Motion in a Circle

• So far:

Described **linear** motion of a mass point using **x**, **v**, **a**, *m*, **p**, **F**. Equations of motion: $\mathbf{a} = \Sigma \mathbf{F}/m$ or $\Delta \mathbf{p} = \Sigma \mathbf{F} \cdot \Delta t$; Equilibrium: $\Sigma \mathbf{F} = 0$ Kinetic energy *K*.*E*. = $1/2 mv^2$; $E_{tot} = K.E. + U_{pot}$; total energy and momentum conserved in the absence of external forces. Total energy change by external force \mathbf{F} : $\Delta \mathbf{E}_{tot} = \Delta \mathbf{W} = \mathbf{F} \cdot \Delta \mathbf{s}$

• Now:

We will study circular (rotating) motion. We will use a new set of variables to describe this motion:

 θ , ω , L, τ

and express equations of motion and K.E. in terms of these quantities.

• Afterwards, we will apply these ideas to rigid bodies rotating around a fixed axis. Will find new conserved quantities and new condition for equilibrium

"New" kinematic variables

Particle going around the origin on a circle of radius R

- Use angle θ to describe position:
 - Can be measured in degrees [°]
 - 360° is full circle
 - Circumference = distance once around the full circle = $2\pi R$
 - $-\theta$ [°] /360 · 2 πR tells us by how much distance (in m) the particle has moved around the perimeter

R

R

- => Can also express θ in radians [rad]: θ [rad] = $2\pi \cdot \theta$ [°] /360
- Distance traveled around perimeter = $R \cdot \theta$ in radians
- Angular velocity describes how fast particle goes around the circle:
 - rps = revolutions per second (1rps = 60 RPM "rounds per minute")
 - If it takes time T to go all the way around once, then 1/T = number of rps
 - After some time Δt , particle has moved by $\Delta \theta$ [degrees] = $360^{\circ} \cdot rps \cdot \Delta t$; $\Delta \theta$ [radians] = $2\pi \cdot rps \cdot \Delta t = \omega \Delta t$; $\omega = 2\pi \cdot rps$ = angular velocity
- Linear speed $|\mathbf{v}| = 2\pi R/T = rps \cdot 2\pi R = \omega R$
 - The higher the angular velocity, the higher the linear speed
 - The further away from the center (the larger R), the higher the linear speed

Why...

- ...do we introduce new variables?
 - Simplify description: need only one number for position (and one number for velocity); otherwise need more numbers since position, velocity are 2- or 3-dimensional vectors!
 - Can apply what we learn to rotation of extended objects (spinning wheels, cylinders, fans, blades, tops,...)
 - Will discover new conservation law (important for astronomy, ice skaters, all other rotating objects, fundamental laws of Physics):
 Conservation of angular momentum L
 - Study new conditions for equilibrium (net torque = 0).

Something special about circular motion... ... it requires a (centripetal) force! (even if you aren't speeding up or slowing down)

V

R

 $\lambda \theta$

F

- After a short time Δt : $\Delta \mathbf{v} = \mathbf{v}_2 \mathbf{v}_1$
- Change larger if $\mathbf{v}_1, \mathbf{v}_2$ larger
- Time Δt shorter if ω larger - $\omega = 2\pi/T$, $T = 2\pi R/v \Rightarrow$
- $\mathbf{a}_{c} = \Delta \mathbf{v} / \Delta t = v^{2} / R = \omega^{2} R$ RADIALLY inwards ("centripetal" acceleration)
- $\mathbf{F}_{c} = m\mathbf{a}_{c}$ (centripal force)
- Examples: car driving around a corner, banking, ball on string, space station...

Angular Momentum L

- $\mathbf{L} = mR^2 \ \omega = mRv =$ angular momentum
- ... is another **conserved quantity** in Physics if no **tangential** force is acting:
 - if R = const. this follows from conservation of (kinetic) energy: K.E. = const. $\Rightarrow v = \text{const.} \Rightarrow mRv = L = \text{const.}$
 - if radius *R* decreases: radial force does positive work $\Rightarrow v$ increases $\Rightarrow m$ Rv = L = const.
 - if radius *R* increases : radial force does **negative** work \Rightarrow *v* **de**creases \Rightarrow mRv = L = const.
- ... points in the direction of axis of rotation (right hand rule:
 + = counter-clockwise rotation, = clockwise rotation)
- Example: Ball at the end of a string: how do *I*, *E*, *L*, *v* vary with *R*, ω ?
- Extremely useful and important (just like conservation of **p** and *E*) see later examples with rotating objects

Now: extend to rotation of an extended object around a fixed axis

• So far:

We studied the motion of a **single** object (mass point) on a circle around the origin. Motion described by: θ , ω , L, ...

