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The	Structure	of	Matter



Matter	Particles
• Make	up	visible	matter
• Pointlike (<10-18 m),	

Fundamental	*)

• Have	mass	(from	<	½	eV to	
178,000,000,000	eV =	178	GeV)

• Distinct	from	their	antiparticles	*)
• Fermions	(Spin	½)	Þ

they	“defend” their	space	(Pauli	
Principle)	and	can	only	be	
created	in	particle-antiparticle	
pairs	

• Can	be	“virtual”,	but	make	up	
matter	being	(nearly)	“real”

• “stable” (against	strong	decays;	
lifetimes	from	∞	to	10-24 s)

*) Until	further	notice

x2	for	R,	x2	for	antiparticles

3	“colors”	=	3	
different	charges:	
red,	green,	blue



Hadronic Particle	Zoo
- what	can	one	build	from	quarks?



Forces	and	Force	Carriers

• Mediate	Interactions	
(Forces)	- form	“Waves”

• Pointlike,	Fundamental
• Massless	*)

• Some	are	their	own	
antiparticles	
(photon,	Z0,	graviton)

• Spin	1,	2	->	Bosons	
(tend	to	cluster	together,	
can	be	produced	in	
arbitrary	numbers)

• Can	be	real,	but	carry	forces	
as	virtual	particles

• Some	are	absolutely	stable	
(g,	gluons,	gravitons)

*) See	next	slide

Note:	gluons	come	in	8	possible	
combinations	of	color/anticolor
(9th is	“sterile”	– doesn’t	exist)



Interactions

• Matter	Particles	interact	with	each	other	by	
exchanging	Gauge	Bosons

• Strength	of	Interaction	determined	by	coupling	
(“charge”:	electromagnetic	e,	weak	g,	color	aS)

• Range	of	interaction	determined	by	mass	*) of	gauge	
boson	and	Heisenberg	uncertainty	principle

• Examples:	
– e- e+/- scattering	(E&M)
– neutron	beta	decay	(weak)
– quark-quark	interaction	(strong)

• Confinement
• Asymptotic	freedom
• Mesons,	baryons…
• Nπ	interaction,	NN	interaction

• ALL	interactions	MUST	conserve
energy	and	charge!

*) Huh?	See	next	slide



Higgs	Field
• Create	“Drag” on	Particles	(“Molasses”)
• *) Origin	of	Mass	

Makes	some	gauge	bosons	very	heavy	
(W’s,	Z’s)	and	therefore	short-range	
(“Weak” interaction)

• Origin	of	electroweak	symmetry	breaking
• Pointlike,	Fundamental
• Bosons	(Spin	0)
• Three	massless	(“swallowed	up” by	W’s,	

Z’s);	one	very	massive	(125	GeV)
• Discovered	in	2012	at	CERN



The	LHC	at	CERN

• See	also	the	movie	“Particle	Fever”



Higgs	Discovery



The	following	are	excerpts	from
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BEYOND THE STANDARD MODEL IN MANY DIRECTIONS∗

Chris Quigg
Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510 USA

Abstract
These four lectures constitute a gentle introduction to what may lie beyond the
standard model of quarks and leptons interacting through SU(3)c ⊗ SU(2)L ⊗
U(1)Y gauge bosons, prepared for an audience of graduate students in experi-
mental particle physics. In the first lecture, I introduce a novel graphical rep-
resentation of the particles and interactions, the double simplex, to elicit ques-
tions that motivate our interest in physics beyond the standard model, without
recourse to equations and formalism. Lecture 2 is devoted to a short review
of the current status of the standard model, especially the electroweak theory,
which serves as the point of departure for our explorations. The third lecture is
concerned with unified theories of the strong, weak, and electromagnetic inter-
actions. In the fourth lecture, I survey some attempts to extend and complete
the electroweak theory, emphasizing some of the promise and challenges of
supersymmetry. A short concluding section looks forward.

1. QUESTIONS, QUESTIONS, QUESTIONS
When I told my colleague Andreas Kronfeld that I intended to begin this course of lectures by posing
many questions, he agreed enthusiastically, saying, “A summer school should provide a lifetime of home-
work!” I am sure that his comment is true for the lecturers, and I hope that it will be true for the students
at this CERN–CLAF school as well.

These are revolutionary times for particle physics. Many enduring questions, including ✷ Why
are there atoms? ✷ Why chemistry? ✷ Why complex structures? ✷ Why is our world the way it is?
✷ Why is life possible? are coming within the reach of our science. The answers will be landmarks in
our understanding of nature. We should never forget that science is not the veneration of a corpus of
approved knowledge. Science is organic, tentative; over time more and more questions enter the realm
of scientific inquiry.

1.1 A Decade of Discovery Past
We particle physicists are impatient and ambitious people, and so we tend to regard the decade just past
as one of consolidation, as opposed to stunning breakthroughs. But a look at the headlines of the past ten
years gives us a very impressive list of discoveries.

✄ The electroweak theory has been elevated from a very promising description to a law of nature.
This achievement is truly the work of many hands; it has involved experiments at the Z0 pole,
the study of e+e−, p̄p, and νN interactions, and supremely precise measurements such as the
determination of (g − 2)µ.

✄ Electroweak experiments have observed what we may reasonably interpret as the influence of the
Higgs boson in the vacuum.

✄ Experiments using neutrinos generated by cosmic-ray interactions in the atmosphere, by nuclear
fusion in the Sun, and by nuclear fission in reactors, have established neutrino flavor oscillations:
νµ → ντ and νe → νµ/ντ .

∗ Lectures presented at the 2003 Latin-American School of High-Energy Physics, San Miguel Regla (Hidalgo), Mexico.
Slides and animations are available at http://boudin.fnal.gov/CQSanMiguel.tgz. FERMILAB-Conf-04/049-T

arXiv:hep-ph/0404228 v1   26 Apr 2004
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STRUCTURE OF THE STANDARD MODEL1

PAUL LANGACKER
Department of Physics, University of Pennsylvania,

Philadelphia, Pennsylvania, USA 19104-6396

Contents

1 The Standard Model Lagrangian 1

2 Spontaneous Symmetry Breaking 4

3 The Gauge Interactions 10

3.1 The Charged Current . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 The Neutral Current . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Gauge Self-interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Problems With the Standard Model 16

1 The Standard Model Lagrangian

The standard model [1] is a gauge theory [2] of the microscopic interactions. The
strong interaction part (QCD [3]) is described by the Lagrangian

!LSU3
= −

1

4
F i

µνF
iµν +

∑

r

q̄rαi D̸α
β qβr , (1)

where gs is the QCD gauge coupling constant,

F i
µν = ∂µGi

ν − ∂νG
i
µ − gsfijk Gj

µ Gk
ν (2)

is the field strength tensor for the gluon fields Gi
µ, i = 1, · · · , 8, and the structure

constants fijk (i, j, k = 1, · · · , 8) are defined by

[λi,λj] = 2ifijkλ
k, (3)

where the SU3 λ matrices are defined in Table 1. The F 2 term leads to three and
four-point gluon self-interactions. The second term in !LSU3

is the gauge covariant
1Reprinted from Precision Tests of the Standard Electroweak Model, ed. P. Langacker (World,

Singapore, 1995).

arXiv:hep-ph/0304186 v1   19 Apr 2003
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The Standard Model of Particle Physics:
Status & Low-Energy Tests

Antonio Pich

IFIC, Universitat de València – CSIC, Apt. 22085, E-46071 València, Spain

Abstract. Precision measurements of low-energy observables provide stringent tests
of the Standard Model structure and accurate determinations of its parameters. An
overview of the present experimental status is presented. The main topics discussed are
the muon anomalous magnetic moment, the asymptotic freedom of strong interactions,
the lepton universality of gauge couplings, the quark flavour structure and CP violation.

