PHYS101

Week 3

Reminder: Acceleration

- $a=\frac{\text { change in velocity during time } \Delta t}{\text { elapsed time interval } \Delta t}=\frac{\Delta \mathbf{v}}{\Delta t}$
- Can be specified by giving magnitude $a=|\Delta \mathbf{v}| / \Delta t$ and sign.
- Positive velocity, increasing speed $=>$ positive acceleration $a>0$
- Positive velocity, decreasing speed (slowing down) $=>$ negative acceleration (deceleration) $a<0$
- Negative velocity, increasing speed $=>$ negative acceleration $a<0$
- Negative velocity, slowing down $=>$ positive acceleration $a>0$
- NOTE: Acceleration in an inertial system must have a cause! (Force... See later)

Examples for accelerated motion

- Constantly accelerating car
- Police catching up with speeder
- Car going around a corner
- Objects falling down
- Objects thrown upwards
- Objects gliding down ramps
- Objects pulled by a falling weight

Motion with constant Acceleration

- $a(t)=a_{a v}=a_{0}=a(t=0)=$ const.

$$
a=a_{a v}=\left(v(t)-v_{0}\right) /(t-0) \quad\left[v_{0}=v(t=0)\right]
$$

- $=>v(t)=v_{0}+a t$
- If initial velocity $v_{0}=0: v(t)=a t$
- In that case:

Average velocity during the time interval $t=0 \ldots t$ is given by

$$
\begin{aligned}
& v_{a v}(0 \ldots t)=1 / 2[0+v(t)] \\
& =1 / 2[0+a t]=1 / 2 a t
\end{aligned}
$$

Constant Acceleration Cont'd

- Plugging it into expression for position:
$1 / 2 a t=v_{a v}=\left(x(t)-x_{0}\right) /(t-0)$
$\Rightarrow x(t)=x_{0}+\frac{1}{2} a t^{2}$
- Typical graph $x(t)$:
- General case:

$$
\begin{aligned}
& v(t)=v_{0}+a t \\
& x(t)=x_{0}+v_{0} t+1 / 2 a t^{2}
\end{aligned}
$$

Police catching up with speeder

- Police:

$$
\begin{aligned}
& a_{P}=2.0 \mathrm{~m} / \mathrm{s}^{2}, \\
& v_{P}(t)=a_{P} t \\
& x_{P}(t)=1 / 2 a_{P} t^{2}
\end{aligned}
$$

- Speeder:

$$
\begin{aligned}
& a_{S}=0 \\
& v_{S}(t)=30 \mathrm{~m} / \mathrm{s}^{*}=\text { const., } \\
& x_{S}(t)=v_{S} t
\end{aligned}
$$

*67 miles/hour
Police Catching up with Speeder - Velocity Plot

Free Fall

- $\left.a=-g=-9.81 \mathrm{~m} / \mathrm{s}^{2}{ }^{*}\right)$
- $v(t)=-g t$
- $x(t)=x_{0}-1 / 2 g t^{2}$
- Example 1: Fall from the Pont du Gard (45 m above water) $=>t, v_{\text {final }}$?
- Example 2: Throwing a ball upwards from the top of a building.
${ }^{*}$) in the absence of air resistance (see demo, NASA movie)

Important Rules for Problem Solving

- Make sure you are very clear about whether you are dealing with velocity (really a vector, and a signed quantity in 1 dimension) or speed (a scalar).
- Distinguish carefully between average and instantaneous quantities (velocity, acceleration).
- Distinguish carefully between position (displacement), velocity, and acceleration.
- Don't mistake x(t) plots (or v(t) plots) for representations of 2D motion.

