.5 -1.0 0.0 2.0 3.0 M²_X(X=π⁺)(GeV²)

 $ep \rightarrow e'p'\pi^0\pi^0$

The peak at 0 is probably mostly missing Bremstrahlung photons

Simulation of Deep Virtual Production of Pion Pairs

Event Generation

- Monte-Carlo Generation of Phase Space Variables
 - There are eight independent kinematic variables in the final state of the $ep \rightarrow e'p'\pi\pi$ reaction.

Total kinematic variables in final state (four 4-vectors)	16
Mass constraint of the four final state particles	-4
Four-Momentum Conservation, initial to final state	-4
Total number of independent variables in final state	8

- These are,
 - Q^2 , $xB_{,\phi_e}$, $M^2_{1,2}$, t, $\phi^*_{1,2}$, $\cos\theta_{\pi 1 \text{ in } \pi\pi \text{ rest}}$, $\phi_{\pi 1 \text{ in } \pi\pi \text{ rest}}$

Simulation and Reconstruction

• For my simulation and reconstruction, I used GEMC version 4.3.0 COATJAVA version 5b.7.8

Steps :

- After generation monte carlo data is passed through the GEMC in the form of LUND format (for 100k events).
- Reconstruction is done with coatjava.
- CLAS12 analyses are done with java.
- This method ties well with the coatjava framework and provides standard tools for reading EVIO files and reconstructed banks.

Missing mass and Missing Energy for $ep \rightarrow e p \pi^+ \pi^- X$

Missing mass for $ep \rightarrow e p \pi^+ X$

- Reconstruction of π^- from Missing mass squared
- π -not detected

Missing mass for $ep \rightarrow e \ p \ \pi^- X$

- Reconstruction of π^+ from Missing mass squared
- π^+ not detected

Missing mass for $ep \rightarrow e \pi^+ \pi^- X$

- Reconstruction of proton from missing mass squared
- Proton not detected

Missing mass for $ep \rightarrow e'p' \pi^0 X$

• Applied a cut on invariant mass : around $0.10 < m_{\gamma\gamma}^2 < 0.17 \ GeV$

Thank You

H(*e*,*e* ' $\pi^+\pi^-p$) events Sample reconstruction of one missing particle, before/after missing energy cut H(*e*,*e*' $\pi^-\pi^-p$) X

Back up slides

Applied Cuts: $Q^2 > 1.0 \text{ GeV}^2$ and $W^2 > 4 \text{ GeV}^2$

Missing Energy H(e, e'p $\pi^+\pi^-$)X > -0.5 and H(e, e'p $\pi^+\pi^-$)X < 1.5

Dalitz plot

ECAL $\phi(deg)$ vs $\theta(deg)$ distribution for negative particles before and after applying PCAL U > 30, 30 < V < 390, 30 < W < 390 and chi2_calc(PCAL) < 2.0

PCAL DOCA

class

Doca Calculation

Doca= $\sqrt{(x - hx)^2 + (y - hy)^2 + (z - hz)^2}$

- x X coordinate of the hit (cm)
- y Y coordinate of the hit (cm)
- z Z coordinate of the hit (cm)

hx - X coordinate of the matched hit (cm)

hy - Y coordinate of the matched hit (cm)

hz - Z coordinate of the matched hit (cm)

RG-A Simulation

Missing_energy of H(e,e'p pi+pi-)X				
2000			Name h_missing_energy_1 Entries 6544 Mean 0.373	
1500			RMS Underflow Overflow Integral	0.955 13 0 6531.000
1000				
500				
0	0	2	4	5 8 10

RG-A Simulation

Deep exclusive two pion production

• Exclusive two-pion electroproduction

•
$$e+p \rightarrow e'+p'+\pi_1+\pi_2$$

• In the one-photon exchange approximation we can reduce our analysis to the hadronic sub process.

•
$$\gamma^* + p \rightarrow \pi_1 + \pi_2 + p'$$

Deep Virtual Factorization

• Leading order diagrams for exclusive deep virtual production of two pions

- B. Lehmann-Dronke et al., Phys Lett B 475 (2000) 147
- B. Lehmann-Dronke et al., Phys Rev D, 63 (2001) 114001

Neutral mesonic final state: $\pi^+\pi^-$ or $\pi^0\pi^0$

- a) [Flavor-Diagonal quark-GPD] \otimes [q \overline{q} -Two-Pion Distribution Amplitude (DA)]
- b) [Flavor-Diagonal quark-GPD] @[gluon-Two-Pion Distribution Amplitude(DA)]
- c) [Gluon-GPD] \otimes [q \overline{q} -Two-Pion Distribution Amplitude (DA)]