Invited talk at the ESO–CERN–ESA Symposium on Astronomy, Cosmology

and Fundamental Physics (Garching bei München, Germany, March 2002)

1 Standard Model Structure

The Standard Model (SM) [1,2] is a gauge theory, based on the group SU(3)C ⊗
SU(2)L⊗U(1)Y , which describes strong, weak and electromagnetic interactions,
via the exchange of the corresponding spin-1 gauge fields: 8 massless gluons and
1 massless photon for the strong and electromagnetic forces, respectively, and
3 massive bosons, W± and Z, for the weak interaction. The gauge symmetry
determines the dynamics in terms of the three couplings gs, g and g′, associ-
ated with the SU(3)C , SU(2)L and U(1)Y subgroups. Strong interactions are
governed by the first group factor, while the other two provide a unified descrip-
tion of the electroweak forces, their gauge parameters being related through
g sin θW = g′ cos θW = e.

The fermionic matter content is given by the known leptons and quarks,
which are organized in a 3-fold family structure:

[
νe u
e− d′

]
,

[
νµ c
µ− s′

]
,

[
ντ t
τ− b′

]
, (1)

where (each quark appears in 3 different colours)
[
νl qu

l− qd

]
≡

(
νl

l−

)

L

,

(
qu

qd

)

L

, l−R , (qu)R , (qd)R , (2)

plus the corresponding antiparticles. Thus, the left-handed fields are SU(2)L

doublets, while their right-handed partners transform as SU(2)L singlets. The
three fermionic families in (1) appear to have identical properties (gauge inter-
actions); they only differ by their mass and their flavour quantum number.

The gauge symmetry is broken by the vacuum, which triggers the Sponta-
neous Symmetry Breaking (SSB) of the electroweak group to the electromagnetic
subgroup:

SU(3)C ⊗ SU(2)L ⊗ U(1)Y
SSB−→ SU(3)C ⊗ U(1)QED . (3)

6 Antonio Pich

and vector, vf = T f
3 (1−4 |Qf | sin2 θW ), couplings to the Z. This has been accu-

rately tested at LEP and SLD through a precise analysis of e+e− → γ, Z → ff̄
data. Figure 4 shows the 68% probability contours in the al-vl plane, obtained
from leptonic observables [17]. The universality of the leptonic Z couplings is
now verified to the 0.15% level for al, while only a few per cent precision has
been achieved for vl due to the smallness of the leptonic vector coupling. The
measured leptonic asymmetries provide an accurate determination of the elec-
troweak mixing angle [17]:

sin2 θW = 0.23113± 0.00021 . (10)

4 Flavour Mixing

In the SM, all mass scales are generated through the Higgs mechanism. After the
SSB, the Yukawa couplings to the Higgs scalar doublet give rise to non-diagonal
fermionic mass terms. The mass eigenstates are then different from the weak
eigenstates, which leads to flavour mixing in the charged-current interaction:

L =
g

2
√

2
W †

µ

∑

ij

ūi γ
µ(1 − γ5)Vij dj + h.c. . (11)

With non-zero neutrino masses, there are analogous mixing effects in the lepton
sector, which are covered in [18].

The Cabibbo-Kobayashi-Maskawa [19,20] (CKM) matrix V is unitary and
couples any up-type quark with all down-type quarks. It is a priori unknown,
because the gauge symmetry does not fix the Yukawa couplings. The matrix
element Vij can be obtained experimentally from semileptonic weak processes
associated with the quark transition dj → uil−ν̄l. The present determinations are
summarized in Table 2. The uncertainties are dominated by theoretical errors,
related to the strong interaction which binds quarks into hadrons.

The most precisely known CKM matrix element is Vud. The weighted average
of the two determinations in Table 2 gives Vud = 0.9738 ± 0.0008 . Taking for
Vus the more reliable Ke3 determination, one obtains

|Vud|2 + |Vus|2 + |Vub|2 = 0.9965± 0.0019 . (12)

The unitarity of Vij appears to be slightly violated by 1.8σ. At this level of
precision, a small underestimate of some uncertainties seems plausible. A less
accurate unitarity test is provided by the hadronic width of the W boson [17]:

∑

j=d,s,b

(
|Vuj|2 + |Vcj|2

)
= 2.039± 0.025 . (13)

The CKM matrix shows a hierarchical pattern, with its diagonal elements
being very close to one, the ones connecting the two first generations having a
size λ ≡ |Vus|, the mixing between the second and third families being of order

Spontaneous	EW	symmetry	breaking:

Fig. 3: The left-handed doublets and right-handed singlets of quarks and leptons.

element of the electroweak theory that I will review in Lecture 2.
Perhaps our familiarity with parity violation in the weak interactions has dulled our senses a

bit. It seems to me that nature’s broken mirror—the distinction between left-handed and right-handed
fermions—qualifies as one of the great mysteries. Even if we will not get to the bottom of this mystery
next week or next year, it should be prominent in our consciousness—and among the goals we present
to others as the aspirations of our science.

There is more to our understanding of the world than Figure 3 reveals. The electroweak gauge
symmetry is hidden, SU(2)L ⊗ U(1)Y → U(1)em. If it were not, the world would be very different:
✷ All the quarks and leptons would be massless and move at the speed of light. ✷ Electromagnetism as
we know it would not exist, but there would be a long-range hypercharge force. ✷ The strong interaction,
QCD, would confine quarks and generate baryon masses roughly as we know them. ✷ The Bohr radius
of “atoms” consisting of an electron or neutrino attracted by the hypercharge interaction to the nucleons
would be infinite. ✷ Beta decay, inhibited in our world by the great mass of theW boson, would not be
weak. ✷ The unbroken SU(2)L interaction would confine objects that carry weak isospin.

It is fair to say that electroweak symmetry breaking shapes our world! In fact, when we take into
account every aspect of the influence of the strong interactions, the analysis of how the world would be
is very subtle and fascinating. Please take time to think about

Problem 1 What would the everyday world be like if the SU(2)L ⊗ U(1)Y electroweak symmetry were
exact? Consider the effects of all of the SU(3)c ⊗ SU(2)L ⊗ U(1)Y gauge interactions.