From linear to 3D motion

- In general, displacement is a vector
- Give size and direction ("10 miles north", "4 m along z" etc.)
- In general, velocity is a vector
- Change in displacement = difference between 2 vectors
- Can point in a totally different direction than displacement
- Give size (magnitude = speed) and direction
- In general, acceleration is a vector
- Similarly, difference between 2 (velocity) vectors divided by elapsed time.
...back to: Forces
- Push or pull on an object (mass point) due to its interaction with "something else"
- Cause of changes in motional state (acceleration)
- Has both a magnitude (strength - "how hard do we push/pull") and a direction ("which way do we push/pull")
- -> Force is a vector

Newton's First Law

- IF the net force ($\Sigma \mathbf{F}_{\mathrm{i}}$) acting on an object is zero, its velocity will not change:
- If it is at rest, it will remain at rest.
- If it is moving with velocity \mathbf{v}, it will continue to move with constant velocity \mathbf{v}.
- => IF the velocity changes, there must be a net force acting!
- Examples: Car on Freeway, Puck on Ice, Spaceship,...
- Remember: Always add up all forces to get net force!
- You don't need any net force to keep on moving - that's the "default" behavior!

Newton's Second Law

- What if there is a net force acting? => The object will accelerate!
- How much?
$|\mathbf{a}| \sim|F| ;|a| \sim 1 / m$
(for given $|\mathbf{a}|$ need $|F| \sim$ mass)
- Which direction?
mass $=$ inertia $=$ resistance to change of motion
a points in the direction of \mathbf{F}

$$
\Rightarrow \mathrm{a}=\left(\sum \mathrm{F}\right) / \mathrm{m}
$$

$a=F / m$

- Predict acceleration from net force and mass
- Explain observed acceleration
- Newton's First Law follows: if net force is zero, acceleration will be zero => constant velocity
- Valid only in Inertial Frames of Reference
- Include all forces (including friction, normal force, weight, ropes and sticks,...)
- Only include external forces
- Only include forces actually acting on the body (mass point) under consideration
- Explains why all objects fall with same acceleration g

$\mathrm{F}=\mathrm{m} \mathrm{a}$

- Operational definition of "Force"
- Unit must be $\mathrm{kg} \mathrm{m} / \mathrm{s}^{2}=\mathrm{N}$ (Newton)
- "How much net force do I need to accelerate a known mass m with acceleration a ?" Example: roller coaster
- If I observe a known mass m accelerate with acceleration a , how much force can I infer to be acting on it?
- All bodies fall with acceleration g in Earth's gravity field => Gravity Force must be
$\left|F_{\text {grav }}\right|=m g$. This is the weight of mass m.
- Warning: The expression " m a " is not a force itself. It is equal to the net force.

$m=|F| /|a|$

- Inertia = net force applied / acceleration achieved
- Can be used to determine mass:
- Use known force and measure acceleration
- Compare ratio of accelerations for 2 different masses and same net force:
$m_{1} / m_{2}=a_{2} / a_{1}$
- Use gravity to determine mass: Measure weight (in Newton!), divide by known g (automatically done by most scales). Depends on location!
- Note: this is not the definition of mass - that is given by comparison with standard 1 kg mass. But: can be used for that comparison.

Important Hints for Problem Solving

- Take all external forces into consideration. Take their directions into account.
- ma is not a force!
- Don't confuse mass and weight!
- Newton's 2nd Law is only valid in Inertial Frames of Reference
- In an accelerating car, there is no force pushing you into the seat - instead, the seat is exerting an accelerating force on you
- In a falling elevator, there is a force (weight) acting on you, even if you don't feel it
- You don't actually feel gravitational force pulling on you - you feel the normal force holding you up!

Summary: Newton's $2^{\text {nd }}$ Law $+1^{\text {st }}$ Law

- $\overrightarrow{\mathbf{F}}_{\text {resultant }}=\sum_{\begin{array}{l}\text { all forces acting on object } \\ \text { due to other objects }\end{array}} \overrightarrow{\mathbf{F}}_{\mathrm{i}}=\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}+\ldots+\overrightarrow{\mathbf{F}}_{N}=m \overrightarrow{\mathbf{a}}_{\text {Object }}$
if we measure acceleration in an inertial coordinate system
- Examples:
- block on incline with and without friction (dynamic and static)
- the double role played by the normal force
- cart on incline with and without friction (rolling)
- friction through air resistance:
- feather vs. hammer
- terminal velocity (ant vs. human)
- Parachutes

