Gravity Part II: near-surface projectiles

- Can ignore the curvature of Earth's surface - pretend it's flat
- Can ignore variations of the strength and direction of the gravitational force - pretend it's always $m g$ straight down, with $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ fixed.
- Need to distinguish 2 directions: "Horizontal" $=x$ (along Earth's surface) and "Vertical" $=y$ (up and down).
- Position described by two functions $x(t), y(t)$. Velocity has also two components: $v_{x}(t)$ and $v_{y}(t)$. Acceleration is only in $-y$ - direction.

Main point

- Motion in horizontal direction is completely decoupled from motion in vertical direction as long as we can ignore air resistance (break down all vectors - forces, accelerations, velocities into their x - and y-components).
- Horizontal equations:
$a_{x}=0 ; v_{x}=$ const.; $x(t)=x_{0}+v_{x} t$
- Vertical equations:

$$
\begin{aligned}
& a_{y}=-g ; v_{y}(t)=v_{y 0}-g t \\
& y(t)=y_{0}+v_{y 0} t-1 / 2 g t^{2}
\end{aligned}
$$

- Example: stone dropped from tree $v s$. thrown stone; sack dropped from airplane.

More examples

- Horizontal launch: $\left|\mathbf{v}_{0}\right|=9 \mathrm{~m} / \mathrm{s} ; x_{0}=0 \mathrm{~m} ; y_{0}=150 \mathrm{~m}$ $=>t_{\text {impact }} ? \mathbf{v}_{\text {impact }} ? x_{\text {impact }}$?
- Launch at an angle:
- Time in flight (largest for straight up)
- Distance traveled (equal for 30° and 60°, maximum for 45°) see interactive Figure
- Shoot the monkey
- Ball launched from moving cart
- Ball launched from accelerated cart
- Pulling force
- Inclined track