1.3 Toward the double simplex
We have seen that both quarks and leptons are spin-12 , pointlike fermions that occur in SU(2)L doublets.
The obvious difference is that quarks carry SU(3)c color charge whereas leptons do not, so we could
imagine that quarks and leptons are simply distinct and unrelated species. But we have reason to believe
otherwise. The proton’s electric charge very closely balances the electron’s, (Qp + Qe)/e < 10−21

[2], suggesting that there must be a link between protons—hence, quarks—and electrons—hence, lep-

4

nR

Similarly,	with	L	and	R	interchanged,	for	
antifermons



Fig. 3: The left-handed doublets and right-handed singlets of quarks and leptons.
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next week or next year, it should be prominent in our consciousness—and among the goals we present
to others as the aspirations of our science.

There is more to our understanding of the world than Figure 3 reveals. The electroweak gauge
symmetry is hidden, SU(2)L ⊗ U(1)Y → U(1)em. If it were not, the world would be very different:
✷ All the quarks and leptons would be massless and move at the speed of light. ✷ Electromagnetism as
we know it would not exist, but there would be a long-range hypercharge force. ✷ The strong interaction,
QCD, would confine quarks and generate baryon masses roughly as we know them. ✷ The Bohr radius
of “atoms” consisting of an electron or neutrino attracted by the hypercharge interaction to the nucleons
would be infinite. ✷ Beta decay, inhibited in our world by the great mass of theW boson, would not be
weak. ✷ The unbroken SU(2)L interaction would confine objects that carry weak isospin.

It is fair to say that electroweak symmetry breaking shapes our world! In fact, when we take into
account every aspect of the influence of the strong interactions, the analysis of how the world would be
is very subtle and fascinating. Please take time to think about

Problem 1 What would the everyday world be like if the SU(2)L ⊗ U(1)Y electroweak symmetry were
exact? Consider the effects of all of the SU(3)c ⊗ SU(2)L ⊗ U(1)Y gauge interactions.

1.3 Toward the double simplex
We have seen that both quarks and leptons are spin-12 , pointlike fermions that occur in SU(2)L doublets.
The obvious difference is that quarks carry SU(3)c color charge whereas leptons do not, so we could
imagine that quarks and leptons are simply distinct and unrelated species. But we have reason to believe
otherwise. The proton’s electric charge very closely balances the electron’s, (Qp + Qe)/e < 10−21

[2], suggesting that there must be a link between protons—hence, quarks—and electrons—hence, lep-
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The quantum-mechanical equations of motion, such as the Schrödinger equation, always involve
derivatives of the wave function ψ, as do many observables. Under local phase rotations, these transform
as

∂µψ(x) → ∂µψ
′ = eiα(x)[∂µψ(x) + i(∂µα(x))ψ(x)], (2.4)

which involves more than a mere phase change. The additional gradient-of-phase term spoils local
phase invariance. Local phase invariance may be achieved, however, if the equations of motion and the
observables involving derivatives are modified by the introduction of the electromagnetic field Aµ(x). If
the gradient ∂µ is everwhere replaced by the gauge-covariant derivative

Dµ ≡ ∂µ + ieAµ, (2.5)

where e is the charge in natural units of the particle described by ψ(x) and the field Aµ(x) transforms
under phase rotations (2.3) as

Aµ(x) → A′
µ(x) ≡ Aµ(x) − (1/e)∂µα(x), (2.6)

it is easily verified that under local phase transformations

Dµψ(x) → eiα(x)Dµψ(x). (2.7)

Consequently quantities such as ψ∗Dµψ are invariant under local phase transformations. The required
transformation law (2.6) for the four-vector potential Aµ is precisely the form of a gauge transformation
in electrodynamics. Moreover, the covariant derivative defined in (2.5) corresponds to the familiar re-
placement p → p − eA. Thus the form of the coupling (Dµψ) between the electromagnetic field and
matter is suggested, if not uniquely dictated, by local phase invariance.

A photon mass term would have the form

Lγ = 1
2
m2AµAµ, (2.8)

which obviously violates local gauge invariance because

AµAµ → (Aµ − ∂µα)(Aµ − ∂µα) ≠ AµAµ. (2.9)

Thus we find that local gauge invariance has led us to the existence of a massless photon.
This example has shown the possibility of using local gauge invariance as a dynamical princi-

ple. We have derived the content of Maxwell’s equations from a symmetry principle. We can think of
quantum electrodynamics as the gauge theory based on U(1) phase symmetry.

We can abstract from this discussion a general procedure. First, recognize a symmetry of Nature,
perhaps by observing a conservation law, and build it into the laws of physics.6 Then impose the sym-
metry in a stricter local form. By a generalization of the arithmetic we have just recited, the local gauge
symmetry leads to new interactions, mediated by massless vector fields, the gauge bosons. As we have
seen, the interaction of the gauge fields with matter is given by “minimal coupling” to the conserved
current that corresponds to the symmetry. If the symmetry is non-Abelian, imposing the symmetry also
leads to interactions among the gauge bosons, since they carry the conserved charge.

Posed as a problem in mathematics, construction of a gauge theory is always possible, at the level
of a classical Lagrangian. Formulating a consistent quantum theory may require additional vigilance.
The formalism offers no guarantee that the gauge symmetry was chosen wisely; that verdict is left to
experiment!

6Recall that Noether’s theorem correlates a conservation law with every continuous symmetry transformation under which
the Lagrangian is invariant in form.
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the wave equation of a massive photon. In other words, the photon acquires a mass within the supercon-
ductor. This is the origin of the Meissner effect, the exclusion of a magnetic field from a superconductor.
More to the point for our purposes, it shows how a symmetry-hiding phase transition can lead to a mas-
sive gauge boson.

2.3 Constructing the Electroweak Theory
Let us review the essential elements of the SU(2)L ⊗ U(1)Y electroweak theory [8]. The electroweak
theory takes three crucial clues from experiment:

• The existence of left-handed weak-isospin doublets,
(
νe

e

)

L

(
νµ

µ

)

L

(
ντ

τ

)

L

and (
u
d′

)

L

(
c
s′

)

L

(
t
b′

)

L

;

• The universal strength of the weak interactions;
• The idealization that neutrinos are massless.
To save writing, we shall construct the electroweak theory as it applies to a single generation

of leptons. In this form, it is neither complete nor consistent: anomaly cancellation requires that a
doublet of color-triplet quarks accompany each doublet of color-singlet leptons. However, the needed
generalizations are simple enough to make that we need not write them out.

To incorporate electromagnetism into a theory of the weak interactions, we add to the SU(2)L fam-
ily symmetry suggested by the first two experimental clues a U(1)Y weak-hypercharge phase symmetry.
We begin by specifying the fermions: a left-handed weak isospin doublet

L =

(
νe

e

)

L

(2.13)

with weak hypercharge YL = −1, and a right-handed weak isospin singlet

R ≡ eR (2.14)

with weak hypercharge YR = −2.
The electroweak gauge group, SU(2)L⊗U(1)Y , implies two sets of gauge fields: a weak isovector

b⃗µ, with coupling constant g, and a weak isoscalarAµ, with coupling constant g′. Corresponding to these
gauge fields are the field-strength tensors

F ℓ
µν = ∂νbℓ

µ − ∂µbℓ
ν + gεjkℓb

j
µbk

ν , (2.15)

for the weak-isospin symmetry, and

fµν = ∂νAµ − ∂µAν , (2.16)

for the weak-hypercharge symmetry. We may summarize the interactions by the Lagrangian

L = Lgauge + Lleptons , (2.17)

with
Lgauge = −1

4F ℓ
µνF ℓµν − 1

4fµνfµν , (2.18)
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and

Lleptons = R iγµ

(
∂µ + i

g′

2
AµY

)
R (2.19)

+ L iγµ

(
∂µ + i

g′

2
AµY + i

g

2
τ⃗ · b⃗µ

)
L.

