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Part 1

1 Basic Principles

1.1 Newton Laws

Inertial reference frame is a frame where every body is at rest or in uniform motion unless
acted on by external force.

Practical definition: Inertial reference frame = reference frame at rest or in uniform
motion with respect to distant stars

Newton’s first law actually states that the inertial reference frames do exist. Actually,

there is an infinite number of them.
Newton’s second law: In an inertial frame rate of change of momentum of a certain

body is equal to (vector) sum of all forces acting on it.
dp =
E = Z F; (1-1)
K

Here p = m# is a momentum and F; are forces acting on the body.
If mass m is constant,

dv . .,
m—y = md = ;Fi (1.2)
Note that Newton’s 2nd law is commonly cited as F = md but the most general form is
actually Eq. (1.1). It can be used to study motion of system with variable mass such as a
rocket or an evaporating droplet.

Newton’s third law: To each action, there is a reaction of equal magnitude but opposite

direction
Flo = —Fi (1.3)

W
1

where Fj; is a force exerted on body “j” by body “i”. Note that the forces in action-reaction

pair act on different bodies.

Figure 1. Action-reaction pair for the brick on the surface.

Here W is a force of weight exerted by the brick on the surface and N normal force
exerted on the brick by the surface.



For the interaction of two particles the forces in the action-reaction pair act along the
line separating particles. As an example, we may consider gravitational

q P 4 - 7 } )
Fio = Gmimam——==—5, Fa = Gmime=——3, Fio = —Fpo (1.4)
|71 — 75 |71 — 7]
or Coulomb forces
= qi1q2 T — T2 = Qg2 T2 —T1 = ~
Fip = — = =5 fau = [FEREENEY Fig = —Fip (1.5)

deg |7 — 7|3 dreg |71 — T
1.2 Conservation Laws

Linear momentum

Zﬁ” =0 = p = const (1.6)

Note that the vector nature of this equation, in particular p; is conserved if Z(ﬁn)z = 0.
Example: projectile motion (see Fig. 2).

~. p, = const

Figure 2. Projectile motion.

Angular momentum

Angular momentum of a particle (with respect to origin) is defined as
L =7xXF=mixv (1.7)

where 7 is the position of the particle and p' is the momentum.
If mass of the particle is constant

f:mFXU—I—mFXﬁ:/)'17'><F—|-WLF><EL’Z'F’><EFn (1.8)
n

The quantity in the r.h.s. is called torque

Fo= ) T To=Tx Iy (1.9)
n
SO _
L=)>Y % (1.10)
n
and if )7, = 0 the angular momentum is conserved.



it

T=7xmg=0

(0 =N)

(a)

angular momentum not conserved

-

—

T=x mg =0

(/0]

(b)

angular momentum conserved

Figure 3. Angular momentum of a particle in a free fall.

Let me note again that both angular momentum and torque depend on the choice of
the origin of coordinate frame.
Example: free fall

Figure a: 7 = mi'x g # 0= L is not conserved.
Figure b: 7/ = m# x g = 0 = L’ is conserved.

Work and energy

Suppose a particle moves from point A to point B along some path.

Figure 4.

The work done by a force F acting on the particle is given by

A
WwA=E /dg’-ﬁ (1.11)
B

where ds = 9(t)dt is an infinitesimal displacement.
Note that if ' = ) F, the total work is a sum of the works done by individual

forces B 5
WwA=E — / s> F, = Z/ ds-F, = Y W5 (1.12)
A n n JA



The work done by the force leads to the change in kinetic energy of the particle

B B > - t - 2 2
- ds ds m "B d ds.2 muv muv
”rAaB — ds-F = Zd— = = di— (22 _ B A _ To_T

/A ’ m/A et dtr 2 ), dt(dt) 2 2 b—24A

(1.13)

Conservative forces

If jgcé“ . F vanishes for any closed contour C then F is said to be a conservative force
The well-known examples are gravitational and Coulomb forces:

S o N . . N
¢ = : =1

Similarly, the well-known counterexample is a force of friction: the work done by the force
of friction along any path i(closed or not) s always positive.
Stokes theorem:

do swtace M

Figure 5. Stokes theorem.

fda’ﬁxa = f{ ds- v (1.15)
M C=0M

Consequently, §Cd§ . F =0 for any loop C' means that V x F = 0 which implies that Fis
a gradient of some scalar function U called the potential energy

F(7) = —VU(7) (1.16)

where minus stands for historical reasons. (Recall that V x Vf () = 0 for any scalar
function f(7)).
The work done by a conservative force

B B
Wasp = /Adgﬁ(f) = /AdU(F) = —U([)+U(T4) = —Up+Uy (1.17)

is independent of path taken between points A and B.



As we saw above (Eq. (1.13)) the work done by a sum of forces (conservative and/or
non-conservative) is equal to a change in kinetic energy so

> Waspn = > Wassn+ >, Waspn = Tp—Ta
n

conserv non—conserv

e Y witP = S wr-ubhH+ Y witP =Tp-Ta4 (118

conserv non—conserv

and therefore

T+ut+ Y WP = T+ UP (1.19)
non—conserv
where U4 = > UZ (and UP = 3 e UB). The quantity T + U (the sum of

kinetic and potential energies of the particle) is called the total energy of the particle. If
non-conservative forces do no work, the total energy is conserved

TA4+U4 = TB4+UP (1.20)
1.3 Systems of particles

Consider N particles with masses m, ! and positions 7, in an inertial reference frame.
Define the position R of center of mass by

R = %Zmnf’n M= m, (1.21)
n n

The total momentum of this system of particles is a sum of the individual momenta of each

P = fn= > mnin (1.22)

1.3.1 Center of mass motion

particle

For each particle, the 2nd law of Newton reads
pu(t) = Y Fn (1.23)

Among forces F, acting on particle “n” there are external forces ﬁﬁXt due to agents outside

the system and internal forces F;ilnt =3 Eopn ewhere Fp, is a force which particle “m”

m#n
exert on particle “n”.

. ex 'l ex 1 - - ex
pn(t) - Fst"i_Zan == Fst+§Z<an+an) = ZFﬁt (]-24)
m#n m#n
Now, differentiating Eq. (1.22) with respect to ¢ we obtain

Po= S manlt) = Y Fu = S 43S Fon
n n n

n. m#n

= > B +% D (P + Fam) = Y B (1.25)
n n

m=#n

'From now on, unless specified, the mass of each particle is assumed to be constant



where we used Newton’s third law ﬁmn = —ﬁnm. Thus, the center of mass motion is not
affected by the internal forces and is determined by action of all external forces.

Note that Eq. (1.25) is a vector equation corrrect for each component separately so
if the projection of external forces on some axis vanishes the corresponding component of

c.m. momentum P is conserved

Example:
N, N,
E
T2
m , @UusoTOeoTOeo@ M 5 No friction == P ,Py = const
Fay
W, W,

Figure 6. Two masses connected by a spring on x,y plane.

1.3.2 Angular momentum

Total angular momentum for a system of particles is defined as sum of the individual angular

> Ly =) Fu X (1.26)

Differentiating this equation with respect to time one obtains

IL: - Zmn[_;n(t) = Z(anﬁn"i_ru Xﬁn)
= Zrn Fext+Zan Zrn FPV 4y > i x P = Z*exwzyfnxﬁmn

n m#n m#n

momenta

If the forces in action-reaction pair are along the line connecting two particles, we get

Z Fext (1.27)

because
N . 1 . _ N . 1 N . .
YN Fx Fp = 3 > " (Fn X Fypin + 7 X Fon) = 5 > (Fn—Fm) X Frp = 0 (1.28)
n m#n m#n m#n

NB: the assumption that forces are aligned with the separation between particles is not
universal - for example, it is not true for general electromagnetic forces of moving particles.

Part 11

1.3.3 Decomposition of L into Ec,m. and [/

Let us decompose vector 7, for each particle into a sum of vector R and separation from

the c.m. 7:

—

7= R+7, = 0, =1, =R+7 =V+7, (1.29)

ns



where R is a position of center of mass and V =R is its velocity.

Ly
rn
— c.m.
rn
]
R
Figure 7.

Note that
Dty = D ma(Fu—R) = 3 mafy - MR = 0 (1.30)
n n n
due to the definition of the center of mass (1.21). This also implies that

: d
S omat, =Y mi, = %Zmnﬁl =0 (1.31)
n n n

Using these formulas one can rewrite L with respect to an arbitrary origin in terms of L
w.r.t. center of mass:

L= mpinxtp = Y mu(R+7) x (V+1),) (1.32)

= Mﬁx‘7+R»><Zm,,ﬁ:,+z:m,,ﬁ”X‘_/'—i—ZmnﬂL><177’1 = MRxV+1L

n

Now, from Eq. (1.27) we get

-

Low + L' = Y 7 (1.33)
n
On the other hand
Lom. = Hx P+ RxP = fixZﬁﬁXt (1.34)
n
and therefore
L= ) 7 Lo = 3 - RExP =) (- R)x F (1.35)
n n n
SO _
L= Y i x F (1.36)
n

The rate of change of angular momentum I is equal to the sum of external torques about
center of mass. NB: this relation holds for arbitrary motion of center of mass, even in the
case if it is accelerating (a frame attached to c.m. would not be inertial in this case).



1.3.4 Work and energy

A
WA=E — Z/ ds- F, (1.37)
n B

where ds = 9(t)dt is an infinitesimal displacement.

Note that if F = >on F, the total work is a sum of the works done by individual
forces
wA=B = Z/ ds, - F, Z/ ds-F, = Y w5 (1.38)
Now, d§, = U,dt and m,0, = F SO
A—B B : My B 2 B A
w = ;/Adtvn-(mnvn)z %:Q/Adtdt: ;(Tn —Td) = Tg—Ta
(1.39)

where T = 3" ™22 is the sum of the kinetic energies of particles. Note that

T = Z%vi = Zﬂ;”( +V)? = Z”; v} + V2 = T +Tem  (1.40)

n n

where we used Eq. (1.31). Next, assume that both external and internal forces are conser-
vative, then

EP i) = = ViV (i) (1.41)
and .
_ - 0

Fii(f) = =V VoUTy) = — =—V(7%)) (1.42)
Grij

Note that in order to satisfy Newton’s 3rd law V(7;) must be a function of the magnitude
rij: V(ri;) = V(|755]). Indeed, since 7 = 75 — 1

-

0 "

ﬁij = —ﬁjVeXt(Tij) = %V(Hj) = —Fj (1.43)
ij

S

The formula for the work (1.38) takes the form (ﬁ” = o ):

-

0
WA=B _ Z / A7y - VoV (7, Z / drl@r” (rij) (1.44)
_ _Zvext

— Z/ (d; - VijVij + d7; - V Vi)

However, due to V(r;;) = V(r;;) and ﬁij = —ﬁji the second term in the above equation
can be rewritten as

- Z/ (dF; — dF}) - ViV (rij) = ——va‘ (1.45)



and therefore

WADE = (V) — VB (7)) + %Z (Va(rij) = Va(rij)) (1.46)

n Zv]

Since WA=E = T8 — T4 (see Eq. (1.39)) we get
1 1

B xt (= _ 7A xt (= -

T8+ Y VE ) + 5D Velry) = T4 3 VA (Fa) +3 ) Valriy)
n 1,] n 2y}
1
=T+ Z V(7)) 4 B Z V(rij) = const (1.47)
n 1,J

It is straightforward to identify the 1.h.s. of this formula with the total energy of the system.
Note that if all 75; do not change (e.g. for a rigid body), the last term in the above
equation reduces to a constant which means that the internal forces do not do any work.

1.4 Central forces

A central force is a force directed towards a fixed point: F(7) = #F(r). Well-known
examples: gravitational and Coulomb forces.
Central force is conservative:

S 7 9 f(r)
(V X Tf@"))i = Cijky ref(r) = e [5jk + rETy ] =0 (1.48)
T’j r
where I used chain rule g—; = a%% =1k =y

The potential for the central force depends on r. Indeed,

- dV(r)

F(f) = —VV(r) = (Vr) o= =V = Fi) = -V'() (1.49)
r
1.4.1 Conservation laws
mu?
Energy : E = T—I—V(T) = const (1.50)
Angular momentum : 7 =7FxF =0 = L = 7xp = const (1.51)
Next, since L is conserved
I d_ = L= od o T
¥-L =0 = %’F'L:O:U'L—FT-W[ = U-L =0 (1.52)
at

so the velocity is always orthogonal to L =
= the motion occurs in a plane orthogonal to L.

~10 -



¢

center of force

Figure 8. Polar coordinates in z,y plane.