Deep Sigma

σ-meson Asymptotic Distribution Amplitudes:

•
$$\mathbf{\Phi}_{gluon} = 2 \mathbf{\Phi}_{qq}$$

- σ -meson: $f_0(500)$ well established.
 - Pole = (450 ± 20) MeV $i(275\pm12)$ MeV) (J.R.Peláez)

- Microscopic structure of $f_0(500)$ not well understood.
 - $q\overline{q}$: ${}^{3}P_{0}$
 - Tetraquark
 - $\pi\pi$ -molecule
 - Glueball
 - Superposition of all of the above
- Deep sigma-production offers intriguing probe of gluonic content of $f_0(500)$.

Deep virtual $\pi\pi$ Production Amplitude

• Deep Virtual $\pi\pi$ Production Amplitude

$$=\sum_{\substack{J^{\pi}:I\\\lambda_{N},\lambda_{\pi}\in(q\bar{q},g)}}\int d\tau dz \text{GPD}_{\lambda_{N}}(\tau,\xi,t) \odot S_{\lambda_{N},\lambda_{\pi}}(\tau,z,\xi) \odot \text{DA}^{I}_{\lambda_{\pi}}(z,\zeta) P_{J}(\cos(\theta^{*})\Omega_{J:I}(m_{\pi\pi})$$

• Kinematics

$$\zeta \sim \frac{1}{2 - x_B}$$

$$t = (q - p_{\pi\pi})^2 = (P'_p - P_p)^2$$

$$\zeta, (1 - \zeta) = \frac{1}{2} [1 \pm \beta^* \cos \theta^*] = \text{ pion lightcone momentum fractions}$$

$$\beta^* = \text{ pion velocity in } \pi\pi \text{ rest frame}$$

$$\theta^* = \text{ pion polar angle in } \pi\pi \text{ rest frame}$$

- Dynamics
 - $S(\tau,z;\xi)$ = Hard scattering amplitude (quark-gluon propagators)
 - $\Omega_{J;I}$ = Omnès-function, derived from $\pi\pi$ phase shifts
 - τ = average momentum fraction of parton in nucleon
 - z = momentum fraction of parton in $\pi\pi$ DA

 x_B

Ċ . .

$\pi\pi$ Mass Distribution (Omnès F'n)

L.Dai, M.Pennington, Phys
 Rev D 90 036004 (2014)

•
$$L = 0$$

- *f₀(500)*
- *f₀(980)*
- Small I=2 non-resonant

- *L* = 2
 - *f*₂(1270)
 - Small I=2 non-resonant

$\pi\pi$ Omnès F'n I;J = 1;1 (ρ -meson)

Invariant mass distribution for $(\pi^+ + \pi^-)$ After applying following cuts

 $M(\pi^{+} + \pi^{-}) > 0.2 \text{ GeV}$ Q² > 1.0 GeV² W > 2.0 GeV

Missing Energy H(e, e'p $\pi^+_+\pi^-$)X > -0.5 and

 $H(e, e'p \pi^{+}\pi^{-})X < 1.5$

Missing Mass

H(e, e'p $\pi^+ \pi^-)X > -0.1$ and H(e, e'p $\pi^+ \pi^-)X < 0.1$

Ftting Function = $(A|Omnes00|^2 + B|Omnes20|^2 + C|Omnes11|^2 + D|Omnes02|^2 + E|Omnes22|^2) * \sqrt{M_{\pi\pi}^2 - m_{\pi}^2}$

Identifying Pions

 π - not an electron

 $\beta > \beta_3(p) : \beta_3(p) = (1/2)(\beta (pion)(p) + \beta(kaon)(p))$

 π + - β > $\beta_3(p)$

Delete this slide.

This pi- cut will remove half of your pions at large momentum, Because tof resolution cannot separate beta(pion) and beta(kaon).

Identifying Protons

β vs. momentum

Dr. Hyde's Plot

 Isospin is a quantum number related to the strong interaction. It is mathematically similar to spin and it has nothing to do with angular momentum.

Iso-Spin

It was discovered that particles with approximately the same mass, and the same (ordinary) spin existed in "charge multiplets":

> p and n → $I_3 = \frac{1}{2}, -\frac{1}{2}$ (a doublet) $\Pi^+ \Pi^- \Pi^0 \rightarrow I_3 = 1, -1, 0$ (a triplet) number of states = 2I +1