The SU(2)L ⊗ U(1)Y gauge symmetry forbids a mass term for the electron in the matter piece (2.19).
Moreover, the theory we have described contains four massless electroweak gauge bosons, namely Aµ,
b1
µ, b2

µ, and b3
µ, whereas Nature has but one: the photon. To give masses to the gauge bosons and

constituent fermions, we must hide the electroweak symmetry.
To endow the intermediate bosons of the weak interaction with mass, we take advantage of a

relativistic generalization of the Ginzburg-Landau phase transition known as the Higgs mechanism [9].
We introduce a complex doublet of scalar fields

φ ≡
(
φ+

φ0

)
(2.20)

with weak hypercharge Yφ = +1. Next, we add to the Lagrangian new (gauge-invariant) terms for the
interaction and propagation of the scalars,

Lscalar = (Dµφ)†(Dµφ) − V (φ†φ), (2.21)

where the gauge-covariant derivative is

Dµ = ∂µ + i
g′

2
AµY + i

g

2
τ⃗ · b⃗µ , (2.22)

and the potential interaction has the form

V (φ†φ) = µ2(φ†φ) + |λ| (φ†φ)2. (2.23)

We are also free to add a Yukawa interaction between the scalar fields and the leptons,

LYukawa = −ζe
[
R(φ†L) + (Lφ)R

]
. (2.24)

We then arrange the scalar self-interactions so that the vacuum state corresponds to a broken-
symmetry solution. The electroweak symmetry is spontaneously broken if the parameter µ2 < 0. The
minimum energy, or vacuum state, may then be chosen to correspond to the vacuum expectation value

⟨φ⟩0 =

(
0

v/
√

2

)
, (2.25)

where v =
√

−µ2/ |λ|. Let us verify that the vacuum (2.25) indeed breaks the gauge symmetry. The
vacuum state ⟨φ⟩0 is invariant under a symmetry operation exp (iαG) corresponding to the generator G
provided that exp (iαG)⟨φ⟩0 = ⟨φ⟩0, i.e., if G⟨φ⟩0 = 0. We easily compute that

τ1⟨φ⟩0 =

(
0 1
1 0

)(
0

v/
√

2

)
=

(
v/

√
2

0

)
≠ 0 broken!

τ2⟨φ⟩0 =

(
0 −i
i 0

)(
0

v/
√

2

)
=

(
−iv/

√
2

0

)
≠ 0 broken!

τ3⟨φ⟩0 =

(
1 0
0 −1

)(
0

v/
√

2

)
=

(
0

−v/
√

2

)
≠ 0 broken!

Y ⟨φ⟩0 = Yφ⟨φ⟩0 = +1⟨φ⟩0 =

(
0

v/
√

2

)
≠ 0 broken! (2.26)
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Figure 1: The Higgs potential V (ν) for µ2 > 0 (dashed line) and µ2 < 0 (solid line).

H is a Hermitian field which will turn out to be the physical Higgs scalar. If we
had been dealing with a spontaneously broken global symmetry the three Hermitian
fields ξi would be the massless pseudoscalar Goldstone bosons [9] that are necessarily
associated with broken symmetry generators. However, in a gauge theory they
disappear from the physical spectrum. To see this it is useful to go to the unitary
gauge

ϕ→ ϕ′ = e−i
∑

ξiLi

ϕ =
1√
2

(

0
ν + H

)

, (21)

in which the Goldstone bosons disappear. In this gauge, the scalar covariant kinetic
energy term takes the simple form

(Dµϕ)†Dµϕ =
1

2
(0 ν)

[

g

2
τ iW i

µ +
g′

2
Bµ

]2 (
0
ν

)

+ H terms

→ M2
W W+µW−

µ +
M2

Z

2
ZµZµ + H terms, (22)

where the kinetic energy and gauge interaction terms of the physical H particle
have been omitted. Thus, spontaneous symmetry breaking generates mass terms
for the W and Z gauge bosons

W± =
1√
2
(W 1 ∓ iW 2)

Z = − sin θW B + cos θW W 3. (23)

The photon field
A = cos θW B + sin θW W 3 (24)

Figure 1: The Higgs potential V (ν) for µ2 > 0 (dashed line) and µ2 < 0 (solid line).

H is a Hermitian field which will turn out to be the physical Higgs scalar. If we
had been dealing with a spontaneously broken global symmetry the three Hermitian
fields ξi would be the massless pseudoscalar Goldstone bosons [9] that are necessarily
associated with broken symmetry generators. However, in a gauge theory they
disappear from the physical spectrum. To see this it is useful to go to the unitary
gauge

ϕ→ ϕ′ = e−i
∑

ξiLi

ϕ =
1√
2

(

0
ν + H

)

, (21)

in which the Goldstone bosons disappear. In this gauge, the scalar covariant kinetic
energy term takes the simple form

(Dµϕ)†Dµϕ =
1

2
(0 ν)

[

g

2
τ iW i

µ +
g′

2
Bµ

]2 (
0
ν

)

+ H terms

→ M2
W W+µW−

µ +
M2

Z

2
ZµZµ + H terms, (22)

where the kinetic energy and gauge interaction terms of the physical H particle
have been omitted. Thus, spontaneous symmetry breaking generates mass terms
for the W and Z gauge bosons

W± =
1√
2
(W 1 ∓ iW 2)

Z = − sin θW B + cos θW W 3. (23)

The photon field
A = cos θW B + sin θW W 3 (24)remains massless. The masses are

MW =
gν

2
(25)

and

MZ =
√

g2 + g′2ν

2
=

MW

cos θW
, (26)

where the weak angle is defined by tan θW ≡ g′/g. One can think of the generation of
masses as due to the fact that the W and Z interact constantly with the condensate
of scalar fields and therefore acquire masses, in analogy with a photon propagating
through a plasma. The Goldstone boson has disappeared from the theory but has
reemerged as the longitudinal degree of freedom of a massive vector particle.

It will be seen below that GF /
√

2 ∼ g2/8M2
W , where GF = 1.16639(2) ×

10−5 GeV −2 is the Fermi constant determined by the muon lifetime. The weak
scale ν is therefore

ν = 2MW/g ≃ (
√

2GF )−1/2 ≃ 246 GeV. (27)

Similarly, g = e/ sin θW , where e is the electric charge of the positron. Hence, to
lowest order

MW = MZ cos θW ∼
(πα/

√
2GF )1/2

sin θW
, (28)

where α ∼ 1/137.036 is the fine structure constant. Using sin2 θW ∼ 0.23 from
neutral current scattering, one expects MW ∼ 78 GeV , and MZ ∼ 89 GeV . (These
predictions are increased by ∼ (2 − 3) GeV by loop corrections.) The W and Z
were discovered at CERN by the UA1 [10] and UA2 [11] groups in 1983. Subsequent
measurements of their masses and other properties have been in perfect agreement
with the standard model expectations (including the higher-order corrections), as
is described in the articles of by Schaile and Einsweiler.