1.4.2 Description of motion

It is convenient to assume L || Z and use polar coordinates
T = rcosao, y = rsing (1.53)
In general, both » and ¢ change as particle moves:

Vp = T = fcosd>—rq§sin¢

vy = Y = Fsin ¢ + r¢ cos ¢ (1.54)
The kinetic energy in polar coordinates takes the form
T = %(vi—kvi) = % [(r cos (;S—rqﬁ sin ¢)2+ (7 sin gb—H"qi') cos (;5)2] = % [7’"2 +r2qﬁ2} (1.55)

Since the energy is conserved

E = 22402+ V() = Z(2+r20%) +V(r) = const (1.56)

2

Similarly, since angular momentum L = LZ is conserved

L. = (Fxp): = apy —yps = m(zy —yt) (1.57)

=m [7“ cos (7 sin ¢ + rd cos ¢p) — rsin (7 cos ¢ — rsin qb)] = mr?p = const

Note that sign of ¢ is always the same as sign of L, so no motion as in Fig. 9 is allowed.
Note also that if ¢ increases r must decrease and vice versa. In addition, due to Eq. (1.57),

Figure 9. Such motion is not allowed (sign of gf) should not change)

— 11 —



Figure 10. Area change

the change of the area swept by the particle is constant (see Fig. 10) Indeed,

1 1,
dA = or(rdg) = §r2¢>dt (1.58)
. 1, L
A = — 2 = — =
= 27" 10} 5 const

Kepler’s 2nd Law: the rate of change of the area swept by the particle is constant

.- same time interval -

Figure 11. 2nd Kepler’s law

1.4.3 Effective potential

Due to the conservation of angular momentum in the form of 2nd Kepler’s law (1.58) the
central problem can be reduced to 1-dimensional problem with an “effective potential”:

_ M. M 9.9 _ Mmoo m2L2
E = ET +§T ¢ +V(T) = E'I" +V('I")+?T m21‘4
2
_ o m.s _ Mmoo
=57 —|—V(7’)+2mr2 = 57 + Ve (1) (1.59)

Thus, the energy of the particle in central potential is equal to the energy of the particle
moving in one dimension (at 7 > 0) in the effective potential
L2

1.60
2mr? ( )

‘/éff('f') = V(T’)-f—

- 12 —



Since E — Veg(r) = 242 > 0, the equation

L2
2mr?

V(r)+

< E (1.61)

determines the region of space where the motion can occur.
For example, consider gravitational force:

Vir) = —mY = Vglr) = L _my (1.62)

r 2mr? r

Figure 12. Effective potential for gravitational force

~13 -



General considerations:

e E < Vpuin: no motion is possible (v? £ 0!)

e Viin < E < 0: motion is confined in the region of space between r; and ry (see Fig.
13)

Figure 13. Motion at F <0

e E > 0: motion in the region r >’ (see Fig. 14)

-

L)

0

\

Figure 14. Motion at £ < 0

— 14 —
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Another example: harmonic oscillator in 3 dimensions. The effective potential is

LQ
Ver(r) = —w?r®+

(1.63)

2 2mr?

(see Fig. 15)

Verr (1)

Vmin(T)

Figure 15. Effective potential for 3d oscillator

Figure 16. Typical trajectory for the 3d oscillator

We see that for any F > Vi,in we can have motion only between r; and ro.

~15 —



1.4.4 Form of the trajectory in space
Motion (= trajectory in space) is uniquely specified by initial position and velocity. Indeed,
the motion is determined by Newton’s 2nd law

and the solution of 2nd order differential equation is uniquely specified by initial conditions
at t =1

z(to) = =o, y(to) = vo (1.65)
dzgt) —t i(to) = 7o, dzstt) e #(to) = 9o

Alternatively, we can use four initial conditions
ro = r(to), ¢o = o(to), FE = E(T% +18d2) + V(ro), L = mrido. (1.66)
Trajectory:
from Eq. (1.59) we get

N N (1.67)

where the sign depends on whether r(t) is increasing (sign “+”) or decreasing (sign ‘-”) at
time ¢, In other words, the sign depends on the direction of radial motion (sign “+” for the
motion out and sign “-” for the motion in). The trajectory will be the same: change of sign
corresponds to change t — —t which does not alter the trajectory (“T-invariance of classical
mechanics). Taking “4” solution we get

(1.68)

P (L
2 \/E = Veg(r)
t r

St = /dt _ 1/m/dwl
0 2 )y JE = Veg(r)

Once the integration is performed, the above equation can be inverted to provide r = r(t).
Moreover, if () is known, the equation (1.57) can be easily integrated

dp L AP N

The equations (1.68) and (1.69) give the trajectory in the parametric form r = r(t)
and ¢ = ¢(t). One can eliminate ¢ from these equations and get the trajectory in polar
coordinates in the form r = r(¢). There is , however, a more direct way to determine r(¢).
From Eqgs. (1.57) and (1.68) we see that

mr? m dr mr?
dt = —d¢p = =L,/— = d
L Vo VE VL
L dr
= d¢p = =+
¢ V2mr2\/E — Veg(r)
¢ L (" 1
= ¢ — = d¢) = + /dr' 1.70
b — o /¢ 5 e (1.70)

~16 —



Suppose that at ¢ = 0 the particle is at one of the inversion points, say 1 (see Fig.
13). Let us calculate the change in ¢ as the particle moves to outer inversion point r5 and

back. We get
(2L [ 1
Ap = 2(¢po — = / dr’ 1.71

Q: When the orbit is closed?
A: when A¢ = 277>, Indeed, after n repetitions of time interval required to get from 71 to

Figure 17. Typical trajectory for the confined motion

ro and back to 71, the position vector, having done m round, returns to the initial point
(see Fig. 17).

In general, confined motion is not closed and after sufficiently large time the trajectory
will come infinitely close to any point between r; and 7.

There are two cases which lead to closed orbits: V(r) ~ 1 and V(r) ~ r.

For the potential V(r) = 2= (inverse square gravitational force) we have
ym m L?
Vir) = —— = Vi = —7y— 1.72
(r) r eff r o (1.72)
so we can find rpi, and Viin:
L2 LZ 342
@) =0 =20 — o = o Vi = — ”;LZ (1.73)
Tnin L m

1.4.5 Confined motion in a gravitational field

If Vipin < E < 0 the motion is confined, see Fig. 12. If F = Vi, the motion is circular
since due to Eq. (1.59) 7 =0 = r = const. If £ > Vi, (but E < 0) the trajectory of the
particle is elliptical.

Let us demonstrate this. From Eq. (1.70)

¢ L [T 1
p—do = [ d¢f = —/ dr’ (1.74)
o V2m Jr, rlz\/E_‘_,y% 12

2mr

72

17 -



(here we took “-” sign which differs from “+ sign” by ¢ — —t substitution). After change of
variables ) 0
/ ’ r

the integral (1.74) reduces to

6— o L “d , 1 /“d , 1
— @) = — U = u
VI = B o ()~ ()
v 1 |E| m2y, 2 2m
= [ du 2= —2ms 4 () = S5 (E— Vamll7
/u“ S o 2 ¢ mp )" = T (E - Vae]LT6)
0 a? — ("7 — )
Another change of variables:
. — / 1 1 2
g = 27Y o gp = —Za where u, = =y (1.77)
a a Tmin L2
We get
u—ug 1 u—auo
— = — dr———— = arccosz 1.78
o= = -, e (1.78)
= ¢ = qﬁo—l—arccosu*_u—arccosu*_uo = cos(¢p—g+0) = Ge
a a
where § = arccos 2.
In terms of original variables
2 2
. — 1 L 1
U — U (’Ym —u) _ (1_ u) (1.79)
a L2 miy2  2m|E| ym? | _ 2lBIL?
A - 72 m3,y2

so the trajectory equation (1.76) takes the form
(1.80)

2
(1—LU) ! = cos(¢ — ¢o + 9)

1 2 2| E| L2
- —77227[1 1— 7|ng|72 COS(¢¢0+5)} = C[1—ecos(¢ — o + )]

_m?y _ 1 _ ||
where 0_?_%1;, and €=4/1—- 75— <1

Without loss of generality, let us assume that ¢9 = 0 at ¢ = 0 so the equation (1.76)

g
=]

takes the form ]
— = C(1—e€cos9) (1.81)
,

This is actually an equation for ellipse
(r —m0)? 92
Q7 + 2= 1 (1.82)
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Figure 18. Elliptical trajectory in gravitational potential

with 1 1
€
_ — _ b = — — 1.83
T ca—ey YT oca—ey cVi—é& (1.83)

The center of force (origin 7= 0 is located in one of the foci of the ellipse. Indeed, let us
check

1
7+ /1?2 + 423 — dzorcos ¢ = 7“+\/7"2+4x(2)—4$0(r—c)
€ €

2 2

(1762)1 i 2a (1.84)

= r—l—’r—c

Thus, the trajectory of the confined motion in a gravitational force is an ellipse with the
focus being the center of the force. The parameters of the ellipse are

1 my b L my [y 2|E|L? (1.85)
a = = s = %) €T = — .
Cl1—¢)  2(E| V2m|E] * 7 9| m3~2

Recall that |E| < Vipin = ﬂf, see Eq. (1.73)).
2L

Kepler’s 3rd law.

In a period T the particle sweeps the area of the ellipse

a 2 1 1 _
A = 4b/ dm/l—% = 4ab/ dzv/1— 22 = Zab/ dnyl(l—y)% = mab = mwa®y/1 — €2
0 0 0
(1.86)
On the other hand,

3

T 2

, L 2m as
A = dtA =T— = T="—ga®>V/1-¢€ = 21— 1.87
/0 2m L ‘ Wﬁ (1.87)

This is Kepler’s 3rd law: T2 ~ a3.
Similar methods can be applied to other potentials. In general, confined orbits (if they

exist) are open. The only known potentials for which all confined orbits are closed, are

gravitational (or Coulomb) potentials V(r) ~ 1 and harmonic potentials V (r) ~ r2.
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1.4.6 Open motion in the gravitational field.

Open motion corresponds to E > 0 (see Fig. 12). The solution of the Newton’s equations
proceeds in a way similar to the case £ < 0 even thogth the resulting orbits are very
different (parabola for E = 0 and hyperbola for E' > 0). The equation for trajectory is still
(1.74) but now we have E > 0.

o= = [ “i = - [ ! (1.88)
— ¢y = = - r .
V2 2
0 mdJrg \/E + 7% —
Next, we make the same substitutions ' = % and z = “*T_“/ with u, = ("2227 = L and
a= m4 21E (see Eqs. (1.75-1.77)) and get
— = — " dr——— = arccosz 1.89
¢ ¢0 “*gu() m wn—ug ( )
= ¢ = ¢O+arccosu*_u — arccos 10 = cos(¢p—¢o+0) = s 74
a a
where § = arccos “*_*0
In terms of orlglnal variables
2 2
S = (G mw——= = (1-=3) — (1.90)
m 2mE Yy 1+ e
so the trajectory equation (1.76) takes the form
L*u
= cos(¢p — ¢pp + 0) (1.91)

1
B 7m2) 1 2\E|L2
/1 — L

:>% :nf’y 1— \/mcosé qﬁo—l—é)] = C[1—ecos(¢p — ¢o+ )]

_ m?y _ / E
where C = T = rmm and e=,/1+ e > 1.

Again, w.l.o.g. we assume that ¢9 —d = 0 at ¢t = 0 so the equation (1.76) takes the

form

o= C(1 —ecos¢) (1.92)

with € > 1. Actually, the case & > 0 corresponds to the hyperbola trajectory while the
trajectory of the particle with E' = 0 is parabolic.

Let us start with the first case £ > 0. If we continue analytically the equation for
ellipse (1.82)

(5“_;0)2 + ?Zz -1 = 21— 62)2(3; - 0(16_62))2 +y2C% (1 — €) (1.93)
to e > 1, we get
21— 62)2(1‘ + 4)2 = 14 42C%E - 1) (1.94)
C(e2-1)
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which can be rewritten as

(x4 m:0)% 92
with
1 my 1 L € my 2EL?
= ———— = — = = €T = ————m = —
“TCoEe@-1 " 2E CvVeZ—1 amB YT Cl@-1) 2E m3+2
(1.96)
The Eq. (1.96) is an equation of a hyperbola. The asymptotic behavior at large x,y is
2 b
+Y - 4 M—l:ix—i_wo = y = +—(z+ ) (1.97)
b a a a
a
AN
_X\O\

Figure 19. Hyperbolic trajectory in gravitational potential at £ > 0

Case E=0 (parabolic motion)
The equation (1.100) turns to

% = C(1 —cos o) (1.98)

_ 1 _ m?y
where C' = — = Iz

which can be rewritten as an equation for a parabola:

1 1
- = C(1—cos¢) = — C—C’% = 14+4Cz=Cr = 1+20x=C%2 (1.99)
r

or

2 z i o ) T'min
Yy = C<x+20> = 2rm1n($+ 5 > (1100)
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Figure 20. Parabolic trajectory in gravitational potential at £ =0

1.5 Two-body problem with central potential

Two particles: m; and ma, potential V' = V(r) where r = |7} — 72| . Newton’s 2nd law:

- - dVv
mii = —WW\V(r) = —@ d(r) (1.101)
T
- - dVv
mify = — V() = #) (1.102)
dr
CM and relative coordinates
R» _ m1771+m2?72
mi + ms
¥ o= 7 — 7y (1.103)
Inverse formulas read
Flzﬁ—i-&??i%lzﬁﬁ-&#
m1 + mo m1 + ma
SRR S B S S (1.104)
m1 + mo m1 + mg
Adding Egs. (2.1) and (1.102) one gets
mif +maty = 0 & (mi+m)R =0 = R =0 (1.105)

so the center of mass moves along straight line (or remains at rest). As to the relative
separation, subtracting Eq. (1.102) from Eq. (2.1) we get

. . AV
m1771 — mQFQ = — 277 (T)

dr
mmy i 54V(r) (1.106)

mi + meo dr

where
mimeg

= — 1.107
hE (1.107)
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So, the two-body problem with a potential depending on the separation reduces to a one-
body problem of mass x4 moving in a central potential V' (r)

Part IV

1.6 Scattering

Consider motion of a particle in central potential V() which we assume to vanish at infinity

r—00
V(r) — 0. The energy of a free motion at t - —ocois E = %vgo and the angular momentum
is L = mus.b where b is called an impact factor. The typical picture of the scattering from

a repulsive potential is shown in Fig.

One can have in mind Coulomb potential V' (r) = f—ﬁ as a typical example.

