

Gravitation

- Objects on the surface of Earth fall down with acceleration $a_{\mathrm{rad}}=g=9.81 \mathrm{~m} / \mathrm{s}^{2}$; Earth's radius is $R_{\text {Earth }}=6380 \mathrm{~km}$.
- Moon circles the Earth once every $27.3 \mathrm{~d}=2.36 \cdot 10^{6} \mathrm{~s}=>$ $\omega=2.66 \cdot 10^{-6} / \mathrm{s}$. Moon is $D=384,000 \mathrm{~km}$ away $=>$ $a_{\text {rad }}=D \omega^{2}=0.00272 \mathrm{~m} / \mathrm{s}^{2}$ (3600 times smaller). D is 60 times bigger than $R_{\text {Earth }}$! => Gravitational force must be falling off like $1 / r^{2}$.

Newton's Law of Gravitation

- All masses m are accelerated with the same acceleration at the same distance from Earth $=>F \propto m$ (since $a=F / m$)
- Logic: If Earth (mass M) attracts mass m with force proportional to m then that mass must attract Earth with a force proportional to M
- Newton's 3rd law => Earth's attraction on m must ALSO be proportional to $M=>F \propto m$
- The force is proportional to the distance squared: $F \propto 1 / r^{2}$
- Need proportionality constant: G => $F=G m M / r^{2}$
- Universal constant => Universal force law for any two bodies with masses m, M at distance r !
- Measure G using torsion balance $=>G=6.7 \cdot 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}$
- Plug in numbers: on the surface of earth,

$$
g=F / m=G M / R_{\text {Earth }}{ }^{2}=>M=5.97 \cdot 10^{24} \mathrm{~kg}
$$

Important points

$\vec{F}\left(\right.$ on m_{2} at \vec{r}_{2} due to m_{1} at $\left.\vec{r}_{1}\right)=-G \frac{m_{1} m_{2}}{\left|\vec{r}_{2}-\vec{r}_{1}\right|^{2}}$ pointing from m_{2} to m_{1}

- Universal $1 / r^{2}$ force law - describes not only gravity, but also electromagnetism ...
- Valid not only for point masses, but for spherical extended masses as well (measure Δr from the center)
- G can be measured with torsion balance (but it's hard because it is so small) -> Value: $6.673 \cdot 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}$
- Force always acts on center of gravity of an object (roughly equal to center of mass)
- Force always points to center of gravity of attracting mass (along distance vector)
- Mass m exerts equal and opposite force on mass M as that exerted by M on m.
- Superposition: Gravitational forces add

Example I

- Gravity on the surface of moon
- Radius of Moon: $1740 \mathrm{~km}=27.3 \%$ of Earth's radius (roughly $1 / 4$)
- IF density were the same: Mass of Moon $\approx 1 / 64$ Mass of Earth (really $1 / 81=1.23 \%$)
- Gravitational acceleration on Moon $\approx(1 / 80) /(1 / 4)^{2}=1 / 5=2 \mathrm{~m} / \mathrm{s}^{2}$ (really $1.62 \mathrm{~m} / \mathrm{s}^{2}$)

Example II

- Project "Lagrange Point"

Put a satellite between Sun and Earth where the net gravitational force is zero

- Satellite can be stationary (looking at Earth)
- Where to put?
$-M_{\text {Earth }}=6 \cdot 10^{24} \mathrm{~kg}, M_{\text {Sun }}=2 \cdot 10^{30} \mathrm{~kg}, D_{\mathrm{E}-\mathrm{S}}=1.5 \cdot 10^{11} \mathrm{~m}$.
- Require $G m M_{\text {Earth }} / r^{2}=G m M_{\text {Sun }} /\left(D_{\text {E-S }}-r\right)^{2}$ $=>\left(D_{\mathrm{E}-\mathrm{S}}-r\right)=577 r=>r=D_{\mathrm{E}-\mathrm{S}} / 578=259,000 \mathrm{~km}$.

Example III

- Two steel balls floating in space (initially at rest). Masses $M=10 \mathrm{~kg}, m=5 \mathrm{~kg}$, $d=0.1 \mathrm{~m}$ apart.
- Initial gravitational attraction: $F=G m M / d^{2}=3.34 \cdot 10^{-7} \mathrm{~N}$ (on each)
- Initial acceleration: $3.34 \cdot 10^{-8} \mathrm{~m} / \mathrm{s}^{2}$ for M, $6.68 \cdot 10^{-8} \mathrm{~m} / \mathrm{s}^{2}$ for m.
- After 60 s , first one has moved 0.06 mm . Second has moved 0.12 mm.
- Center of mass remains at same point ($1 / 3$ of the way from first to second mass).

Tidal forces

- Because gravitational forces vary like $1 / r^{2}$, they can be different on different parts of the same object.
- Example: Gravitational force exerted by moon on Earth: Largest at point closest to moon, less large on center of Earth, least on opposite side.
- Variation of force over an object of diameter D: $\Delta F / m=\mathrm{D} \cdot 2 G M / r^{3}$
- Tend to elongate objects along connecting line
- Examples: Oceans on Earth (and atmosphere, Earth itself); Moon; black holes

Putting it all together...