After symmetry breaking the Higgs potential becomes

V (ϕ) = −
µ4

4λ
− µ2H2 + λνH3 +

λ

4
H4. (29)

The third and fourth terms represent the cubic and quartic interactions of the Higgs
scalar. The second term represents a (tree-level) mass

MH =
√

−2µ2 =
√

2λν. (30)

The weak scale is given in (27), but the quartic Higgs coupling λ is unknown, so
MH is not predicted. A priori, λ could be anywhere in the range 0 ≤ λ < ∞. There
is now an experimental lower limit MH >∼ 60 GeV from LEP [12]. Otherwise, the
decay Z → Z∗H would have been observed. (There are also theoretical lower limits
on MH in the 0 – 10 GeV range, depending on mt, when higher-order corrections
are included [13].)



Fig. 11: Left panel: Three generations of quarks and leptons. Right panel: The connections that give rise to mass and mixing
for three generations of quarks and leptons.

ferent Yukawa couplings. In any event, we do not know whether one agent, or two, or three, will give
rise to the electron, up-quark, and down-quark masses.

Of course, the world we have discovered until now consists not only of one family of quarks and
one family of leptons, but of the three pairs of quarks and three pairs of leptons enumerated in (1.1) and
(1.2). We do not know the meaning of the replicated generations, and indeed we have no experimental
indication to tell us which pair of quarks is to be associated with which pair of leptons.

In the absence of any understanding of the relation of one generation to another, I depict the three
generations in the double simplex simply by replicating the decorations to include three pairs of quarks
and three pairs of leptons, as shown in the left panel of Figure 11. The connections that generate the
fermion masses are indicated in the right panel of Figure 11. The Yukawa couplings of the charged
leptons and quarks range from ζe ≈ 3 × 10−6 for the electron to ζt ≈ 1 for the top quark. In the case of
more than one generation, the connections that endow the fermions with mass also determine the mixing
among generations, the suppressed transitions such as u ↔ s and u ↔ b. With three generations, the
Yukawa couplings may have complex phases that give rise to CP-violating transitions. Although it is
correct to say that the standard model describes the observed examples of CP violation, I would like
to insist that because the standard model does not prescribe the Yukawa couplings, CP violation—like
fermion mass—is evidence for physics beyond the standard model.

Let us return to the point that the charge conjugate of a left-handed field is right-handed. If the
field ψ annihilates a particle, then its charge-conjugate filed ψc ≡ Cψ̄T annihilates the corresponding
antiparticle. In terms of Dirac matrices, the charge-conjugation operator is

C = iγ2γ0 = −C−1 = −C† = −CT . (1.5)

The left-handed component of the charge-conjugate field is

ψc
L = 1

2(1 − γ5)ψc = 1
2 (1 − γ5)Cψ̄T

= C 1
2 (1 − γ5)ψ̄T = C[ψ̄ 1

2(1 − γ5)]T (1.6)
= C(ψ̄R)T = (ψR)c ,

which is indeed the charge conjugate of the right-handed component of the Dirac field ψ.
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Fig. 9: The connection between eR and eL implied by the electron’s nonzero mass.

links left and right. It is excellent to find that the central mystery of the standard model—the nature of
electroweak symmetry breaking—appears at the center of the double simplex!

Connecting all the left-handed fermions to their right-handed counterparts4 leads us to the repre-
sentation given in Figure 10. Does one agent give masses to all the quarks and leptons? (That is the
standard-model solution.) If so, what distinguishes one fermion species from another? We do not know
the answer, and for that reason I contend that fermion mass is evidence for physics beyond the standard
model. Let us illustrate the point in the standard-model context. The mass of fermion f is given by

Lf = −
ζfv√

2
(f̄RfL + f̄LfR) = −

ζfv√
2

f̄ f , (1.4)

where v/
√

2 = (GF

√
8)−1/2 ≈ 174 GeV is the vacuum expectation value of the Higgs field. The

Yukawa coupling ζf is not predicted by the electroweak theory, nor does the standard model relate dif-
4I omit the neutrinos in this brief tour, because there are several possible origins for neutrino mass.

Fig. 10: The connections that give rise to mass for the quarks and leptons of the first generation.
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However, if we examine the effect of the electric charge operator Q on the (electrically neutral) vacuum
state, we find that

Q⟨φ⟩0 = 1
2 (τ3 + Y )⟨φ⟩0 = 1

2

(
Yφ + 1 0

0 Yφ − 1

)
⟨φ⟩0

=

(
1 0
0 0

)(
0

v/
√

2

)
=

(
0
0

)
unbroken! (2.27)

The original four generators are all broken, but electric charge is not. It appears that we have accom-
plished our goal of breaking SU(2)L⊗U(1)Y → U(1)em. We expect the photon to remain massless, and
expect the gauge bosons that correspond to the generators τ1, τ2, and κ ≡ 1

2(τ3 − Y ) to acquire masses.
To establish the particle content of the theory, we expand about the vacuum state, letting

φ =

(
0

(v + η)/
√

2

)
(2.28)

in unitary gauge. The Lagrangian for the scalars becomes

Lscalar = 1
2(∂µη)(∂µη) − µ2η2

+
v2

8
[g2 |b1 − ib2|2 + (g′Aµ − gb3

µ)2] (2.29)

+ interaction terms.

The Higgs boson η has acquired a (mass)2 M2
H = −2µ2 > 0. Now let us expand the terms proportional

to v2/8. Identifying W± = 1√
2
(b1 ∓ ib2), we find

g2v2

8
(
∣∣W+

µ

∣∣2 +
∣∣W−

µ

∣∣2) , (2.30)

which impliesMW± = gv/2. Next, we define the orthogonal combinations

Zµ =
−g′Aµ + gb3

µ√
g2 + g′2

, Aµ =
gAµ + g′b3

µ√
g2 + g′2

, (2.31)

and conclude that MZ0 =
√

g2 + g′2 v/2 = MW

√
1 + g′2/g2 and MA = 0. In the broken-symmetry

situation, the Yukawa term becomes

LYukawa = −ζe
(v + η)√

2
(ēReL + ēLeR)

= −
ζev√

2
ēe −

ζeη√
2
ēe , (2.32)

so that the electron acquires a massme = ζev/
√

2 and the Higgs-boson coupling to electrons isme/v ∝
fermion mass.