The point at the minimal distance ry is the inversion point for given energy E and
angular momentum L. Since 7(rg) = 0 from Eq. (1.59) we see that r( is a solution of the
equation

L2
‘/éﬁ‘('l"o) = F = V(To)—l—iz = F (1.108)
2mrg

If we know 7¢, the angle ¢g can be obtained from Eq. (1.70)

(1.109)

¢ =

L ro 1

- — / dr’
vV 2m fe%s) T./?\/E_V(T/)_ 2L2/2
mnr

(The minus sign is due to the fact that 7 < 0 if the particle is approaching the scattering
center).

After reaching rg the particle moves again to infinity and the change of angle between
ro and infinity is
- L oo ar 1

V2m Jr T/2\/E—V(T'/)_ L

2mr!?

(1.110)

¢

Note that ¢ = ¢f, and the trajectory is symmetric with respect to line parallel to vector
7o (see Fig. 21)
For future use, it is convenient to represent ¢g in terms of b and vy, as

b b
¢ = / dr’ - (1.111)
o T’z\/l—w%—m‘zg/)g

The deflection angle (the angle between velocities at plus and minus infinity) is

0 = m— 26 (1.112)

Q: What changes if the potential changes to attractive V(r) — —V(r) (for example
ﬁ — _ﬁ)(?

Ar Anr/”

A: Very little: formula (1.111) stays the same but the reflection angle is now 6 = 2¢ — ,
see Fig. 22. In fact, we can treat two cases (repulsive and attractive potentials) similarly
just using 6 = [2¢¢ — 7.
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Figure 22. Scattering from an attractive potential

1.6.1 Cross section
Consider a uniform beam of particles incident on a central potential

Voa

beam of particles
center of force

Figure 23. A beam of particles incident on a central potential
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Flux ® is a number of particles per unit area per unit time

e e o °
e .
s N
e e o
. °
oo N
e o o .
.
Oy .
. .

Figure 24. Transverse view of a beam of particles

Each particle has a definite b abd vy, and will be deflected by angle 6 = |7 — 2¢g|. Let
us consider now particles in a ring between b and b+ Ab. The number of particles crossing
area of a ring b < r < b+ Ab per unit time is

dn = 27wbAb ® (1.113)

Figure 25. Particles in a ring between b and b + Ab

These particles will be deflected by angle between 6 and 6 + A#, see Fig. 26. (Due to
azimuthal symmetry, the deflection angle Af does not depend on ¢).

center of force

Figure 26. Scattering of particles with impact parameter between b and b + Ab
Cross section do is defined as

dn(0) = ®do(6) (1.114)
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numbe 1CC dn haS a dlmenSlOl Of 3 ( rom qg.
r of particl f E
(1113) d?’l = - artic eS) t

Since 6 = |1 — 2¢¢(b)| one may think of b as a function of § and get from Eqgs. (1.113)
and (1.114)

Bdo(0) = B2rbdb =  do(§) = 27 b] \d@ (1.115)

The reason for modulus ‘d%@)} in the r.h.s. of this equation is that do(f) is a positive

number of particles
flux

greater the impact parameter b, the smaller is the deflection angle 0), see Fig. 26.

definite quantity (= ) while b(0) is generally decreasing function of 6 (the

It is convenient to write down the derivative of the cross section with respect to solid
angle (so-called "differential cross section” d") Recall that d€) = sin6dfd¢p =

b db do b db(0)
_ i 7 1.11
do(0) = G ‘dQ = W= smdl o | (1.116)
The total cross section is defined as
= / de— (1.117)
Otot = 0 .

so it is a number of particles scattered in a unit time in all directions divided by flux.
Example: scattering from a rigid ball of radius a. The potential is

Vir) =0 ifr>a and V(r) = o0 ifr<a (1.118)

From Fig. 27 we see that sin ¢g = g (for b < a, at b > a the particle will not be deflected)

Neo
Figure 27. Scattering from the rigid ball
SO
™—0 6 db a 0
™ — 2arcsin — , sin — cos 5 p7] 5 5in 5 ( )

and therefore
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do b db(9) acos & a . 0 a2
4o _ _ __x = Z = 1.120
dQ) sin@‘ do ‘ 28111%008% X2SID2 4 ( )
Not that the obtained cross section
do a?

is isotropic (does not depend on 6. In other words, regardless of where the detector is
placed, it will detect the same number of particles per unit time per unit solid angle (for a
given flux ).
The total cross section is
do a? a®
Otot = /deS.Z = /dQ Z = 47 X Z = 71'0,2 (1122)

(which means that we defined the cross section (1.115) in accordance with our everyday

intuition).

1.6.2 Rutherford scattering

Consider two particle with masses m and M and charges ze and Ze. In c.m. variables
(1.103) the effective potential is

7 ze? L? mM
V. = — = 1.123
eff (7") r 2/“’2’ 2 m4+ M ( )
(see Fig. 28)
Vet (1)
Iy
Figure 28. Effective potential for a scattering from a Coulomb center
The inversion point r¢ can be found from the equation
Zze? L? mM
E = + —, = 1.124
T0 2urd a m+ M ( )
or, in terms of v, and b
b b .o 7262
20— —)" =1 = 1.125
“r - (7“0) ’ “ . ( )
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This is a quadratic equation with a (positive) solution

b
rg = ——— 1.126
0 V1+a? -« ( )

Now we can find the angle ¢y. Since we are considering repulsive force (Zz > 0) the
trajectory looks like Fig. 29

) / ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Ve

Figure 29. Scattering of particles from a Coulomb center

and therefore 6 = m — 2¢y where ¢q is given by Eq. (1.111)

1
o b /I / o d /
b0 = / dr’ _ " = / ° “2 (1.127)
ro 21— r% — ngii, 0 V1—b2u? - 2abu/
b b/ro
vzu'b / " —d:n = arcsin rhe - T arcsin e
o V1—1z2—2ax \/1+0z20 2 V1+a2
because (% +a)? = 1+ a?, see Eq. (1.126). The deflection angle takes the form
@ 0 @
0 = m—2¢9g = 2arcsin —= = sin- = —— 1.128
% V1+a? 2 V14 a? ( )
and therefore )
1 1 PUE N2
= 14—y = 1+07(L) 1.129
sin? g * a? * 7 ze? ( )
To find differential cross section from Eq. (1.116) we need to rewrite the impact parameter
b as a function of deviation angle # which is easily done inverting the above equation: 2
Zze? 0
bO) = || cot 5 1.130
) = |25 ot (1130)
The differential cross section (1.116) takes the form
d b db(0 Ze? 12 1
g0 _ _ ‘U}:\Ze’ (1.131)
dQ sin@' do 2pv2 | sint g

This is the famous Rutherford’s formula. Properties:

2We have derived this formula for the repulsive potential, but it can be easily demonstrated thatEq.
(1.130) equation is valid for attractive Coulomb potential as well.
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° g—g is independent of the sign of charges ze and Ze (= cross section is the same for

attractive and repulsive Coulomb potential).
° g—g ~ (}4 for small angles (large impact parameters) =
e The integral for the total cross section (1.117) oyt = [ de—g diverges at small

The last property means that the total cross section oo is poorly defined for Coulomb
potential since all particles are deflected regardless of how large is b. This behavior (diver-
gence of oyt) is a characteristic of potentials falling as % at large separations.

Part V

2 Accelerated coordinate systems

2.1 Rotating coordinate systems

A (0)
Cs
N Vv
€3
S
A (0)
1
 (0)
2 N\
€,

Figure 30. Transformation to a rotating coordinate system

U= v égo)
T = i€ (2.1)
Since unit vectors 61(0) are fixed
o = —¢ 2.2
( dt ) inertial dt € ( )
and therefore . . .
v Vi €;
P = % e 2.
( dt )inertial dt € t+u dt ( 3)
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The first term in the r.h.s. is the rate of change of ¥ as seen by an observer in the moving

(body-fixed) frame
dv dvi
= = —lg 2.4
(dt >b0dy dt ¢ (24)

(@i = (@ ™ 25)

2.2 Infinitesimal rotations

SO

Suppose vectors é; are changing in time: at ¢t + dt we have é;(t + dt) = é;(t) + dé;. Since
€;-€j = 0;; at any time t we get

e(t+dt)-é(t+dt) = é(t)-é(t)+2é(t)-dé + O(dt?) = é-dé = 0 (2.6)

Next, we expand dé in the moving basis

dé = dS;jé; (2.7)

From Eq. (2.6) we see that df2;;é;6; = 0 so d);; must be antisymmetric with respect to
14> J:

dQj; = —dQy (2.8)

which means that 3x3 matrix df);; has 3 independent components which can be associated
with components of (pseudo) vector dS)

dQ = dQas, dQ = dQs1, dQs = dQi2 (2.9)
With this definition the formula (2.7) can be rewritten as
dé = dx e (2.10)
Indeed,
dé; = dQi26y + dzés = dQséy — dQgés = (déy + dQaés + d23é3) X &

and similarly for other components.

Geometrical interpretation of vector d€2: dQ x 7 describes the following rotation of
vector 7 first, on the (infinitesimal) angle d€2; around axis ej, then on angle d€2y around
axis eg and finally on df23 around the axis es.

Proof: after the first rotation ¥ — 7 where

oo (2.11)
ry = rycosdQy —r3sindQ = ro —r3dQ; + O(dQ3)
= r3cosdQy 4+ rosindQ = r3+redQy + O(dQ3)
After the second rotation ¥ — 7 where
r{ = ricosdQy + risindQy ~ ricosdQy +r3sindQy ~ ry+r3dQy  (2.12)
ry = 19 =~ 19 —1r3d{l

ry = rhcosdQy — i sindQy >~ r3+ rodQy — ridQ
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Finally, after third rotation 7 — 7" such that

' = 1 cosdQs — rlfsindQs ~ 11 +7r3dQy —r2dQ3 = 71+ (dD x ),
ry = rfcosdQs + r{sindQs ~ ry —rgdQ +r1dQs = o+ (d x )2
r/3/, = T’g = r3+ ’I”QdQl — T1d92 = r3+ (dﬁ X F)3 (213)

Thus, as a result of these three successive rotations, we get the rotation ¥ — 7" = FHdQX T,
As seen from the definition of the cross product, this is the rotation around the axis defined
by d€} on the angle |d€)|:

dF = dQ x 7 (2.14)

Note that infinitesimal rotations around x,y and z axis commute with one another. This is
a general property: given two successive infinitesimal rotations described by d$Q; and dﬁg,

the resulting rotation is
o P4 dQy x 7 = (F+dDy x ) +dQs x (F4+dQy x 7) ~ 7+ (dDy +ds) x 7 (2.15)

It should be mentioned, however, that finite rotations do not commute.
Returning to Eq. (2.10) we get

de  d9

£ —xé = Gxé (2.16)

where .
ds?
J(t) = — 2.17
s = < (2.17)
is the instantaneous angular velocity of the rotating frame as seen from the inertial frame.
Substituting Eq. (2.16) into Eq. (2.5) we get

dv dv
— = |— 0 X U 2.18
( dt ) inertial ( dt )body Tt ( )
Note that we did not use the specific form of ¥ in the derivation of Eq. (2.18) which means
that it holds true for any vector A measured in there two frames

(Ci;;l)inertial - (Cf;l)body +dx A (2.19)

In particular, this equation can be applied to A = @ and then we get

did dd
— = [— 2.20
( dt )inertial ( dt )body ( )
2.2.1 Accelerations
Differentiating formula
dr dr’
— = (— d 2.21
( dt ) inertial < dt )body twxr ( )
with respect to t, we get
d? d? d d d?
—ri(t)e(t) = éi(t)—5r 2(*1‘ )*Az‘ i(t)—5¢i 2.22
prold (t)éi(t) éi(t) ol (t) + il (t) i (t) + ri(t) 7t (t) (2.22)
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2 2
Sorfelt) = &t) ri(t) + 2 ) S + (o) o) 2:23)
= &(t)7i(t) + 27 (1) (w(t) x &(t)) + Tz(t)%@(t) X &(t))
i = C()Fi(t) + 27 (8)(w(t) X &(t)) + Tz(t)(%ﬁ(t)) X &(t)) + i) (W () X %éi(t))
= &i(t)is(t) + 2i5(t)(w(t) x &i(t)) + ra(t)(G(8)) x & (1)) + i) (@(8) x (B(1) x &(t)))
2 2 7 .
(%f(t))mertial — (;;F(t))body + 20 x (dd(;))bo@ly +3(8) x 7(E) + @(8) x (@(F) x 7(t)
(2.24)
Part VI
2.2.2 Translations and rotations
If the origin of the body-fixed frame moves as @(t) the relation between 7 and 7 is
o = T(t)+alt) = ro—dalt) =7 = é&(t)ri(t)
& i1 —aP e = &tn() (2.25)

The change of unit vectors é; is determined only by rotation of the moving frame and
does not depend on the translational motion of that frame = our proof of &, = @ x & (see
Egs. (2.10-2.16) stays valid in the case of moving origin of the body-fixed frame.

Now, repeating the derivation of Eq. (2.23) we see that

. ~ . ~ d2 ~ ~ s . X N

i el —ale = Zara) = e + 200 F i) (2:26)

7 7

= &(t)F(t) + 2r(t)(w(t) x é(t)); +ri(t) (1)) x €(t))i + ri(t)(@(E) x (@(t) x €(t)))
or
(Fo)inertial = (&) inertial + (F) body + 2(w X F) body + ((3 x F) body + ((Ij X ((Ij X F))body (227)
which is correct for the origin undergoing an arbitrary acceleration &(t).