- Newton's 3 laws: $\mathrm{a}=\mathrm{F} / \mathrm{m}$, action $=$ reaction
- Linear motion: position, velocity, acceleration, momentum
- Circular motion: angular velocity, angular momentum, centripetal acceleration
- Energy (kinetic, potential,...)
- OUR FIRST REAL FORCE LAW: $F=G m M / r^{2}$
- => 3D motion in a gravitational field

First case: Satellite Motion

- What happens if you throw horizontally, faster and faster?
- Earth is "curving away underneath flightpath"
- Direction of gravitational force changes over time
- => if speed is fast enough, you get circular motion and no impact at all => Satellite!
- Minimum required speed at surface of Earth: $g=v^{2} / R=>v=\sqrt{ } g R=\sqrt{ } 9.8 \mathrm{~m} / \mathrm{s}^{2} \times 6380,000 \mathrm{~m}=7900 \mathrm{~m} / \mathrm{s}$
- Acceleration is 3600 times smaller where the moon is -> need only $1 / 60$ of the speed to stay aloft!
- Geostationary satellites: $v / 2 \pi R=1 / 86400 \mathrm{~s}$

More general: Motion of planets and satellites

- Kepler's Laws:
- Orbits of satellites (moons, planets,...) are elliptical
- A line from the gravitating body (sun, planet,...) to the satellite sweeps
 out equal areas in equal times. (Conservation of angular momentum)
- The square of the period T of an orbit is proportional to a^{3} ($a=$ major half axis of ellipse) and $1 / M$.
- Circular orbit at distance R from central object with constant angular velocity ω
- Centripetal force: $F_{\mathrm{rad}}=m \mathrm{v}^{2} / R=m(2 \pi R / T)^{2} / R=m R 4 \pi^{2} / T^{2}$
- Gravitational force: $F_{\text {grav }}=G m M / R^{2}$
- $\Rightarrow \omega^{2}=4 \pi^{2} / T^{2}=G M / R^{3}$
$=>T^{2}=4 \pi^{2}\left(R^{3} / G M\right)$
- Example: Satellite vs. Moon - Example: Miniature solar system

Motion of planets and Satellites (cont'd)

- Elliptical orbit

- Gravitating body (sun, planet,...) located in one focal point of ellipse
- Total " length" of ellipse is $2 a$ ("major half axis")
- "Eccentricity" $\varepsilon=$ distance from focal point to center/a
- Major half axis a replaces R in 3rd Law: $T \propto a^{3 / 2}$
- Conservation of angular momentum L requires $\omega \propto 1 / d^{2}=>$ "areas" law
- => Kepler's Laws derived from Newton's Laws

Gravitational Potential Energy

- Potential energy change $=-$ Work done by gravity
- Close to Earth: $F=m g=>W=-m g \Delta h=>U=m g h$
- Moving further away, force is not constant but decreases, so energy increases less slowly: $\Delta U=G m M / r^{2} \Delta r$
- Note: only motion away from or towards source of gravitational attraction changes potential energy
- General form for 2 masses m, M at a distance D : $U_{\text {grav }}=-G m M / D$
- Note: always negative! (We chose the reference point where $U=0$ infinitely far away in this case)
- Note: It takes a FINITE amount of energy to escape Earth (the sun, moon, ...) FOREVER!

Examples

- Two steel balls from before:
($M=10 \mathrm{~kg}, m=5 \mathrm{~kg}, d=0.1 \mathrm{~m}$ apart $)$
- Initially $U_{\text {grav }}=-G m M / D=-3.34 \cdot 10^{-8} \mathrm{~J}$
- Touch at 1 cm distance: $U_{\text {grav }}=-3.34 \cdot 10^{-7} \mathrm{~J}$
- Total kinetic energy increases by $3.0 \cdot 10^{-7} \mathrm{~J}$
- Mass m will have twice the speed as mass M (momentum conservation) \Rightarrow K.E. $=m / 2 v^{2}+M / 2 v^{2} / 4=3 / 4 m v^{2}$
$\Rightarrow>\mathrm{v}=8.9 \cdot 10^{-5} \mathrm{~m} / \mathrm{s}(<0.1 \mathrm{~mm} / \mathrm{s})($ not a constant acceleration!)
- Escape velocity from Earth:
- First $U_{\text {grav }}=-G m M_{\text {Earth }} / R_{\text {Earth }}$, K.E. $=m / 2 v^{2}$
- Finally, $U_{\text {grav }}=0$ and K.E. $=0$
- Energy conserved
$=>G m M_{\text {Earth }} / R_{\text {Earth }}=m / 2 v^{2}$
$\Rightarrow v^{2}=2 G M_{\text {Earth }} / R_{\text {Earth }}=2 g R_{\text {Earth }}=>\mathrm{v}=11,200 \mathrm{~m} / \mathrm{s}$

Extreme Example: Black holes

- Make radius R smaller and smaller while keeping M constant:
- Collapsing stars (supernovae)
- Large initial density fluctuation in the Universe ("primordial black holes", quasars); center of most (all?) galaxies
- High energy collisions?
- $v^{2}=2 G M / R$ becomes larger and larger, until it exceeds the speed of light $c^{2}=>$ NOTHING can escape once it is closer than R to the center
- All matter crushed to "infinitely small" center inside black hole
- Huge tidal forces because of $1 / \mathrm{R}^{3}$
- Complete description requires Einstein's GENERAL theory of relativity (curvature of space-time)