Let us summarize. As a result of spontaneous symmetry breaking, the weak bosons acquire
masses, as auxiliary scalars assume the role of the third (longitudinal) degrees of freedom of what
had been massless gauge bosons. Specifically, the mediator of the charged-current weak interaction,
W± = (b1 ∓ ib2)/

√
2, acquires a mass characterized by M2

W = πα/GF

√
2 sin2 θW , where sin2 θW =

g′2/(g2 + g′2) is the weak mixing parameter. The mediator of the neutral-current weak interaction,
Z = b3 cos θW − A sin θW , acquires a mass characterized by M2

Z = M2
W / cos2 θW . After spon-

taneous symmetry breaking, there remains an unbroken U(1)em phase symmetry, so that electromag-
netism is mediated by a massless photon, A = A cos θW + b3 sin θW , coupled to the electric charge

16
e = gg′/

√
g2 + g′2. As a vestige of the spontaneous breaking of the symmetry, there remains a

massive, spin-zero particle, the Higgs boson. The mass of the Higgs scalar is given symbolically as
M2

H = −2µ2 > 0, but we have no prediction for its value. Though what we take to be the work of
the Higgs boson is all around us, the Higgs particle itself has not yet been observed. The fermions (the
electron in our abbreviated treatment) acquire masses as well; these are determined not only by the scale
of electroweak symmetry breaking, v, but also by their Yukawa interactions with the scalars.

To determine the values of the coupling constants and the electroweak scale—hence the masses of
W± and Z0—we now examine the interactions terms we wrote symbolically in (2.30).

2.3.1 Charged-current interactions
The interactions of theW -boson with the leptons are given by

LW−lep =
−g

2
√

2

[
ν̄eγ

µ(1 − γ5)eW
+
µ + ēγµ(1 − γ5)νeW

−
µ

]
, etc., (2.33)

so the Feynman rule for the νeeW vertex is

e

ν

λ −ig

2
√

2
γλ(1 − γ5)

TheW -boson propagator (in unitary gauge) is =
−i(gµν − kµkν/M2

W )

k2 − M2
W

.

Let us compute the cross section for inverse muon decay in the electroweak theory. We find

σ(νµe → µνe) =
g4meEν

16πM4
W

[
1 − (m2

µ − m2
e)/2meEν

]2

(1 + 2meEν/M2
W )

, (2.34)

which coincides with the familiar four-fermion result at low energies, provided we identify

g4

16M2
W

= 2G2
F , (2.35)

(where GF = 1.16639 × 10−5 GeV−2 is the Fermi constant) which implies that

g

2
√

2
=

(
GFM2

W√
2

)1
2

. (2.36)

With the aid of our result for theW -boson mass,MW± = gv/2, we determine the electroweak scale,

v =
(
GF

√
2
)−1

2 ≈ 246 GeV , (2.37)

which implies that ⟨φ0⟩0 = (GF

√
8)−

1
2 ≈ 174 GeV.

Let us now investigate the properties of theW -boson in terms of its mass,MW . Consider first the
leptonic disintegration of theW−, with decay kinematics specified thus:
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With the aid of our result for theW -boson mass,MW± = gv/2, we determine the electroweak scale,

v =
(
GF

√
2
)−1

2 ≈ 246 GeV , (2.37)

which implies that ⟨φ0⟩0 = (GF

√
8)−

1
2 ≈ 174 GeV.

Let us now investigate the properties of theW -boson in terms of its mass,MW . Consider first the
leptonic disintegration of theW−, with decay kinematics specified thus:
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e(p) p ≈
(

MW

2
;
MW sin θ

2
, 0,

MW cos θ

2

)

ν̄e(q) q ≈
(

MW

2
;−

MW sin θ

2
, 0,−

MW cos θ

2

)
W−

The Feynman amplitude for the decay is

M = −i

(
GFM2

W√
2

)1
2

ū(e, p)γµ(1 − γ5)v(ν, q) εµ , (2.38)

where εµ = (0; ε̂) is the polarization vector of theW -boson in its rest frame. The square of the amplitude
is

|M|2 =
GFM2

W√
2

tr [ /ε(1 − γ5) /q(1 + γ5) /ε∗p/] (2.39)

=
8GFM2

W√
2

[ε · q ε∗ · p − ε · ε∗ q · p + ε · p ε∗ · q + iϵµνρσε
µqνε∗ρpσ] .

The decay rate is independent of the W polarization, so let us look first at the case of longitudinal
polarization εµ = (0; 0, 0, 1) = ε∗µ, to eliminate the last term. For this case, we find

|M|2 =
4GFM4

W√
2

sin2 θ , (2.40)

so the differential decay rate is
dΓ0

dΩ
=

|M|2

64π2

S12

M3
W

, (2.41)

where S12 =
√

[M2
W − (me + mν)2][M2

W − (me − mν)2] = M2
W , so that

dΓ0

dΩ
=

GFM3
W

16π2
√

2
sin2 θ , (2.42)

and
Γ(W → eν) =

GFM3
W

6π
√

2
. (2.43)

2.3.2 Neutral Currents
The interactions of the Z-boson with leptons are given by

LZ−ν =
−g

4 cos θW
ν̄γµ(1 − γ5)ν Zµ (2.44)

and
LZ−e =

−g

4 cos θW
ē [Leγ

µ(1 − γ5) + Reγ
µ(1 + γ5)] e Zµ , (2.45)

where the chiral couplings are

Le = 2 sin2 θW − 1 = 2xW + τ3 ,

Re = 2 sin2 θW . (2.46)
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Fig. 14: First νµe elastic scattering event observed by the Gargamelle Collaboration [10] at CERN. Muon neutrinos enter the
Freon (CF3Br) bubble chamber from the right. A recoiling electron appears near the center of the image and travels toward the
left, initiating a shower of curling branches.

By analogy with the calculation of theW -boson total width (2.43), we easily compute that

Γ(Z → νν̄) =
GFM3

Z

12π
√

2
,

Γ(Z → e+e−) = Γ(Z → νν̄)
[
L2

e + R2
e

]
. (2.47)

The neutral weak current mediates a reaction that did not arise in the V − A theory, νµe → νµe,
which proceeds entirely by Z-boson exchange:

νµ

νµ

e

e

This was, in fact, the reaction in which the first evidence for the weak neutral current was seen by the
Gargamelle collaboration in 1973 [10] (see Figure 14).

To exercise your calculational muscles, please do

Problem 3 It’s an easy exercise to compute all the cross sections for neutrino-electron elastic scattering.
Show that

σ(νµe → νµe) =
G2

FmeEν

2π

[
L2

e + R2
e/3
]

,

σ(ν̄µe → ν̄µe) =
G2

FmeEν

2π

[
L2

e/3 + R2
e

]
,

σ(νee → νee) =
G2

FmeEν

2π

[
(Le + 2)2 + R2

e/3
]

,

σ(ν̄ee → ν̄ee) =
G2

FmeEν

2π

[
(Le + 2)2/3 + R2

e

]
. (2.48)
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By measuring all the cross sections, one may undertake a “model-independent” determination of the
chiral couplings Le and Re, or the traditional vector and axial-vector couplings v and a, which are
related through

a = 1
2(Le − Re) v = 1

2 (Le − Re)

Le = v + a Re = v − a
. (2.49)

By inspecting (2.48), you can see that even after measuring all four cross sections, there remains a two-
fold ambiguity: the same cross sections result if we interchange Re ↔ −Re, or, equivalently, v ↔ a. The
ambiguity is resolved by measuring the forward-backward asymmetry in a reaction like e+e− → µ+µ−

at energies well below the Z0 mass. The asymmetry is proportional to (Le −Re)(Lµ −Rµ), or to aeaµ,
and so resolves the sign ambiguity for Re, or the v-a ambiguity.