2.2.3 Newton’s laws in accelerated coordinate systems

From the 2nd law in the inertial system

m(FO(t))inertial - F(t) (228)
and Eq. (2.27) we get Newton’s 2nd law for an observer sitting in the translating and
rotating frame

m(r)

body i m(&)inertial — 2mw x (T‘T)body — Mm@ X T —m@ x (& x F)

Coriolis force centrifugal force
(2.29)

(recall that (of:’)bo dy = (fj)inertial)-

~32 -



2.3 Motion on the surface of the Earth

Assume circular orbit of the earth around the sun with radius Ree = 1.5 x 10'm with
period 75 = 3.16 X 107s & we = 2 X 10*75*1, and daily rotation of the earth with
R. = 6.4 x 105m, period 7, = 8.64 x 10% and angular frequency

2 1

We = & = 7.3x107°= (2.30)

Te s
The inertial frame is fixed at the sun’s center and the moving non-inertial frame is fixed in
the rotating earth at the origin in the earth’s center. The equation (2.29) takes the form

—

m(f), = F-m(d 2m (e + Bie) X (7), = m{@e + Bre) X (e + eo) X B31)

) inertial

where F = F g T Fs+ F'is a sum of earth’s gravitational force, sun’s gravitational force,
and any other relevant forces F” (we assume that &, and dJse do not change with time).

Suppose we are considering some object on the earth’s surface. Since “:J—S: ~2.73x1073
we can neglect Wge in the above formula and get

m(F), = F + FS+ F* —m(d = 2mie x (1), —mdde X (e X 7) - (2:32)

) inertial

For a body on the earth’s surface the ratio of the gravitational forces due to the earth and
due to the sun is .
by MR?

g = ~ 1.7x1073 2.33
F; M R? ( )

—

Moreover, at earth center F* would be exactly equal to m(a) so we can safely neglect

R inertial
771(04)11161%1&Ll in the above equation and get

m(r), = F' + F —2ma x (F), —md x (& x 7) (2.34)
where w I8 we.

2.3.1 Falling particle

Consider a particle released from height h < R, above the earth’s surface. From Eq. (2.34)
we get

mr = mg—2ma x (2.35)

where

—

- r - - O =
g = - GMeg — @ X (& x7) (2.36)

The second term here is the acceleration due to centrifugal force. 3

We choose a local frame on the earth’s surface with €, southward, é, eastward, and
é, vertically upward as shown in Fig. 31. We will solve Eq. (2.35) perturbatively, keeping

3 At the poles, 7 is radial with the magnitude G M, R% but at the equator § = ( — G‘M(”%'2 + w2Re)f.

Numerical estimates give the second term of the scale about 3.5 % of the first term.
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b X = (up)

|

. i A

™ L} o~ Vv (cast)

. il 3
S i”‘f""’*r v (south)
a1

Figure 31. Earth-fixed frame
4,

first two terms of the expansion in w

F(t) = 7o(t) +71(t) (2.37)

F=q= —gé, (2.38)
The correction to g due to centrifugal force is ~ w?. It exceeds our accuracy so we can
assume ) ) GIL . 00)
fd — ge frd ~ O— .
and get
1
fo(t) = 7(0) — 591522 (2.40)

Substituting Eq. (2.37) into Eq. (2.35) we get in the first order in w
Fo+ T o= —gi—20xi = Ft) = 28xmt) = —2AIxF (2.41)

Using the initial conditions 71 (0) = 0 and 7 (0) = 0 we get

t3 1
() = — 3(3 xXg = gwgt?’ sin 0é, (2.42)
so the total trajectory becomes
> _ 9,9\~ 1 3 . A
7(t) = (h—§t Jé: + gwgt sin fé, (2.43)

Properties of Eq. (2.43)

e The vertical motion is independent of w in the first order.

4The corresponding dimensionless parameter is wto where to is the time of free fall from a height h. For
h=100m wto = 3.3 x 10~*
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e The particle is deflected eastward and the effect is the same in northern and southern
hemisphere. It is maximal at the equator (sinf = 1). Foe example, at h =100m the
equatorial deflection is 2.2cm.

e The eastward deflection may seem surprising since Earth itself rotates to the east.
However, in the inertial frame 1y has abn eastward component which increases as r
decreases due to conservation of angular momentum.

2.3.2 Horizontal motion
Consider a particle located at polar angle # moving with horizontal velocity along the
direction making angle ¢ with x axis on Fig. 31. We get
W = —éysinf+ é,cosb, U = v(ézcos¢p + é,sing) (2.44)
so the Coriolis force (2.29) takes the form
Fo = —2md x U = 2mwv(é, cosfsing — é,cosfcosp + €, sinf sin @) (2.45)

For example, Coriolis force pulls a north-moving particle (¢ = 7) in the northern hemishpere
(cosf > 0) to the east and south-moving particle to the west. Conversely, in the southern
hemisphere a north-moving particle is pulled to the west and a south-moving particelto
the east. That is why hurricanes rotate counterclockwise in the northern hemisphere and
clockwise in the southern hemisphere.

2.4 Foucault pendulum

Consider a pendulum composed of massless rigid rod fixed at some support point on one
end and with particle of mass m attached to the other end (see Fig. 32). The equation of

e PO e

Figure 32. Foucault pendulum
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motion is (2.34):
mi = T +mj — 2m@ x ¥ (2.46)

where § is given by Eq. (2.36) and the velocity and acceleration are those seen by the
terrestrial observer.

Here again we will calculate the motion in the leading order in w so § = —gé,. Using
the same frame as in Fig. 31 we get

WX T = —wé,cosdy+ w(sinbz + cos 0i)é, — wsinfye, (2.47)
and
mg+T = —Té,sintcosd — Té,sinsing + é,(T cosyp — mg) (2.48)

Consider first the equation for vertical motion

mz = Tcosy —mg+ 2mwysin 6 (2.49)

Since wv < 1 (numerical estimate for v = 1% is wv ~ 7 x 10_58%) we can neglect
the last term in r.h.s. of Eq. (2.49) in comparison to two other terms. Moreover, the
vertical displacement z = [(1 — cos ) is small for small displacements form the equilibrium

r<l= ¢Yv~7<K1l = 2z~ ? < 1) so we get approximately
Tcosy ~ T ~ mg (2.50)
At the next step we consider equations for the horizontal motion

mi = —Tsinycos¢d + 2mwy cost (2.51)
my = —Tsinysing — 2mw(zcosf + Zsinf) (2.52)

Note that in the last term in the r.h.s. of Eq. (2.52) the 2 term can be omitted in comparison

. : 2 . . . .
to @ term since z ~ - < & ~ r. Moreover, since sint cos ¢ ~ 7 and sin sin ¢ ~ % (see

Fig. 32) we get from Egs. (2.50-2.52)

r = - %x—i— 2wy cos 0
j o= - %y — Qwi cos § (2.53)
where wcos) = w-é, = w, is the vertical projection of earth’s angular velocity.

(1330

Trick to solve Eq. (2.53): multiply the second equation by ‘“i” (imaginary unit) and
add to the first equation. We get

(= — %C — 2iw( cos @ (2.54)

where
¢ =az+wy (2.55)
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The equation (2.54) is a differential equation with constant coefficiens = in can be solved
by exponential ansatz ((t) = (pe "t. We get

02—2w00059—% =0 = o4 = wL:I:,/wi—l—% (2.56)
so the general solution of Eq. (2.54) can be written as
¢(t) = Ae wit—igt 4 pe—iw, t+igt qg = wi + % (2.57)

W.lo.g. let us assume that the pendulum rod is displaced as small distance a southward
and released, then ¢(0) = zg = a and {(0) = 0 so we get

¢(t) = ae ™“t'(cosqt + z% sin qt) (2.58)

Typically, wi < % and the motion is approximately
C(t) = a(cos qt)e ™+t (2.59)

SO

z(t) = R¢(t) = a(cosw,t)cos (tﬂ)

y(t) = SC(t) = —a(sinw,t)cos (¢ %) (2.60)

Since w; < ﬁ these equation represent a superposition of two perpendicular oscilla-

tory motions proportional to cos (tﬁ) but with slowly varying amplitudes: a cosw |t and
—asinw | t.
Dividing y(t) by z(t) we get

tang = —= = —tanw,t (2.61)
Thus, the motion occurs in a plane

¢ = —wit (2.62)

rotating with angular velocity w,. This rotation is clockwise (as viewed from above) in
the nothern hemisphere and counterclockwise in the southern hemisphere. On the poles,
Foucault pendulum would make a full 360° turn exactly in one day (and on the equator it
does not rotate).
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2.5 Tides

There is another (and very visible) effect due to non-inertial nature of the frame on Earth’s
surface. From our beach experience we know that every day there are two low tides and

two high tides in the ocean. This phenomenon can be explained by analysis of Newton’s
2nd law in the Earth frame.

— m
R

@% f'

Moon D \

Earth

Figure 33. Earth-Moon system

Let us first ignore rotation of Earth about its axis and influence of the Sun. Even
in this approximation, Earth is not an inertial frame. The origin of the reference frame
attached to the center of Earth is accelerating. This acceleration is due to the gravitational

‘ . CM

1
. ' Earth—Moon !
\ % L Earth !
\ N v’ 1

Figure 34. Top view of zy plane of Earth’s orbit around CM

force between the Earth and the Moon

— ~

D D D
M.d, = _GMeMmﬁ = _GMeMmﬁ = de = —GMy— (2.63)
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Since we neglect Earth’s rotation, Newton’s 2nd law (2.29) reduces to

—

mi = F —mid.= F,+mg (2.64)

where F; is an attraction force between the body and the Moon minus the md, term. Let

us consider the tidal force F"t

A~ N

- R D
Note that F’t vanishes at the center of Earth.
It is useful to decompose F, into z and y components. Since R =D+ and 5 <1

Fi = — GMyum{ Dte 3fL2}
(D+a)2+22)7 P
GMym 1+t
= -5 %—1} (2.66)

(1 4t3)2 +¢2)

where t, = § and t, = 5. Since t,,t, < 1 we get

)
GMym 2GMym 2GMmzx
Similarly,
F' = — GMam z 3:_GZ\/.I’,;m"L i, 3:_C;Mingmz
(D +2)? +22)° Do (42 +12)° D
(2.68)
The cartoon of these tidal forces is shown in Fig. 35.
Z
© = X
0
Moon
Earth

Figure 35. Two tides

If the earth was rigid, the tidal forces would have no effect on it, but the water in
the oceans is free to move around, so it bulges around the Earth-Moon line. As the Earth
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rotates, the person on the surface sees the bulge rotating in opposite direction, so at a given
spot one sees two low tides and two high tides per day °.

In addition, there are tides due to Sun’s influence. One may expect them to be even
bigger than the tidal waves due to the Moon influence since the ratio of forces of gravity is

FSun o (GMS) . (GMm
FMOOH B Rgs . R%is

) ~ 175 (2.69)

However, the explicit formulas for the tidal forces (2.68) and (2.69) tell us that

FSun
FMoon

G M GM,
(R ) (s,

) ~ 045 (2.70)

so the tide due to the Moon is twice as big as the tide due to the Sun. These two tides may
add up if the Moon is close to the Sun-Earth line, or partially cancel if the Moon is at 90°
with respect to Earth-Sun vector.

Part VII

3 Lagrangian dynamics

3.1 Generalized coordinates

Consider a particle moving in 3 dimensions under the action of a force F":

—

mr = F (3.1)

If the position of the particle is completely specified by the three components 7(t) = z(t)é,+
y(t)éy, + z(t)é, we say that the particle has three degrees of freedom. Given 7(0) = 7 and
F(O) = 7y = U we can predict its motion at all later times because the solution of the
second-order differential equation (3.1) is uniquely defined by initial conditions 7 and .

However, if we consider a particle being constrained to slide along a wire, it is sufficient
to specify the position of the particle on the wire so we have a system with one degree of
freedom.

5Strictly speaking, the moon rotates about the Earth so in 28 days we will see only 55 pairs of tides.
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X =a
y=»b
. z=2z(1
b
Ly
a 77777777777 7
X

Figure 36. Constrained motion: example 1
The position of the particle is=n 3-dim space is given by three coordinates x, y, and z
but there are two constraints
e #l: x=a
o #2:y=5>

so the position of the particle is specified by a single “generalized coordinate” z = z(t).

The constraints may change in time, for example:

z
® X =a
y = b sin(wt)
z=2z(1)
® b
Sy
a /7

Figure 37. Constrained motion; example 2

These ideas can be generalized for a system of IV particles. A “configuration” of the
system is specified by 3N Cartesian coordinates. However, they may be not all independent
due to the presence of some constraints. These constraints may be specified by equations
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of the type

fi(z1,z2,...xsn,t) = 0
f2(1'1,332,....$3N,t) =0

k constraints, k < 3N (3.2)
fr(x1, o, ....k3n,t) = 0

Here we used the notation x1 = x1, 22 = y1, x3 = 21 for particle # 1, x4 = 22,25 = yo, 23 =
zo for particle # 2, ..., and z3ny_2 = TN, T3N_1 = YN, T3n = zn for particle # N. of some
constraints. These constraints may be specified by equations of the type

T1=T1, T2 =Y, T3 =21 for particle #1

T4 = T2, T5 =Y2, To

Zo for particle #2
(3.3)

T3N_9 = TN, TIN_1 = YN, T3n = zn Tfor particle #N

Because of the k constraints, there are 3N — k independent coordinates. These are the
“generalized coordinates” q¢1, g2, ...q3ny_r and the system has 3N — k degrees of freedom.

