Motion 1n a Circle

So far:

Described linear motion of a mass point using x, v, a, m, p, F.
Equations of motion: a = XF/m or Ap = XF Ar; Equilibrium: 2F =0
Kinetic energy K.E. =1/, mv*; E\y = K.E. + U,y; total energy and
momentum conserved in the absence of external forces.

Total energy change by external force F: AE,,, = AW =F- As

Now:

We will study circular (rotating) motion. We will use a new set of
variables to describe this motion:

6,0,L.T

and express equations of motion and K.E. in terms of these quantities.
Afterwards , we will apply these ideas to rigid bodies rotating around

a fixed axis. Will find new conserved quantities and new condition for
equilibrium



Particle going around the origin on a circle of radius R
e Use angle #to describe position:

“New’” kinematic variables

Can be measured in degrees [°]
360° 1s full circle
Circumference = distance once around the full circle = 2ntR

0 [°] /360 -27R tells us by how much distance (in m) the particle has moved
around the perimeter

=> Can also express #in radians [rad]: @ [rad]= 2w - §[°] /360
Distance traveled around perimeter = R - #in radians

* Angular velocity describes how fast particle goes around the circle:

rps = revolutions per second (1rps = 60 RPM - “rounds per minute”)
If it takes time 7 to go all the way around once, then 1/7 = number of rps

After some time At, particle has moved by A@ [degrees] = 360° - rps - At ;
A@ [radians] =27 rps - At = o At ; @ =27 rps = angular velocity

 Linear speed Ivl=2aR/T=rps-2nR = @ R

The higher the angular velocity, the higher the linear speed
The further away from the center (the larger R), the higher the linear speed



Why...

...do we introduce new variables?

Simplify description: need only one number for position (and
one number for velocity); otherwise need more numbers since
position, velocity are 2- or 3-dimensional vectors!

Can apply what we learn to rotation of extended objects (spinning
wheels, cylinders, fans, blades, tops,...)

Will discover new conservation law (important for astronomy, ice
skaters, all other rotating objects, fundamental laws of Physics):
Conservation of angular momentum L

Study new conditions for equilibrium (net torque = 0).



Something special about circular motion...

... It requires a (centripetal) force!
(even if you aren’t speeding up or slowing down)

After a short time Af: Av =v, - v, 2

Change larger if v, v, larger
Time At shorter if w larger

— w=2n/T, T =2nR/v =>
a. = Av/ At =v?/R = ®°R
RADIALLY inwards

(“centripetal” acceleration)

F.=ma,_
(centripal force)
Examples:

car driving around a corner, banking,
ball on string, space station...



Angular Momentum L

L = mR?> ® = mRv = angular momentum

...1s another conserved quantity in Physics if no tangential force is
acting:
— 1f R = const. this follows from conservation of (kinetic) energy: K.E. =
const. = v = const. = mRyv = L = const.

— 1f radius R decreases: radial force does positive work = v increases = m
Rv =L = const.

— 1if radius R increases : radial force does negative work = v decreases =
mRv = L = const.

... points in the direction of axis of rotation (right hand rule:
+ = counter-clockwise rotation, - = clockwise rotation)

Example: Ball at the end of a string: how do [, E, L, v vary with R, @?

Extremely useful and important (just like conservation of p and E) -
see later examples with rotating objects



Now: extend to rotation of an extended
object around a fixed axis

So far:

We studied the motion of a single object (mass point) on a circle
around the origin. Motion described by:

0,0,L,...

Now: We will apply these ideas to rigid bodies rotating around a fixed
axis.

Consider extended object as a collection of (very many) mass points
(atoms), each moving on a circle of radius rp (= distance from axis).

Obviously, each mass point has different velocity, acceleration, forces
acting on it...

But: all have the same w. All have the same angle & up to a constant
offset. The whole object can be described by a single 6, @ and a single L.



Moment of Inertia

Canwrite L=1 w

Plays similar role in rotational motion as mass (inertia) plays in linear
motion

Since L is proportional to m, R? and ®, I must be proportional to R? and m
— in fact, it’s the mean r? of all mass in an object, times its total mass M.
Examples:

— Skinny objects rotating around their long axis have small 7, extended objects or
long objects rotating around their short axes have large 1.

— Objects of same shape but higher mass have higher moment of inertia.

— Objects of same overall size and mass have larger [ if the mass is concentrated
far away from axis (Disk race)

Conservation of angular momentum L:
— If I increases, ® must decrease (moving mass outwards)
— If I decreases, ® must increase (moving mass inwards)
— Examples: ballerina, figure skating, rotating chair + person with dumbbells



Finally... - Torque!

Tangential force times leverarm <
. . . ™D
Plays the role of force in linear motion SO
Axisé/
t=F"1: Radius Force
proportional to the force exerted

proportional to the length of the lever arm
only the part of the radius vector perpendicular to the force counts!

t=Flsin(6) = Fxl
Unbalanced torque will speed up rotational motion:
Change in angular velocity Aw = 7/l At

Unbalanced torque is the cause for any change in angular momentum:

T=AL/ At



New Requirements for Static
Equilibrium

So far:

Mass points: Require ~ F; =0 for static equilibrium
(otherwise a # 0). Include weight, normal forces, friction,
tension 1n attached strings, other external forces.

Now:

Extended objects: Still require X F; =0 . But : not
sufficient -> 1f forces act on different parts of object, net
torque could be non-zero => rotation.

Therefore : Require 2 t;,=0 as well.



Center of gravity
must be straight
above supporting
area

Tipping over

Example I




Levers and gears

* Levers: small force times large leverarm = large force
times short leverarm.

— Net torque =0 J
(const. ang. velocity)
—Ilr=1F

— Same work done by either end.

e Chains and gears
— Same Tension/force on either sprocket
— Different leverarms -> different torques

_ Same work done: zA® = T°A0




Comparison linear motion with angular motion

e Position: x (1)
 Velocity: v

e Acceleration: a

e Mass: m

e Linear momentum: p = mv
e Force: F

e Newton’s Law:
F=ma=Ap/ At

e KE.=m/2V?

e  Momentum conserved if 2F =0
(no net force)

e Change of K.E.:
AKE.=AW=F Ax

Angular Position: &

Angular velocity: rps, @
Angular acceleration: o
Moment of Inertia: I = <mR*>
Angular Momentum: L =1 w
Torque: 7=RF
“Newton’s” Law:

T =la=AL/At

KE.=12 &

L conserved always if 27 =0
(no net torque)

Change of K.E.:
AW =1t A6

Summary: Motion 1s in 2D,
but can be described by
single (1D) variables



