
Motion in a Circle

• So far:
Described linear motion of a mass point using x, v, a, m, p, F.
Equations of motion: a = SF/m or Dp = SF. Dt; Equilibrium: SF = 0
Kinetic energy K.E. = 1/2 mv2; Etot = K.E. + Upot; total energy and 
momentum conserved in the absence of external forces.
Total energy change by external force F: DEtot = DW = F.Ds

• Now:
We will study circular (rotating) motion. We will use a new set of 
variables to describe this motion:
q , w , L , t
and express equations of motion and K.E. in terms of these quantities.

• Afterwards , we will apply these ideas to rigid bodies rotating around 
a fixed axis. Will find new conserved quantities and new condition for 
equilibrium



“New” kinematic variables
Particle going around the origin on a circle of radius R
• Use angle q to describe position:

– Can be measured in degrees [º]
– 360º is full circle
– Circumference = distance once around the full circle = 2πR
– q [º] /360 . 2πR tells us by how much distance (in m) the particle has moved 

around the perimeter
– => Can also express q in radians [rad]: q [rad] = 2π . q [º] /360
– Distance traveled around perimeter = R . q in radians

• Angular velocity describes how fast particle goes around the circle: 
– rps = revolutions per second (1rps = 60 RPM - “rounds per minute”)
– If it takes time T to go all the way around once, then 1/T = number of rps
– After some time Dt, particle has moved by Dq [degrees] = 360º . rps . Dt ; 

Dq [radians] = 2π . rps . Dt = w Dt ; w = 2π . rps = angular velocity
• Linear speed |v| = 2πR/T = rps . 2πR = w R

– The higher the angular velocity, the higher the linear speed
– The further away from the center (the larger R), the higher the linear speed

q

R

R



Why...

• …do we introduce new variables?
– Simplify description: need only  one number for position (and  

one number for velocity); otherwise need more numbers since 
position, velocity are 2- or 3-dimensional vectors!

– Can apply what we learn to rotation of extended objects (spinning 
wheels, cylinders, fans, blades, tops,…)

– Will discover new conservation law (important for astronomy, ice 
skaters, all other rotating objects, fundamental laws of Physics): 
Conservation of angular momentum L

– Study new conditions for equilibrium (net torque = 0).



Something special about circular motion…
… it requires a (centripetal) force!

(even if you aren’t speeding up or slowing down)
• After a short time Dt: Dv = v2 - v1

• Change larger if v1, v2 larger
• Time Dt shorter if w larger

– w = 2π/T, T = 2πR/v =>
• ac = Dv/ Dt = v2/R = w2R

RADIALLY inwards
(“centripetal” acceleration)

• Fc = mac
(centripal force)

• Examples:
car driving around a corner, banking, 
ball on string, space station…
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Angular Momentum L
• L = mR2 w = mRv = angular momentum
• …is another conserved quantity in Physics if no tangential force is 

acting:
– if R = const. this follows from conservation of (kinetic) energy: K.E. = 

const. Þ v = const. Þ mRv = L = const.
– if radius R decreases: radial force does positive work Þ v increases Þ m 

Rv = L = const.
– if radius R increases : radial force does negative work Þ v decreases Þ

mRv = L = const.
• … points in the direction of axis of rotation (right hand rule: 

+ = counter-clockwise rotation,  - = clockwise rotation)
• Example: Ball at the end of a string: how do I, E, L, v vary with R, w?
• Extremely useful and important (just like conservation of p and E) -

see later examples with rotating objects



Now: extend to rotation of an extended 
object around a fixed axis

• So far:
We studied the motion of a  single object (mass point) on a circle 
around the origin. Motion described by:
q , w , L , …

• Now: We will apply these ideas to rigid bodies rotating around a fixed 
axis.

• Consider extended object as a collection of (very many) mass points 
(atoms), each moving on a circle of radius rP (= distance from axis).

• Obviously, each mass point has different velocity, acceleration, forces 
acting on it…
But: all have the  same w. All have the same angle q up to a constant 
offset. The whole object can be described by a single q, w and a single L.



Moment of Inertia

• Can write L = I w
• Plays similar role in rotational motion as mass (inertia) plays in linear 

motion
• Since L is proportional to m, R2 and w, I must be proportional to R2 and m 

– in fact, it’s the mean r2 of all mass in an object, times its total mass M.
• Examples:

– Skinny objects rotating around their long axis have small I, extended objects or 
long objects rotating around their short axes have large I.

– Objects of same shape but higher mass have higher moment of inertia.
– Objects of same overall size and mass have larger I if the mass is concentrated 

far away from axis (Disk race)
• Conservation of angular momentum L:

– If I increases, w must decrease (moving mass outwards)
– If I decreases, w must increase (moving mass inwards)
– Examples: ballerina, figure skating, rotating chair + person with dumbbells



Finally… - Torque!

• Tangential force times leverarm
• Plays the role of force in linear motion
• t = F.l :

proportional to the force exerted
proportional to the length of the lever arm
only the part of the radius vector perpendicular to the force counts!
t = F.l sin(q) = Fxl

• Unbalanced torque will speed up rotational motion:
Change in angular velocity Dw = t /I Dt

• Unbalanced torque is the cause for any change in angular momentum: 
t = DL / Dt
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New Requirements for Static 
Equilibrium

• So far:
Mass points: Require S F i = 0  for static equilibrium 
(otherwise a ≠ 0). Include weight, normal forces, friction, 
tension in attached strings, other external forces.

• Now:
Extended objects:  Still require S F i = 0 . But : not 
sufficient -> if forces act on different parts of object, net  
torque could be non-zero  => rotation.
Therefore : Require S t i = 0  as well.



Example I

• Center of gravity
must be straight

above supporting
area

• Tipping over
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Levers and gears

• Levers: small force times large leverarm = large force 
times short leverarm.
– Net torque = 0

(const. ang. velocity)

– l F = lF
– Same work done by either end.

• Chains and gears
– Same Tension/force on either sprocket
– Different leverarms  ->  different torques

– Same work done: tDQ = T Dq



Comparison linear motion with angular motion

• Position: x (t )
• Velocity: v
• Acceleration: a
• Mass: m
• Linear momentum: p = mv
• Force: F
• Newton’s Law:

F = ma = Dp / Dt
• K.E. = m/2 v2 

• Momentum conserved if SF = 0  
(no net force)

• Change of K.E.:
D K.E. = DW = F Dx

• Angular Position:q
• Angular velocity: rps, w
• Angular acceleration: a
• Moment of Inertia: I = <mR2>
• Angular Momentum: L = Iw
• Torque: t = R F tan
• “Newton’s” Law: 

t = Ia = DL /Dt
• K.E. = I/2 w2

• L conserved always if St = 0 
(no net torque)

• Change of K.E.:
DW = t Dq

Summary: Motion is in 2D, 
but can be described by 
single (1D) variables