For example, consider the system of the wedge and the block that slides along the
incline of the wedge. This system has two degrees of freedom, and generalized coordinates

V4

Figure 38. Constrained motion; example 3

can be chosen as the position of the center of mass of the wedge X and the position of the
block along the incline .
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NB: Not all constraints can be expressed in the form (3.2). If it is possible to do so,
the constraints are called holonomic constraints. In some instances, this is not the case.

mass m slides on the surface, and then
at some time t leaves the surface:
constraint r > R

m

Figure 39. Non-holonomic constraint r > R

For example, the point mass m sliding on the surface under the weight of gravity has
a non-holonomic constraint r > R.
Another example: wheel rolling on the surface without skidding.

wheel rolling on a plane:
R point of contact P is instantaneously at rest

=> constraint X =R ¢

Figure 40. Non-holonomic constraint & = R(;.S

NB: The constraints exert forces which are not known a priori.

String tension T needs to be determinea

mg

Figure 41. Constrained motion: pendulum

We want to formulate the dynamics in such a way that these forces do not appear in
the equations of motion explicitly.

To carry out this program, first we define the virtual displacement dx: dz; is an in-
finitesimal displacement of the coordinates consistent with the constraints.

NB: If constraints depend on time ¢ the virtual displacement is taken at a fixed time ¢
so the time is “frozen”.
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— =—tan6

Ox

Figure 42. Example: displacements with the constraint \/z2 + y2 = const

In terms of the generalized coordinates

xr; = a:i(ql,qg,...qu,k;t), i = 1,2,..N (3.4)
= 3N—k
0x; 0x; 0x; ~ Ox;
;i = —8q1 + —0qa + ... + L SNk = 8¢, 3.5
9" " T 9gy " Dgsn_p PVH nz:l qn, (3:5)
Note that change of the coordinates dz; = z;(t + dt) — x;(t) is
3N—k
T2 g, T Tt o (36)

d’Alembert principle: the forces due to the constraints do no work (friction is ignored

here). For example, in the case of pendulum, string tension 7" is orthogonal to the displace-
ment = does no work:

)/

String tension T does no work

mg

Figure 43. Constrained motion: pendulum

D’Alembert principle can be now used to eliminate the forces of constraints from the

dynamical equations. Consider a set of Newton’s 2nd laws:

pj = Fj+R;, j =1,2..N (3.7)

where R; are forces due to constraints and F} are other (known) forces. In our notations

(3.3) the above equation reads

b = F;+ R, i =1,2..,3N (3.8)
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and therefore

3N
S T(Fi+ Ry — pi)owi = 0 (3.9)
i=1
Note that
3N N
> Ribz = > R;-6% =0 (3.10)
i=1 j=1

due to d’Alembert principle (forces of constraints do no work).
Thus, the equation (3.9) reduces to

3N

Z(Fz —pz)(SZL‘Z =0 (3.11)

i=1
where the forces due to constraints has been removed. Note, however, that in the presence
of constraints the displacements dz; (i = 1,2,...,3N) are not independent, for example
0y = —dzxtanf in Fig. 42.

3.2 [Euler-Lagrange equations

Let us rewrite Eq. (3.11) as
3N 3N
> pidr = Féa (3.12)
i=1 i=1

and consider each term in turn. However, first we need to find the relation between partial
derivatives of usual and generalized coordinates and velocities
From Eq. (3.6) we get

3N -k
- oy . 9%i 3.13
T4 g, o (3.13)

Note that due to Eq. (3.2) % is a function of the generalized coordinates and time
gz’; = f(q1,...qg3n—k;t). If we consider g and ¢x to be independent variables, the partial
derivative of the Lh.s. of Eq. (3.13) with respect to ¢ is simply

— = 3.14
dq; dq; (314

because gg; in the r.h.s. of Eq. (3.13) does not have an explicit dependence on g.

Next, we consider the lh.s. and the r.h.s. of Eq. (3.9) in turn.

3.2.1 LHS of Eq. (3.12)
3N—-k

sz&m = Zmzazzéazz = Zm@ Z OZZ gqx; (3.15)

where we used Eq. (3.5). Next, we rewrite the r.h.s of this equation as follows

3N 3N—k . .
D S S ETEL T R P 2
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and use Eq. (3.14):

NNk g 4 o,
ox; = ;mz nz:l {d7< 8%)—961'%(6%)}6%
BNk BN g Z2 D,
- 3 i - S Gl
BNk o g 3N 9 3N 3N—k
. nzl %Cﬁ(; ?) Z; nz Midii— ( n)](sqn (3.17)
Now, x; = x;(q1, ...q3N—k, )
d ozi({g;},t) _ = Pulght) . | 0w
T P ; Pade. 0T B (3.18)
On the other hand, from Eq. (3.13)
9 S 0 0%y
9gn " T & 0q0g," T 0ga0t (8.19)
so we get C‘ég;”’ = %xl Using this formula, we can rewrite the second term in Eq. (3.17)
as
3N 3N—k ox; 3N—-k 3N 9 d 3N—k 9 3N mﬂ:?
_; ; i Zdt<8q ) = — ; ;mzxzaqndth = — nzl (MZ(; 5 ) (3.20)
and get
3N—-k 9 d 3N z2 3N—k 3N .%'12
ox; = Zl 5q"8qndt(iz ?) Z Oqn n(; 5 >
3N—k o
Z 5q”[dta T({a;}Adqs}t) - an({Qj}a{‘jj}J)} (3.21)
where
N 2
T({g} A} t) = D=+ (3.22)
i=1

is the kinetic energy of the system considered as a function of independent variables ¢;, ¢;,
and ¢.

3.2.2 RHS of Eq. (3.12)
Now we turn our attention to the r.h.s. of Eq. (3.12). From Eq. (3.5) we get

3N—-k

ZFdw, = ZF Z 5%8%

3N—-k

Z 5qn( axlF) (3.23)
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The expressions in the parenthesis are called “generalized forces”

N
al‘i

3
Qn = T%Z

=1

(3.24)

The generalized forces can be calculated directly from this definition. Alternatively, they
can be found from the virtual work done by forces F‘] for virtual displacement along a given
generalized coordinate.

A very important special case is the case of conservative forces

0

Fi(xl,...ang) = — 8x~v(x1""x3N) (3.25)

where the potential V' depends only on the positions of the particles. In terms of the
generalized coordinates
V([Bl,...ﬂng) = V(ql,...qi),N,k;t) (326)

so the generalized forces (3.23) can be represented as partial derivatives of potential energy
with respect to generalized coordinates

8% P
= - = — — L 9

3.3 Lagrange equations

Now we are in the position to derive Lagrange equations for dynamics in terms of generalized
coordinates. Combining Eqs. (3.12), (3.21), and (3.23) we get

3N—k 3N—k

0 . .
Z 5q"[dt8 T({ah A4} 1) = 5, ST({a} ()] = 0 00.Qu({ai}Adsht)
n n=1
(3.28)
Since the displacements d¢, are independent we get the Lagrange equation in the form
iiT({q]‘},{q}}?t) - iT({qu{éj}at) = Qn({a}, {4} 1) (3.29)
dt Oqy, Oqn
For the special case of conservative forces the Lagrange equations take the form
d 0 0 0
——T{q;}, {4}, t) — =—T{Hq;i}, {¢:},t) = — —V{q;};t 3.30
at 9g, L e Adiht) = 5 T ({a}. 45} 1) o, (aki1) (3.30)
which can be rewitten as of Euler-Lagrange equations
d 0 0
——L t i}t 3.31
di oq. LUt Ak t) = 5 -L{{a;} 4}, 1) (3.31)

where the function which can be rewitten as of Euler-Lagrange equations

L({Qj}v{q.j}vt) = T({Qj},{Qj},t) _V({qj}7t) (3'32)

is called the Lagrangian.
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Part VIII

3.4 Examples of Lagrangians
3.4.1 Example 1: double pendulum

Consider double pendulum oscillating in XY plane

Figure 44. Double pendulum

One can choose the generalized coordinates as #; and 6. Apart from the constraint
forces Ty and fg, the only one other is the conservative gravitational force with the potential

V = —migys — magys (3.33)

In terms of generalized coordinates

1 = lisinf, y1 = lycosb
To9 = lysinfy + lysin by yo = l1cosfy + Iy cosbs (3.34)
The Lagranfian is
L=T-V = %(x% + ) + 72(953 +93) + migyr + magys (3.35)

which we need to represent in terms of 61, 65 and 91, 92. From Eq. (3.34) we get

il = llélcosel Yy = —llélsin01

.Ci}g = 1191 COS 91 + 1292 COS 92 yz = — llél sin 91 — l292 sin 92 (3.36)
and the Lagrangian (3.35) takes the form

L = %Z%H% + % [Z%G% + l%&% + 2l1l29192 COS(91 — ‘92)] + mgli cosfy + mgg(ll cos 01 + l5 cos 92)
(3.37)
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The Euler-Lagrange equation are
d OL oL d OL oL

God, ~ 96 diod, ~ 96y
(3.38)
The derivatives are

oL
00
oL
005
oL
o6,
oL
06

= — mglllgéléz sin(91 — 92) — (m1 + mg)gll sin 64
= TTLQlllgélég sin(01 — 92) — mgglg sin 92
= (m1 + mQ)l%él + mglllgég COS(91 — (92)

= mQZ%éQ + mgllbél COS(@l — 92)
(3.39)
so the Euler-Lagrange equations (3.38) take the form

(m1 + mﬂl%él + m2l1l2«§2 COS(91 — 92) + m2l1l29% Sin(91 - 92) + (m1 + mg)gll sinf; = 0
mal30y + malyl26; cos(0) — 0a) — malila6? sin(f; — 03) + ma)glasinfy = 0 (3.40)

In summary, the equations of motion are

. m2l2 . o . g .
01 + ————105cos(01 — 03) + 05sin(f; — 05)| + =sinf; = 0 3.41
1 (1 +m2)l1[ hcos(f1 — 02) + 05 sin(6; 2)] I 1 ( )
0y + 5—1[91 cos(f1 — 69) — 9% sin(6; — 92)] + lgsin 0, =0
2 2

It is a set of coupled differential equations. Solving them for a given 61, 010 and 020, 00 we
can find 6 (t) and 0a(t).

Let us consider the case of small oscillations 61,0y < 1 and 6?1, 0y7 < 1 where 7 is the
characteristic time for the oscillations (we will see below that 7 ~ wio ~ \/g ). In this limit
the Egs. (3.41) turn to

. m2l2 . g
0+ ———O+ =0, = 3.42
1+(m1+m2)l1 2+l1 ! 0 ( )
D
b+ L6+ 26, = 0
lo Iy

For simplicity, let us take m; = me = m and l; = Iy = [ and define wg = %. One obtains

61 + %éz +wi =0 (3.43)
0y + 0, +w§92 =0

Ansatz: 61 = pjcos(wt+ ¢), 02 = pacos(wt + @)
prw? + %wz = wip (3.44)
p1w? + paw® = wips
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The solutions do exist only and only if

2 2 w?

2

det 9
—w* Wi —w

. =0 (3.45)

We will study this case of small oscillations later.

3.4.2 Example 2: pendulum with sliding pivot

Consider a pendulum with pivot at mass mj which can slide along the wire in x direction
without friction. Again, the motion is supposed to be restricted to XY plane. There are

y m,g

Figure 45. Sliding pendulum

two degrees of freedom which cam be chosen as x and 6:

{3:1::5 {x2:x+lsin9 (3.46)

y1 =20 ys = lcosf

The kinetic energy takes the form

my . . ma . .
T = —(@1+97) + (43 + 93

2 2) _ mi1+ma .o
2 2

i +%(1292+2zcos9¢9') (3.47)

so the Lagrangian in terms of generalized coordinates (3.46) reads

L =T-V = L+magys = wgf?%—%(l292+2lc050:ﬁ9‘)—I—nglcosé? (3.48)

The partial derivatives are

oL oL

—_— ¥ ] — p— -4
ER (m1 + ma)& + malf cos 9 0 (3.49)
Zg = m2l29 + molt cos ?}5 = — mglé}jc sin @ — mogl sin 6
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so the Euler-Lagrange equations take the form

d 0L oL d . :

55 = o = 7 [(m1 + ma)d 4+ molfcosf] = 0 (3.50)
d 0L oL d 24 . s .

- 5 = 5 = 7 (m2l 0 + molx cos 9) = —mylOisinf — mayglsinf

The first of these equations implies that () 4 ms )i +malf cos § is a constant. It is easy to
see that this constant is equal to the xz-component of the total momentum of two particles:
(m1 +me)x + molfcos = myiy + mais = Py. The total momentum of the two particles
is conserved since the only external forces acting on the pendulum are the force of gravity
and normal force at the pivot m; and both of them are orthogonal to z axis (recall that we
ignore friction at the pivot).

The second equation (3.49) can be simplified to

cos

9+l

i+ wising = 0, w%z% (3.51)

Next, we can express Z in terms of 6 using first Eq. (3.50)

mgl

i = ——6?sinf — 0 cos 0 (3.52)
mi + ms m1 + ma
so the equation (3.51) can be rewritten as
20N . inf cosb .
(1 _ M2e08 )9 M2SMYUCBT g2 | 25ing = 0 (3.53)
mi + mo m1 +mg

For the case of small oscillations (f < 1)the above equation reduces to

™ 42 0424020 = 0 (3.54)
mi + mg my + mg

If we assume also that 6 < wy we get

m 2

1 .. 9 .. 9 m
—0 0 =0 0 = — 1+—)40 3.95
my + ma +WO ~ WO( +m1) ( )

which is the harmonic equation for oscillations with frequency
w=uwp,/1+— (3.56)

Check: in the limit m; — oo we get w — wp for the standard pendulum.