2.3.3 Electroweak Interactions of Quarks
To extend our theory to include the electroweak interactions of quarks, we observe that each generation
consists of a left-handed doublet

I3 Q Y = 2(Q − I3)

Lq =

(
u

d

)

L

+1
2

−1
2

+2
3

−1
3

1
3 ,

(2.50)

and two right-handed singlets,

I3 Q Y = 2(Q − I3)

Ru = uR

Rd = dR

0

0

+2
3

−1
3

+4
3

−2
3

,
(2.51)

Proceeding as before, we find the Lagrangian terms for theW -quark charged-current interaction,

LW−quark =
−g

2
√

2

[
ūeγ

µ(1 − γ5)d W+
µ + d̄γµ(1 − γ5)u W−

µ

]
, (2.52)

which is identical in form to the leptonic charged-current interaction (2.33). Universality is ensured by
the fact that the charged-current interaction is determined by the weak isospin of the fermions, and that
both quarks and leptons come in doublets.

The neutral-current interaction is also equivalent in form to its leptonic counterpart, (2.44) and
(2.45). We may write it compactly as

LZ−quark =
−g

4 cos θW

∑

i=u,d

q̄iγ
µ [Li(1 − γ5) + Ri(1 + γ5)] qi Zµ , (2.53)

where the chiral couplings are

Li = τ3 − 2Qi sin2 θW ,

Ri = −2Qi sin
2 θW . (2.54)

Again we find a quark-lepton universality in the form—but not the values—of the chiral couplings.

2.3.4 Trouble in Paradise
Until now, we have based our construction on the idealization that the u ↔ d transition is of universal
strength. The unmixed doublet (

u
d

)

L
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No	flavor-changing	weak	neutral	currents	->	GIM	mechanism	->	charmed	quark:The cure for this fatal disease was put forward by Glashow, Iliopoulos, and Maiani [16]. Expand
the model of quarks to include two left-handed doublets,

(
νe

e−

)

L

(
νµ

µ−

)

L

(
u
dθ

)

L

(
c
sθ

)

L

, (2.57)

where
sθ = s cos θC − d sin θC , (2.58)

plus the corresponding right-handed singlets, eR, µR, uR, dR, cR, and sR. This required the introduc-
tion of the charmed quark, c, which had not yet been observed. By the addition of the second quark
generation, the flavor-changing cross terms vanish in the Z-quark interaction, and we are left with:

qi

qi

λ −ig

4 cos θW
γλ[(1 − γ5)Li + (1 + γ5)Ri] ,

which is flavor diagonal!
The generalization to n quark doublets is straightforward. Let the charged-current interaction be

LW−quark =
−g

2
√

2

[
Ψ̄γµ(1 − γ5)OΨ W+

µ + h.c.
]

, (2.59)

where the composite quark spinor is

Ψ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u
c
...

d
s
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.60)

and the flavor structure is contained in

O =

(
0 U
0 0

)
, (2.61)

where U is the unitary quark-mixing matrix. The weak-isospin contribution to the neutral-current inter-
action has the form

Liso
Z−quark =

−g

4 cos θW
Ψ̄γµ(1 − γ5)

[
O,O†

]
Ψ . (2.62)

Since the commutator [
O,O†

]
=

(
I 0
0 −I

)
(2.63)

the neutral-current interaction is flavor diagonal, and the weak-isospin piece is, as expected, proportional
to τ3.

In general, the n × n quark-mixing matrix U can be parametrized in terms of n(n − 1)/2 real
mixing angles and (n−1)(n−2)/2 complex phases, after exhausting the freedom to redefine the phases
of quark fields. The 3×3 case of three mixing angles and one phase, often called the Cabibbo–Kobayashi-
Maskawa matrix, presaged the discovery of the third generation of quarks and leptons [17].
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Figure 1: Patterns of charge-changing weak transitions among quarks and leptons.
The strongest inter-quark transitions correspond to the solid lines, with dashed, dot-
dashed, and dotted lines corresponding to successively weaker transitions.

theory of weak and electromagnetic interactions. We sketch how the electroweak
theory describes CP violation, and mention the missing piece of the electroweak
theory — the Higgs boson.

Important questions remain which are not addressed in the Standard Model.
These include the unification of the electroweak and strong interactions (possibly
including gravity), the origin of quark and lepton masses, the source of the baryon
asymmetry of the Universe, and the nature of its unseen matter and energy den-
sity. Some proposed Standard Model extensions devoted to these problems are noted
in Section III. Concrete evidence for physics beyond the Standard Model, including
neutrino neutrino masses, cosmic microwave background radiation, dark matter, and
“dark energy,” is described in Section IV. A variety of experimental methods are
appropriate for probing these phenomena (Section V).

Most references in Sections II–V are at the intermediate or advanced level. Sub-
sequent sections are devoted to detailed sources of information, including those at a
more elementary level.

II. SNAPSHOT OF THE STANDARD MODEL

A. Quarks and leptons

The major ingredients of the Standard Model have been in place for some time,
and can be gleaned from the popular article by Quigg [3]. The known building blocks
of strongly interacting particles, the quarks [4, 5, 6], and the fundamental fermions

2

u,d,s,c,b,t are	mass	
eigenstates.	The	thin	
(dashed,	dottet)	
lines	indicate	their	
mixing	strength	in	
the	EW	eigenstates	
d’,s’	and	b’

The	neutrinos	are	the	EW	
eigenstates.	They	are	NOT	mass	
eigenstates.



6 Antonio Pich

and vector, vf = T f
3 (1−4 |Qf | sin2 θW ), couplings to the Z. This has been accu-

rately tested at LEP and SLD through a precise analysis of e+e− → γ, Z → ff̄
data. Figure 4 shows the 68% probability contours in the al-vl plane, obtained
from leptonic observables [17]. The universality of the leptonic Z couplings is
now verified to the 0.15% level for al, while only a few per cent precision has
been achieved for vl due to the smallness of the leptonic vector coupling. The
measured leptonic asymmetries provide an accurate determination of the elec-
troweak mixing angle [17]:

sin2 θW = 0.23113± 0.00021 . (10)

4 Flavour Mixing

In the SM, all mass scales are generated through the Higgs mechanism. After the
SSB, the Yukawa couplings to the Higgs scalar doublet give rise to non-diagonal
fermionic mass terms. The mass eigenstates are then different from the weak
eigenstates, which leads to flavour mixing in the charged-current interaction:

L =
g

2
√

2
W †

µ

∑

ij

ūi γ
µ(1 − γ5)Vij dj + h.c. . (11)

With non-zero neutrino masses, there are analogous mixing effects in the lepton
sector, which are covered in [18].