- Now: We will apply these ideas to rigid bodies rotating around a fixed axis.
- Consider extended object as a collection of (very many) mass points (atoms), each moving on a circle of radius $r_{\rm P}$ (= distance from axis).
- Obviously, each mass point has different velocity, acceleration, forces acting on it...

But: all have the same ω . All have the same angle θ up to a constant offset. The whole object can be described by a single θ , ω and a single *L*.

Moment of Inertia

- Can write $L = I \omega$
- Plays similar role in rotational motion as mass (inertia) plays in linear motion
- Since L is proportional to m, R^2 and ω , I must be proportional to R^2 and m in fact, it's the mean r^2 of all mass in an object, times its total mass M.
- Examples:
 - Skinny objects rotating around their long axis have small *I*, extended objects or long objects rotating around their short axes have large *I*.
 - Objects of same shape but higher mass have higher moment of inertia.
 - Objects of same overall size and mass have larger *I* if the mass is concentrated far away from axis (Disk race)
- Conservation of angular momentum L:
 - If I increases, ω must decrease (moving mass outwards)
 - If I decreases, ω must increase (moving mass inwards)
 - Examples: ballerina, figure skating, rotating chair + person with dumbbells

Finally... - Torque!

- Tangential force times leverarm
- Plays the role of force in linear motion
- $\tau = F \cdot l$: proportional to the force exerted proportional to the length of the lever arm only the part of the radius vector **perpendicular** to the force counts! $\tau = F \cdot l \sin(\theta) = F \times l$
- Unbalanced torque will speed up rotational motion: Change in angular velocity $\Delta \omega = \tau / I \Delta t$
- Unbalanced torque is the cause for any change in angular momentum: $\tau = \Delta L / \Delta t$

New Requirements for Static Equilibrium

• So far:

Mass points: Require $\Sigma \mathbf{F}_i = 0$ for static equilibrium (otherwise $\mathbf{a} \neq 0$). Include weight, normal forces, friction, tension in attached strings, other external forces.

• Now:

Extended objects: **Still** require $\Sigma \mathbf{F}_i = 0$. **But** : not sufficient -> if forces act on different parts of object, net torque could be non-zero => rotation. **Therefore** : Require $\Sigma \tau_i = 0$ as well.

Example I

Center of gravity ulletmust be straight CNabove supporting area N F_{fr} СМ Tipping over ${\bullet}$

Levers and gears

- Levers: small force times large leverarm = large force times short leverarm.
 - Net torque = 0
 (const. ang. velocity)

$$-l_F = lF$$

- Same work done by either end.
- Chains and gears
 - Same Tension/force on either sprocket
 - Different leverarms -> different torques
 - Same work done: $\tau \Delta \Theta = T \Delta \theta$

Comparison linear motion with angular motion

- Position: x(t)
- Velocity: *v*
- Acceleration: *a*
- Mass: *m*
- Linear momentum: p = mv
- Force: *F*
- Newton's Law: $F = ma = \Delta p / \Delta t$
- K.E. = $m/2 v^2$
- Momentum conserved if $\Sigma F = 0$ (no net force)
- Change of K.E.: Δ K.E. = $\Delta W = F \Delta x$

- Angular Position: θ
- Angular velocity: *rps*, ω
- Angular acceleration: α
- Moment of Inertia: $I = \langle mR^2 \rangle$
- Angular Momentum: $L = I \omega$
- Torque: $\tau = R F_{tan}$
- "Newton's" Law: $\tau = I\alpha = \Delta L / \Delta t$
- K.E. = $I/2 \omega^2$
- L conserved always if $\Sigma \tau = 0$ (no net torque)
- Change of K.E.: $\Delta W = \tau \Delta \theta$

Summary: Motion is in 2D, but can be described by single (1D) variables