3.5 Calculus of variations

Consider the following mathematical problem: find a function y(z) in the interval [z, z2]

such that the integral
dy

x2
I = ' x2)d =2 57
/m f(y,y, x)de, v = (3.57)
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is at extremum (= minimum or maximum). The integral (3.57) is an example of a functional
- function of a function. The integral I(y(z)) is a number which depends on the form of
the function y(x).

Let us find the condition for a path y(x) to make I stationary (= minimal or maximal).
Suppose the function g(x) makes I stationary. Let us take an arbitrary function y(x) and

let us consider a set of functions y(z, @) such that

y(@ o) = gl@) + a(y@) - g(z)) (3.58)

If y(z) makes I stationary, the integral

I(a) = /mf[y(:z‘,a),y'(w,a),:z:]d:n (3.59)

must have an extremum at the point o = 0 - otherwise small deviations of the function
a(y(z) — y(z)) would lead to a change in the value of I(a). Thus, the necessary condition
for y(z) to be an extremum of functional (3.57) is

dl ()

o =0 for any y(x) (3.60)

a=0

Taking the derivative of Eq. (3.59) we get

dl () [ df(y, Y z) dy(z, @) df(y,y', z) dy' (z, @) d
do - d do o= dy’ d —of ™
a=0 21 Y Q a=0 Y « a=0
2 [ df (y, y’,:c)’ _ df(yjy’,w)‘ / » }
[P ) - o) + TEED] ) - @)
2 [ df (y, y’,x)’ _ df(y,y',z)| d _
- YYy,2) - GGV 2 D) - dr (3.61
[P ) - ) + TEED ) - o) fao (o)
Next, we use integration by parts in the second term
T2 d /
33’7’:6) 4 y(z) — y(z 3.62
d f(yd;// .
T -
df(y,y', o [ dodf(y,y i}
= TR (o) - g)[ = [Car g PO () )
= r=x 1 =
Since by assumption y(x1) = y; and y(z2) = yo for any y(z) the non-integral term vanishes
and we get
dl
(@) (3.63)
da a=0

= [(a[ferd) _AT0SD) i) - )

” dy )y:y Cde dy ‘y:g
Now comes the central point: since y(x) is arbitrary (modulo y(z1) = y1 and y(z2) = yo
conditions), the integrand in Eq. (3.63) should vanish identically so we get the condition
for y(z) to be a stationary point of the functional (3.57) in the form

d df(y,y', x) _df(y, vy, x) (3.64)
dx dy’ Y=y dy Y=y
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y(x) = ¥(x) + 8y (x) 2
¥4 y(x)
A (%)
X

Figure 46. Variation of the path y(z)

One can represent the derivation of Eq. (3.64) in a more formal way using calculus of
variations. We introduce small variations of the path g(z)

oy(x) = y(z) —y(o), oy(x1) = dy(z2) =0 (3.65)

The variation of the functional (3.57) is then

€2

61 =1(y+oy,y +0y,x) —I(y,y,z) = / dze[f(y+ 6y, ¥ + 0y, z) — f(5,7,2)]

x1

[ Of(y, Y x) of (y, v/, )
B /xl dz{ dy ‘y:yéy(x) oy ‘y:y

—+

5y'(x)} (3.66)

Integrating by parts the second term we get (cf. Eq. (3.62))

2 0f(y,y, ) ‘ d
/ de——"-"—+= —dy(x)
1 ay, yzgdfl}'
w2 d 0f(y,y, z) of(y,y', ) T=x2
= —/ dx 5y(m)%7ay/ ‘y:gj 783/ ‘y:gdy(a:) s (3.67)

By definition (3.65), the variations dy(z) vanish at the end points dy(z1) = dy(x2) = 0 so
the non-integral term in the r.h.s. of Eq. (3.67) vanishes and Eq. (3.66) reduces to

{W(y,y’,w) d 0f(y, v x) (3.68)

o= / e 5y(:c) Jy ‘y=27 dx oy’ ‘y=z7}

xr1

Since dy(x) is arbitrary, the integrand in the r.h.s. must vanish so we reproduce Eq. (3.64)
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3.5.1 Example 1

Q: what function y(x) minimize the distance between points x1,y; and x9,y2 on a XY
plane?

To answer this question, we need to determine first the functional for this problem. The
length of the small segment of the curve Ar is given by (see Fig. 49)

y X2
WD)
v& Ay
Y1 y(X) Ax
X1
X

Figure 47. Length of the curve

Ar = (A2 1 (Ay)2 = Axy[1+ Eii;z (3.69)

For infinitesimal displacements we get

dr = dxy/1+y? (3.70)

so the total length between x1,y; and x9, y2 is

2
I = i Ar); = dz /1 + y'? 3.71
Aim San = | Cdr /1y (3.71)

The Euler-Lagrange equation reads

of d of d y’ y//
7 =0 = —= = — = =0 3.72
dy dx 9y dz /14?2 (1 + y/2)3/2 (3.72)
so we have
y' =0 = y =const = A = y = Az + B (3.73)

This constants A and B can be found from the conditions y(z1) = y1 and y(z2) = ya:
A = 2 yl) B = 42”0 y:y1+y2 yl(m—xl) (3.74)
T2 — T1 T2 — T1 T2 —T1

Thus, the shortest path between two points on a plane is a straight line.
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Figure 48. Length of the curve

3.5.2 Example 2

Consider a particle sliding down some slope from point x = y = 0 to z9,y2 in a uniform
gravity field. Find the form of the slope which minimizes the time of the slide. From the
previous example: the length of the infinitesimal segment of the path is

dr = dz \/1+4y? (3.75)

Now, due to conservation of energy the velocity at the point x,y is

mu? 2gy dr
5~ 9Y v= 7 (3.76)
and we get

d v2 14y
it = = = de |2 [ = T = m/ dr |22 (3.77)
v 29V 1+ 29.Jo y

Euler-Lagrange equation

1 + y/2
no_
y' = % (3.78)
The solution is
x = a(f —sinb), y = a(l—cos®) (3.79)
which is a cycloid (z — af)? + (y — a)? = o
3.5.3 Variational principle for a functional of many variables
These ideas can be generalized to a functional I(f) of the form
x2
10) = [ 1) @) on @it @) h(), tfy(@)a)  (350)
x1
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Repeating the steps (3.66) -(3.67) we get

/mf(yl(x) +0y1 (), y2(x), . yn (2); ¥1 (2) 4+ 0v4 (2), y3 (), ..y (2), @)

1

- / P01 (2), 92(@), oy (@): (1), 9 (@), -ty (), )

1
€2

0 d o
= same tricks = / dx dy1(x) (—f - — Ji ) (3.81)
= Lagrange equations:
of d of
L9 —1,2,..N 3.82
OYn dx 0y}, " ( )
Part IX
3.6 Hamilton’s principle
Suppose a particle moves along the trajectory ¢; = §;(t) between points ¢;(t1) = qz(l) and

qi(t2) = q§2) (¢ =1,...N - generalized coordinates). Consider any “virtual path” ¢;(¢) with

the same initial and final points and define the “action”

Sq) = /tgdt L(qi(t), 4i(t), 1), L(gi(t), ¢i(t),t) = T =V (3.83)

t1

Hamilton’s principle: from all virtual trajectories with the same initial and final points,

the actual path has the least action.

Euler-Lagrange equations for minimum of the action coincide with the Lagrange equa-
tions (3.31) which we derived from Newton’s laws. Indeed, relabeling z — t and y;(z) —
gi(t) in Eq. (3.80) we get the condition for the extremum of the functional (??) in the form

OL(gi(t),4i(t), 1) _ d 9L(qi(t), ¢i(t), 2)
8%’ 4=0;,0i=G; dt a(h 4=3i,4i=4;

(3.84)

The Hamilton principle is equivalent to Newton’s laws: one could have started classical
mechanics course from the statement that for any system there is a function of generalized
coordinates L(q;(t),q;(t),t) such that the system moves along the trajectory with minimal
action S(q(t)) = [2dt L(gi(t), di(t). ).

NB: Note that one can add to the Lagrangian the total derivative of some function
(with respect to time) and the Euler-Lagrange equations (= Newton’s laws) will not change.
Indeed, if L(g;(t), ¢i(t),t) = L(qi(t),q(t),t) + 4 F(g;(t),t) the new action has the form

t2

Sla) = [ dt (L. a0.0 + FP@O0] = Sa)+Fl) = Ft) - (355)

Since the classical path corresponds to minimum of S(q(t)) at fixed q(t1) = ¢1 and q(t2) = ¢2
the extra constant F'(q(t2),t2) — F(q(t1),t1) = Fo» — F; does not affect the variations so
Euler-Lagrange equations remain the same.
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9

d Classical path q(t)

q(t) = d(tp =4, S(9) > S@)

Trial path q(t): B
q(ty) =q(ty) =q,

Figure 49. Hamilton principle

it can be also proved directly: the new Euler-Lagrange equations are

AL (060, + GF@0] = G (L. a0 + 5 Fa.0] =

9
0 0 d
Lhs. = —L(gi(t), i(£), 1) + — —F(q;(¢), 1),
“ = 3 (qi(t), Gi(t) )+aqidt (qi(t), 1)
d 0 . d 0 (. 0F(qi(t),t) = OF(q(t),t)
hs. = ——L(q(t), ¢ (1), A
rhs. = TarHa®)al).) + o (r o ot )
0 d 0
= = L(qi(t), 4i(t), ) + — —F(g;(1), t
A L0600 + 57 Fla(0).0)
(3.86)
We need to check that
0 d d o0
@@F(qz‘(t),t) = %%F(qz’(t)i) (3.87)
Since %F(Qi(t),t) = qi(t) 8F(g;(it)’t) + aF(%t(t)’t)
o d O (. OF(@),t) OF@®).0\ . . Flal).t) PP,
——F % ) = 3. =
o art @®:D] = 5 (6x(0) o0 ot ) = (0 90:00x Dq,01t
(3.88)
and
0 d d 0 (., 0F(q(t),t) OF(q(t),t) d OF (qi(t),t)
- Fa(t),t) = — o~ = =
aq il @)t = e (q’“() A ot ) it 9gi
& F(qi(t),1) F(qi(t),1)
= : j "~ = r.h.s. of Eq. (3.88 3.89
945t ™ 50rda, r.h.s. of Eq. (3.88) (3.89)
Example: consider L = %mfg and L = %m(F — 17)2 where V is some constant vector.
- t2 1 . t2 1 . . L 2 1 .. d. .
S = / dt=m(F = V)? = / dt=m(i® =27V +V?) = / dt[zmi® + m— (F-V +
tl 2 tl 2 tl 2 dt
7> 7
=S5 + m(FQ-V+7t2)—(_'1-V+7t1)
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Euler -Lagrange equation is

oL d 0. d, - o -,

2

which means that the Lagrangian for a free particle can be written as %mv in any inertial

frame - Newton’s law is the same.

3.7 Constants of motion

Let a system have n degrees of freedom, then ¢;¢; determine uniquely the evolution of the
system in time. In general, the positions ¢; and velocities ¢; depend on time. However,
there may be certain functions of f(g;, ¢;,t) which do not depend on time

d )
af(%‘, ¢i,t) = 0 (3.92)

and then f at any time is determined by initial coordinates and velocities.

For example, if L does not depend on one or more coordinated g¢;, the corresponding
generalized momentum is conserved

d OL oL

——— =0 & p, = —— = const 3.93
t 04, P b (399)

There are three very important conserved quantities related to the property of homo-
geneity and isotropy of space-time

e i invariance under space translations = conservation of linear momentum,
e ii invariance under rotations = conservation of angular momentum
e iii invariance under time translations = conservation of energy

Note that (i) and (ii) are conservation laws for vector quantities. Depending on the
situation, it may be that only one (or two or none) of the components are conserved - if the
system is invariant under translations along certain direction or rotations around certain
axis.

We will demonstrate now that if the Lagrangian L(f},f_’;,t) is invariant under these
transformations (space translations,rotations, and time translations) the linear momentum,
angular momentum, and energy are conserved.

Let us consider a system of N particles and assume that there are no constraints so
the Lagrangian can be written as

L = ) L, nst) (3.94)

in the Cartesian coordinates.
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3.7.1 Space translations

Consider an infinitesimal translation in é; direction: ¥ — 7+ €
0L = Y L(Fo+&Fn,t) = Y L(Fn,in,t) = Y & VWL =0 = (3.95)
n n n
N
> VWL =0 (3.96)
n=1
where VWL = éiﬁ. Next, we use Euler-Lagrange equations and get
oL d 0L oL
O(rn)i  dt O(in); Zn: o) 8 (3:97)

Since L = ) L(7, Fyt) = 30 m"TF?‘ — V(7p,t) we obtain

N N N
Zmn(rn)z = const < Zmnﬁn = Zﬁn = P = const (3.98)
n=1

n=1 n=1

where p' = Zgzl Dr, 18 the total momentum of the set of particles.