The Cabibbo-Kobayashi-Maskawa [19,20] (CKM) matrix V is unitary and
couples any up-type quark with all down-type quarks. It is a priori unknown,
because the gauge symmetry does not fix the Yukawa couplings. The matrix
element Vij can be obtained experimentally from semileptonic weak processes
associated with the quark transition dj → uil−ν̄l. The present determinations are
summarized in Table 2. The uncertainties are dominated by theoretical errors,
related to the strong interaction which binds quarks into hadrons.

The most precisely known CKM matrix element is Vud. The weighted average
of the two determinations in Table 2 gives Vud = 0.9738 ± 0.0008 . Taking for
Vus the more reliable Ke3 determination, one obtains

|Vud|2 + |Vus|2 + |Vub|2 = 0.9965± 0.0019 . (12)

The unitarity of Vij appears to be slightly violated by 1.8σ. At this level of
precision, a small underestimate of some uncertainties seems plausible. A less
accurate unitarity test is provided by the hadronic width of the W boson [17]:

∑

j=d,s,b

(
|Vuj|2 + |Vcj|2

)
= 2.039± 0.025 . (13)

The CKM matrix shows a hierarchical pattern, with its diagonal elements
being very close to one, the ones connecting the two first generations having a
size λ ≡ |Vus|, the mixing between the second and third families being of order



λi =

(

τ i 0
0 0

)

, i = 1, 2, 3

λ4 =

⎛

⎜

⎝

0 0 1
0 0 0
1 0 0

⎞

⎟

⎠ λ5 =

⎛

⎜

⎝

0 0 −i
0 0 0
i 0 0

⎞

⎟

⎠

λ6 =

⎛

⎜

⎝

0 0 0
0 0 1
0 1 0

⎞

⎟

⎠
λ7 =

⎛

⎜

⎝

0 0 0
0 0 −i
0 i 0

⎞

⎟

⎠

λ8 = 1√
3

⎛

⎜

⎝

1 0 0
0 1 0
0 0 −2

⎞

⎟

⎠

Table 1: The SU3 matrices.

derivative for the quarks: qr is the rth quark flavor, α, β = 1, 2, 3 are color indices,
and

Dα
µβ = (Dµ)αβ = ∂µδαβ + igs Gi

µ Li
αβ , (4)

where the quarks transform according to the triplet representation matrices Li =
λi/2. The color interactions are diagonal in the flavor indices, but in general change
the quark colors. They are purely vector (parity conserving). There are no bare
mass terms for the quarks in (1). These would be allowed by QCD alone, but are
forbidden by the chiral symmetry of the electroweak part of the theory. The quark
masses will be generated later by spontaneous symmetry breaking. There are in
addition effective ghost and gauge-fixing terms which enter into the quantization of
both the SU3 and electroweak Lagrangians, and there is the possibility of adding
an (unwanted) term which violates CP invariance.

The electroweak theory is based on the SU2 × U1 Lagrangian [4]

"LSU2×U1
= "Lgauge + "Lϕ + "Lf + "LYukawa. (5)

The gauge part is

"Lgauge = −
1

4
F i

µνF
µνi −

1

4
BµνB

µν , (6)

where W i
µ, i = 1, 2, 3 and Bµ are respectively the SU2 and U1 gauge fields, with

field strength tensors

Bµν = ∂µBν − ∂νBµ

Fµν = ∂µW i
ν − ∂νW

i
µ − gϵijkW

j
µW k

ν , (7)

where g(g′) is the SU2 (U1) gauge coupling and ϵijk is the totally antisymmetric
symbol. The SU2 fields have three and four-point self-interactions. B is a U1 field
associated with the weak hypercharge Y = Q−T3, where Q and T3 are respectively

the electric charge operator and the third component of weak SU2. It has no self-
interactions. The B and W3 fields will eventually mix to form the photon and
Z boson.

The scalar part of the Lagrangian is

!Lϕ = (Dµϕ)†Dµϕ− V (ϕ), (8)

where ϕ =

(

ϕ+

ϕ0

)

is a complex Higgs scalar, which is a doublet under SU2 with

U1 charge Yϕ = +1
2 . The gauge covariant derivative is

Dµϕ =

(

∂µ + ig
τ i

2
W i

µ +
ig′

2
Bµ

)

ϕ, (9)

where the τ i are the Pauli matrices. The square of the covariant derivative leads to
three and four-point interactions between the gauge and scalar fields [1].

V (ϕ) is the Higgs potential. The combination of SU2 × U1 invariance and
renormalizability restricts V to the form

V (ϕ) = +µ2ϕ†ϕ+ λ(ϕ†ϕ)2. (10)

For µ2 < 0 there will be spontaneous symmetry breaking. The λ term describes a
quartic self-interaction between the scalar fields. Vacuum stability requires λ > 0.

The fermion term is

!LF =
F
∑

m=1

(

q̄0
mLi D̸q0

mL + l̄0mLi D̸l0mL + ū0
mRi D̸u0

mR + d̄0
mRi D̸d0

mR + ē0
mRi D̸e0

mR

)

.

(11)
In (11) m is the family index, F ≥ 3 is the number of families, and L(R) refer to
the left (right) chiral projections ψL(R) ≡ (1 ∓ γ5)ψ/2. The left-handed quarks and
leptons

q0
mL =

(

u0
m

d0
m

)

L

l0mL =

(

ν0
m

e−0
m

)

L

(12)

transform as SU2 doublets, while the right-handed fields u0
mR, d0

mR, and e−0
mR are

singlets. Their U1 charges are YqL
= 1

6 , YlL = −1
2 , YψR

= qψ. The superscript 0
refers to the weak eigenstates, i.e., fields transforming according to definite SU2

representations. They may be mixtures of mass eigenstates (flavors). The quark
color indices α = r, g, b have been suppressed. The gauge covariant derivatives are

Dµq0
mL =

(

∂µ + ig
2 τ

iW i
µ + ig′

6 Bµ

)

q0
mL Dµu0

mR =
(

∂µ + i2
3g

′Bµ

)

u0
mR

Dµl0mL =
(

∂µ + ig
2 τ

iW i
µ − ig′

2 Bµ

)

l0mL Dµd0
mR =

(

∂µ − ig′

3 Bµ

)

d0
mR

Dµe0
mR = (∂µ − ig′Bµ) e0

mR,
(13)
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V (ϕ) is the Higgs potential. The combination of SU2 × U1 invariance and
renormalizability restricts V to the form
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mR, d0

mR, and e−0
mR are

singlets. Their U1 charges are YqL
= 1

6 , YlL = −1
2 , YψR

= qψ. The superscript 0
refers to the weak eigenstates, i.e., fields transforming according to definite SU2

representations. They may be mixtures of mass eigenstates (flavors). The quark
color indices α = r, g, b have been suppressed. The gauge covariant derivatives are

Dµq0
mL =

(

∂µ + ig
2 τ

iW i
µ + ig′

6 Bµ

)

q0
mL Dµu0

mR =
(

∂µ + i2
3g

′Bµ
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Dµl0mL =
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2 τ

iW i
µ − ig′
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