Gravity Part II: near-surface projectiles

- Can ignore the curvature of Earth's surface pretend it's flat
- Can ignore variations of the strength and direction of the gravitational force pretend it's always *mg* straight down, with $g = 9.8 \text{ m/s}^2$ fixed.
- Need to distinguish 2 directions: "Horizontal" = x (along Earth's surface) and "Vertical" = y (up and down).
- Position described by two functions x (t), y (t).
 Velocity has also two components: v_x(t) and v_y(t).
 Acceleration is only in -y direction.

Main point

- Motion in horizontal direction is completely decoupled from motion in vertical direction as long as we can ignore air resistance (break down all vectors forces, accelerations, velocities into their *x* and *y*-components).
- Horizontal equations: $a_x = 0$; $v_x = \text{const.}$; $x(t) = x_0 + v_x t$
- Vertical equations: $a_y = -g$; $v_y(t) = v_{y0} - gt$ $y(t) = y_0 + v_{y0}t - \frac{1}{2}gt^2$
- Example: stone dropped from tree *vs*. thrown stone; sack dropped from airplane.

More examples

- Horizontal launch: $|\mathbf{v}_0| = 9 \text{ m/s}$; $x_0 = 0 \text{ m}$; $y_0 = 150 \text{ m}$ => t_{impact} ? \mathbf{v}_{impact} ? x_{impact} ?
- Launch at an angle:
 - Time in flight (largest for straight up)
 - Distance traveled (equal for 30° and 60°, maximum for 45°) see interactive Figure
- Shoot the monkey
- Ball launched from moving cart
- Ball launched from accelerated cart
 - Pulling force
 - Inclined track