3.7.2 Invariance under rotations

Consider a rotation on infinitesimal angle € around axis specified by unit vector n. From

Eq. (2.13) we know that the rotation around the axis defined by d© on the angle \dﬁ\ is
represented by the cross product dQ x 7 where

T Tl = o+ dQ x 7y (3.99)
where d) = fe. Also, . .
Fos o= i 4 dQ x (3.100)
If we assume 0L = 0 we get
0 = L(7y 4 dQ x 7, 7 + dQ X 7, t) — L(F, T, ) (3.101)

) - . 0L
— Zn:(dQ X rn)zm + zn:(dsz X r”)za(fn)i

8 dt O(r); ' A(n)i
d oL d 0L d oL
= — df) _’n i 5 - €— 2 _’n 7 . 1t nje . =0
g7 2 (40X ) B Cdt ;(” <MligeS T @ ;(” XTa)ige:
S0
Z(ﬁ X )i oL = Z(n X )i(pn)i = Z(n X Tp) Dn = N an X Py = const
n a(rn)z n n n
(3.102)
which means that the component of total angular momentum L = > Tn X Pp along n

direction is conserved.

— 59 —



3.7.3 Invariance under time translations

Consider the time derivative of L (here the constraints may be present)

%L(Qi7Qiat) = qz‘giJrngL + aatL
. 0L d, . 0L .doL 0
= ‘Zza +dt(qzﬁqz) q@@@‘f‘a
OL OL .OL 0 d, . 0L OL

9 B +dt( 96 "o T ot = @%iag) T ar

where the summation over all coordinates ¢ of all particles is implied. We get

d /. 0L oL
PRI
dt qu ot
so, if L does not explicitly depend on time (= % = 0), the Hamiltonian
oL
H=¢—-1L
494

is conserved.

(3.103)

(3.104)

(3.105)

If there are only time-independent potentials and time-independent constraints, the

Hamiltonian (3.105) is not only constant, but also the total energy. Indeed, the kinetic

energy 1T = % 27]:[:1 m, 72 can be expressed in the generalized corresponds as
N Mo, 3N—k O 3N—k O 3N—-k 3N-k N m.. Oz Oz
DD ST ST S S ot
n=1 i=1 j=1 1=1 Jj=1 n=1
where we used Eq. (3.13) with %fj =0
3N—k 3N— k
T T n
n=1 aqn n=1 aqn

(here k is a number of constraints). Let us define the symmetric matrix

% My, 0%y, 0%y,
mij = — -—
o 2 aqi aqj' ’
then the kinetic energy can be written as

| 3Nk

Z mz]%%

i,7=1

(3.106)

(3.107)

(3.108)

(3.109)

Let us compare it to Hamiltonian (3.105). Since the potential energy does not depend on

velocities, we get

3N—k
oL

i m
R
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q1
q1

and therefore

3N—k 3N—k 3N—k

. OL .. 1 ..
H= Y Gige —L = > mijdid; — 3 > mijdid; + V()
i=1 qi ij=1 ij=1
| 3Nk
= 5 'Zl mijq'l-q'j—i—V(q,-) = T—G—V(qi) = F (3.111)
17‘7:

When the constraints do depend on time, ther emay be the situation where Hamiltonian
(3.105) is conserved but not equal to the total energy.

3.7.4 Number of constants of motion

Consider an isolated system with n degrees of freedom. For isolates system the Lagrangian
does not depend on time and so the equations of motion do not involve explicit ¢-dependence.
Q: How many constants of motion are there?

A: In general, 2n — 1.

Proof: suppose we have solved equations of motion with the initial conditions ¢ (to) =
c1,q2(to) = ca, ...qn(to) = cn, G1(to) = 1, ---Gn(to) = capn and the solution is

o = qt,c,.cn), @2 = q(t,c1,.Con), - tn = qu(t,c1,...Con),

(jl = ql(t7cla"'62n)7 Q2 - q2(tvcla'-'02n)7"‘qn = qn(t7clu-"02n) (3112)

Since the system is isolated, it is invariant under time translations so the constants ¢; can
be rearranged in such a way C; = Cj(cy, ...ca,) that Ca, =ty so that

@ = q(t—1t0,C1,..Con1), @2 = @2t —1t0,C1,...Con—1),, ., qn = qu(t —to,C1,...Con—1),,
@1 = qi(t —1t0,C1,...Con-1), G2 = G2(t —t0,C1,..Con—1), ..., 4 = Gn(t —to,C1,...Con—1)
(3.113)

Now we can solve one of these equations, say the last one
t—to = f(dn,C1,Cs,...001) (3.114)

and substitute the obtained t — ¢ in the remaining 2n — 1 equations (3.113). We get

= q1(f(@n;{Ci}), C1,..C2n-1), Gn-1 = n-1(f(Gn;{Ci}),C1,..C2n-1),qn = qu(f(dn;{Ci}), Ch, -
= @1 (f(4n; {Ci}), C1,...Con1), -1 = (f(dn;{Ci}),C1,...C2n—1)

At each time t we can solve this system of (2n-1) equations with (2n-1) unknown C; to
get Ci = Fi(qi(t),..qn(t),41(t),...4n(t)). Since C; are constants, the obtained expressions

Fi(qi(t), .qn(t), 41 (t), ...gn(t)) will not depend on time (= %Fi (q1(t), .qn(t),q1(t), ...Gn(t)) = 0).
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3.7.5 Example: particle in the potential V(r) = —

2R

The Lagrangian is

m y
L= -2 3.116
2 " T ( )
Since L is time-independent (no constraints are present) the energy is conserved
E =H = %1'"2 +2 = const (3.117)
r

The Lagrangian is invariant under rotations about any axis passing through the center
of the force so L = 7 x P’ is conserved. The energy plus 3 components of L give four
constants of motion. Moreover, there are three additional constants of motion given by the
components of Runge-Lenz vector

A = §x L+myp (3.118)
Indeed,
d/. = 7 o = 7 7 P T
—(pr—i—myf) :pr—l—mfyf—m’yﬁr:7—3><(7"><m7“)+m’y<7— 2)
dt r r r r roor
mYy. o o, my.., o .
= TT[T(T-F’)—TTQ] + W[rﬁ—rrr] =0 (3.119)

where we’ve used formula

ax (bxd) = b(@-c)—éa-b) (3.120)
and the fact that 7 7 = %%fg = %%72 =

Thus, it looks like we have 4 = 3 = 7 constants of motion in contradiction with our
theorem which gives 3 x 2 —1 = 5 constants. In fact there is no contradiction since not all
of our 7 constants are independent; there are two relations among them. The first one is

—,

trivial. Since @- (@ x b) =0
(L-7) = m%f. Fx7) =0 (3.121)
The second relation is less trivial

A? = (Fx L)?+m*y? +2mvyr- (Fx L) Lip P°L? + m?y% 4+ 2mAy7 - (5 x L)

= FPL? +m?y% + 2my(7 X p) - L = (p2 + 2mTPY)L2 +m?y? = 2mH +m?y? (3.122)

Thus, the number of independent constants of motion is 7 —5 = 2

Part X

3.8 Forces of constraints

Consider a system described by 3N Cartesian coordinates, & holonomic constraints, and
hence 3N — k degrees of freedom. We can find generalized 3N — k coordinates, express the
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Lagrangian in terms of these coordinates, and solve the resulting Euler-Lagrange equations.
However, this method will tell us nothing about the forces due to the constraints. To find
these forces, one needs the method of Lagrange multipliers outlined below.

Suppose we have N particles with coordinates 7y = (z1, z2, x3), 72 = (24, X5, T6),...TN =
(x3N—2,T3N—1,T3N) With k constraints

fl(ﬂfl,mg,....l‘gN,t) 0
fg(l'l,xg, «...l3N, t) =0

k constraints, k < 3N (3.123)

fk(xl,l'g,....l'g]\[,t) = 0,

What we have done before is to solve the equations (3.123) and find the generalized coor-
dinates. However, sometimes it is difficult to solve these equations. Fortunately, there is a
trick which enables us to avoid the explicit solution of equations (3.123).

Method of Lagrange multipliers

Consider the system with 3N + k generalized coordinates described by the Lagrangian:

L(l’l, ...,:ZJ3N,$1, ...,$3N; )\1, cony )\k;t)

k
= L(w1,..., 23N, 1, ..., T3N3 t) + Z)\kfk($17$2,~-~1?3N,t) (3.124)
=1

where x;, &; are our 3N original coordinates and A{, Ag, ..., A are k additional coordinates
(called Lagrange multipliers).
Hamilton principle for the action

to B
S = / dt L(.%'l,...,.%'3N,i71,...,i}gN;Al,...,)\k;t) (3.125)

t1

gives us 05 = 0 provided ;(t;) and z;(t3) are fixed. Considering variations of extremal
path z;(t) — Z;(t) + dx;(t) and infinitesimal changes of parameters \; — \; + §); we get
(cf. Eq. (3.66))

0SS = / dt[L(ﬂ_ji + bz, T; —|—5i’i,)\j +5)\j) — L(:fi,i,‘i,)\j)]
t1

to
_ / dt{ OL
t1 axz

Integrating by parts the second term and using dx;(t;) = dx;(t2) = 0 we get

k ~
S (t) + 8L5>\j} (3.126)
Ti=T; =1 8)\j

oS EI(@+6yagl+5y/7x) —I(y,y',x) = / dt[L(jz+5$z,xz+(5$lvAj+5)‘]) _L(i‘iajjzﬁ)‘j)]

t1
t2 OL d L
= dt{(Sl'l t

k ~
oL
)+ maxj} (3.127)
T;=T; = j
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Thus, Hamilton principle S = 0 gives

oL _ d oL
oL
— =0 3.128
oy (3.128)
. AL _ dL L _ dL oL .
Since iz I ) N + ZJ 1 ]axla 2 I T N and = = fj(x;,t) we
get 6
d 0L of;
— — A2 3.129
dt 8.TZ Ti=T; 895, Ti=T; Z 8:5, T;=T; ( )
fj(:i'l, ...,:ng;t) = 0, j= 1,2, .k (3.130)

Since L = T(x;,4;) — V(z;) we can rewrite Eq.(3.128) as

d oT oT af;
_ —_ = )\ J == Fl T t ) T t ,t
dt a$2 Ti=T; 61’1 Ti=T; 81‘1 T;=T; Z ]01‘1 T;=T; ({l‘( )}) +R ({IE( )} )
(3.131)

where F; are forces due to potential V(x1,..z3y) and

df;

A= 3.132
Z (%:Z T =T; ( )

are the forces exerted by the constraints. For example, if the kinetic term is T = )" %x?,

the equation (3.131) reads

.. ov
mr; = — oz, + R; (3.133)

from which it is clear that R; are additional forces exerted by constraints. Note that in

order to find these forces one must solve the equations (3.129), but it is not necessary to
solve constraint equations (3.130).

3.8.1 Example

Consider block on the recline.
Constraint: z = ztan o
The Lagrangian (with multipliers) has the form

= m . .
L = 5(:132 + %) —mgz + Az — ztan ) (3.134)
SNote that we need to allow time dependence of Lagrange multipliers A;j = Aj(t), otherwise in Eq.
(3.128) we will have ftz dt Z] 1 gf d\; = 0 with time-independent d); and the only constraint that we will
be able to provide with consntant \’s is Z L dX; ftQ dt 55 aL =0= ftQ dt 55~ 6L =/, 2dtf; (%1, ..., Tan;t) = 0
instead of f;(Z1,...,Z3n;t) = 0 at any time ¢.
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m
o g X
Figure 50. Block on the recline
@ = Atan oL = mg + A oL = z—zrtana
or 9z oan T
oL oL
5 = mi, i mz (3.135)
b Z
The Euler-Lagrange equations (3.129) take the form
mi = —Atana = R, = —Atana
mzZ = —mg+ A = R, = A
z = rtana (3.136)

These are 3 equations for 3 unknowns z, z, and A. Eliminating A with the help of

A = mZ +mg = mitan o + mg = —Atan® a + mg

we get
A = mgcos® (3.137)

Now let us check constraint forces

R; = —mgsinacosa
R. = mgcos’a (3.138)
in accordance with Fig. 50. Now let us find the solutions of equations of motion
¥ = —gsinacosa = T = xg-— gtzsinacosa
2

5 = —g+gcosia = gsinfa = 2z = zo—gtzsin @ (3.139)

Note that work done by the reaction force vanishes

dW = R-dl = Rydz+ R.dz = —mgsinacosadz +mgcos®>ade = 0 (3.140)
Alternatively, we could have introduced the generalized coordinate [ so the Lagrangian
would be
m m -
L = 5('2+22)—mgz = Eﬂ—mglsina (3.141)
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The Euler-Lagrange equation is

d OL L .
dti)l = a@l & ml = —mgsina (3.142)
and the solution is 1
I = lp— 59752 sin (3.143)
which is the same as Eq. (3.139) since
1
V(@ —20)2+ (2 —2)? = §Qt2 sina = |l — I (3.144)
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Part XI

4 Small oscillations

4.0.2 Lagrangian for small oscillations: a set of coupled oscillators

In this section we consider the motion of the system undergoing small displacements from

a stable equilibrium position. Consider a system of n degrees of freedom described by the

generalized coordinates q1, qo, ....Gn:

(1 = 21(q1,q2,--Qn)
vy = x2(q1,92,--Gn)

n <3N, no time dependence
3y = 23n(q1, G2 --n)

where z; are Cartesian coordinates.The Lagrangian in Cartesian coordinates is

3N

mi .o
L = —az; — V(x1,..x
> V(o)
=1
In terms of generalized coordinates #; = » y\_; %cb\ SO

Z m; Z 8:62 q}\ Z 8.1‘@ ng . V Q1, qn)

L e

Mio .
= Z —5 o = V(a1 -an)
Ao=1

where

ox; Ox;
Mmys = mAa(Ql:--ﬂn) = Zmz ' '
[

At any equilibrium {¢} (stable or unstable) the generalized force vanishes

ov

© = o

9o :‘Ig

(4.2)

(4.3)

(4.4)

(4.5)

For a system with just one degree of freedom, the condition of a stable equilibrium requires

9%V (q)
0q?

> 0, see Fig. 51

" A

stable unstable unstable

’q=q°

Figure 51. Stable vs unstable equilibria
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Suppose ¢2, 0 = 1,2, ..n is a stable equilibrium. We would like to study small displace-
ments around {gY}. To this end, we introduce new generalized coordinates 7,

G = q0 -+ (4.6)

and assume that |n,| are small. If |n,| are small, we can expand the potential in Taylor

series
1 o*v
Vg, qn) = V(Q,..®) + = , o), Uz( )‘ 47
(a1, ---qn) (a7 -an) + 2;’1))\, Mo + O(°), v v PP
Similarly
. Mo . . - Mo . . 3
T = ) i = ), —Tmie + O() (4.8)
Ao=1 Ao=1
and the Lagrangian takes the form
n
Mmxs . . 1
L =T-V = V(q?,...qg)—i-)\z_l277>\17g—2§:v,\g17)\770— + o) (4.9)

(the overall additive constant V(¢?,...¢0) can be omitted).
Note that the coefficients vy, and m), are real and symmetric in A <> 0. We can define
real symmetric matrices

mi1 M2 ... Mip V11 V12 ... Vln
m21 M22 ... M2y V21 V22 ... V2p
m = ) and v = ) (4.10)
Mpl Mp2 .. My Unl Un2 - Unn
In the matrix form the Lagrangian (4.9) reads
1., . 14
L = -n'mn—-n'vn (4.11)
2 2
where 1
m m
72 12
n = ’ and n = ' (4.12)
Ui T
The Euler-Lagrange equations are
d oL oL % .
dt 8?7)\ 87])\ ; AoTlo JZI Ao Tlo ( )

This is a set of coupled second-order differential equations. The solution is specified by
initial conditions 7 (t = 0) and 7,(t =0), 0 = 1,2,...n.
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4.0.3 Eigenvalues and eigenvectors

For one degree of freedom the set (4.13) reduces to one harmonic-oscillator equation
M= —un (4.14)

with the solution
n(t) = pcos(wt+ ¢), w=4/— (4.15)

with p and ¢ fixed by the initial conditions.
Let us try similar ansatz

n(t) = pycos(wt + ¢), v = 1,2,..n (4.16)
for n degrees of freedom. Substituting this ansatz into Eq. (4.13) we get

Z Mrgw?py cos(wt + ¢) = Z Vo Po cOs(wt + ¢) (4.17)

Z(v,\a—mww2)pa = 0, A= 1,2,.n (4.18)

or, in matrix notations,

v -ump =0 & mv-uwlp =0 (4.19)

This is an eigenvalue problem which has solution only if
detm~v —w?l = 0 &  det|v—w’m| = 0 (4.20)

The determinant in the r.h.s. of Eq. (4.20) is a polynomial in w? of order n. Any such
polynomial has n roots w?, s = 1,...,n (some of the roots may coincide). Let us prove
that since matrices m and v are symmetric and real, all roots w? are real.

Proof: take

T
n(v-uwmn =0 <& = nT v (4.21)
n'mn
where nf = nT*. The eigenvectors n may be imaginary, but nfvy is real:
(m'vm)* = (0™vn)" = D (oaemo)* Z MU = D _Mvany = 07 vy = nivy
Ao Ao
(4.22)
Similarly, m is symmetric and real, therefore n’*mmn is also real and so is w? given by the
ratio (4.21). We will consider the case when all w? are positive 7.
For next step we will need a formula
(AL = (D x3Arts)" Z a4, Za, boo = ATy (4.23)

Ao

7 If some w? are positive and some negative, we have an unstable equilibrium of the saddle-point type
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where ALA = A3,. Note that for the symmetric real matrix AT =A.

Let us prove now that the eigenvectors corresponding to different eigenvalues are or-
thogonal with weight m. Consider two eigenvectors n® and ! corresponding to two different
eigenvalues w? and w?

(v—wlm)n® =0, (v—wlm)n® = o, (4.24)
Let us multiply the first equation by 17(’5)T and second equation by n(S)T
nWi(v —wlm)n® = o, N (v —w?m)n® = o, (4.25)
The complex conjugate of the first equation is
(Vi (v — wim)n®)" = 9@ (v —wlim)n®
(see Eq. (4.23). Now, subtracting this equation from the second equation in (4.25) we get
N0 (w? — w2mn® = 0 (4.26)

and therefore
nMimn® = 0 it w? #£ W (4.27)

Suppose now that all the eigenvalues are different ®. The corresponding eigenvectors are
orthogonal. Moreover, they can be normalized by the condition

nOTmp® = 5, (4.28)

Indeed, since the homogeneous linear system (4.18) has zero determinant, only n — 1 equa-
tions are linearly independent. For example, we can choose first (n-1) equations

2 2 2
(v —wimi)p]  + ot (Ve —wimin—1)phy (Ve — wiman)py,
2 2 2
(va1 —wima1)p]  + o+ (Vo1 —wiman—1)phy (Ve — wimen)py,
2 2 2
(Un-1,1 —wimn-11)p] + o + (Vn-1,n-1 = WsMn-1n-1)Pp_1 + (Vn-1n — WiMn—10)Py
(4.29)
and rewrite them as
2 2 Pr_1 _ 2
(v11 — Wsmll) + o+ (Vi1 —wimy 1) o = wimip —Vip
2 ﬁ 2 Pr—1 _ 2
(v21 wsmm)pi + + (v p—1 —wiman—1) o = WgMap — V2n
2 It 2 nel 2
(Un—l,l - Wsmn—l,l)é + ...+ (Un 1,,n—1 — WgMnp—1,n— 1) nn = WgMp—-1n — Un—-1n
(4.30)
8For degenerate eigenvalues one can get a set of orthonormal eigenvectors using Gram-Schmidt procedure:
given the set of linearly independent vectors v,,, choose vi = ‘:—1‘7 Vo = vo—Vi1(V1- vz) and Vo = ;—;,
vy = v3—vVi(V1i-v3) —Va(V2-v3) and V3 = |v3\7 etc. In general, v, = vp —> ;_; Gk(vk vyn) and
Vi = ‘z— It is easy to see now that the set v,, is orthonormal.
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This is n — 1 equations which determine n — 1 ratios Z—E and therefore all pj are determined

only up to an overall factor. We can choose this factor in such a way that Eq. (4.28) is

satisfied. Moreover, all coefficients in the system (4.30) are real which means that the ratios

Py

S
n

are real, too. The complexity can enter the solutions 7® only as an overall factor. Thus,

we can always write down the solution of the equation (v — w?m)n, = 0 in the form

ns = Csei(bs Ps
where ps are real orthonormal vectors
p(t)Tmp(S) = by

4.0.4 General solution and initial conditions

To summarize, we have found a set of n independent solutions
Py
Py

p) cos(wst + ds) = ' cos(wst + ¢s), s = 1,2,..n

i)

with p(®) normalized according to
pDtmpt) = 4,

The general solution of the equation (v — w?m)ns; = 0 can be written as

n(t) = ZCSp(S) cos(wst + ¢s)

s=1

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

where real constants Cy are determined by the initial conditions. To find C; and ¢, consider

n(0) = chp(s) COS s = pM'mn(0) = C,coso,
s=1
n(0) = —ZCstp(S) sin ¢ = P mn(0) = — Crw,sing,
s=1
and therefore
(")t my
tan g, — 1 p"Tmm(0)

@y pOTmn(0)
1 .
e = [P mn(0)]" + = [p" i 0)]”

T

(4.36)

(4.37)

The formulas (4.35)-(4.37) determine the solution of Euler-Lagrange equation (4.13).
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4.1 Normal modes
4.1.1 Modal matrix

It is convenient to define the modal matrix

P1 Pl P
2 2 n
D
Aw =pM = | - (4.38)
o o ol

The first (row) index denotes components of the vector p(?) and the second (column) index
labels different eigenvectors.

Property: A diagonalizes both m and v.

Proof:
(ATmA)/W = Z(A )M)\m)\O'Apl/ = ZAAum)\UAJV = ZP m)\crp(y) = p(#)Tmp(V) = 6;w
Ap
(ATVA)MV = Z(A )/v\v)\o pv = ZAA/LUAU oV — Zp)\ UAUPU = p(#)TVp(V) = Wi(;;w
Ap
(4.39)
where we used Eq. (4.34) and Eq. (4.19) so that (v — w?m)p® = 0 = p0)Tyvpl) =
w2pWTmp®),
In matrix notations Eq. (4.39) reads
w? 0 .. 0
0 wi..0
ATmA = 1, ATvA = ' = w? (4.40)
0 0 ..w2
4.1.2 Normal coordinates
Let us introduce a new set of generalized coordinates &(t) defined by
£t) = mATn(t) & n(t) = AL (1.41)
In terms of these new coordinates the Lagrangian (4.11) reduces to the sum of uncoupled
oscillators. Indeed,
L_}'T '_}T —E'TAT A_}TATA _}'T'_ TlQ _ . 2 242
= giTmi—on'vny = JETATMAL — J€TATVAL = 76— &7 w’ = ) (- wi€)
A=1
I N N 5> S e 4.42
—Z,\, ,\—25,\ 9 “ASA (4.42)
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The normal modes of Lagrangians L, are
& = Chcos(wrt + ¢y) (4.43)
and the solutions of the original Euler-Lagrange equations (4.13) are

Mu(t) = ZAuvfl/(t) = ZP/SV)CVCOS(WVt‘Fﬁbu) (4.44)
v=1

v=1

where the constants C,, and ¢, are determined by initial conditions, see Eq. (4.37). Note
that the normal coordinates (4.42) are the coefficients of expansion of solution 7(t) in
eigenvectors p)(t) in Eq. (4.44).

Part XII

4.2 Example 1: coupled pendulums

Figure 52. Coupled pendulums

o= g P

k
V. = —mgy —mgya + 5[(332 —z1—d)* + (y2 — 1)’ (4.45)
where
1 = xo+ Isinfq, y1 = lcosby
To = xg+d+1sinbsy, yo = lcosby (4.46)
For small displacements &; = 6; we get
l
1 ~ xo+ 167, Y1 o l—50%
l
To ~ xg+d+10s, Yo ~ | — 50% (4.47)
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SO

k
Vo~ —2mgl - %gl(@% +63) + 501 — 02)° + 0(6") (4.48)
The Lagrangian in generalized coordinates £ = 6; takes the form
m .o, . . m k2
L= SUP0f+3) = 5 gl(n +m3) = = (m —m)* (4.49)

where we have omitted the overall constant —2mgl. The matrices m and v are 2x2 matrices

mi? 0 mgl + k> —kI?
= = 4.50
m ( 0 mz2> ’ M ( k2 mgl + kI2 (4.50)
and the vectors n are two-dimensional
n= (") n = (1) (4.51)
12 2

In matrix notations the Lagrangian (4.49) has the Eq. (4.11) form:

1 1
L = =9'mn— =n'vy (4.52)
2 2
To get the eigenvalues we must solve the characteristic equation det |v — w?m| = 0
I+ k1% — w?mi? —kI?
det|v—w?m| = 0 & det| Y — 0 (453
et|v —w'm| ¢ —kI? mgl + kl? — w?mli? ( )
which gives
(mgl + kI —?*mi®)?> — k4 = 0 = mgl +kI* —w*mi® = +EkI? (4.54)
Thus, the two possible eigenfrequencies are
o _ 9 > 9, 2k
— = J4 2" 4.55
wi Ik W) I (4.55)
let us now determine eigenvector for w;. The equation is Eq. (4.57)
2 2,72 2 (1)
9 W _ 0 o mgl + kl* —w*ml —kl 2 _ 0 (456
(v—wim)p < —ki? mgl + kI? — w?mli? pgl) ( )
which gives
(mgl + ki? — w2ml2)pgl) - k‘l2p§1) =0
—k2p) + (mgl + K12 — w?mi?)plY = 0 (4.57)
Both equations are satisfied if pgl) = pgl) SO
1
1 — (
p al 1) (4.58)
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This is the mode when two pendulums are in phase.
Similarly, one obtains

% = oo _11 ) (4.59)

This is the mode when the two pendulums oscillate in opposite phase.
To find ¢; we use the equation (4.34) p®Tmp® = 1. For i = 1 one gets

5 mi? 0 1 5 o 1
A" e ) (1) = 2 L
Similarly
9 ml? 0 1 5 9 1
1,-1 = 2ml =1 = = —— = 4.61
e (1, )< 0 mgl2> (—1 mee @ IV2m “ ( )

Let us find now modal matrix and normal coordinates

A — l\/127m<1 _11) (4.62)

The normal modes are

o == (5 5 2)(3) () o

The Lagrangian (4.49) in terms of normal modes reads (see Eq. (4.42))

1. 1 1 . 5 5 w2
GEE-gowt= 03 (G- = 5 - ffl +2 28 (4.64)
A=1,2
Check:
2 2 2
L Glg, b v
mi? . .9 gml 9 mi% . . \9 gml k12 9
= T(U1+772) T(m-l-ﬁz) +T(771—772) —(T-l-?)(?h—?h)
mi? . . gml k12
= (i i) = - i +m) = - (m —m)* = Ea. (4.49) (4.65)

In terms of normal coordinates, the solutions of two uncoupled equations are

&(t) = C; Cos(wit—l—qbi) (4.66)
and therefore '
> Aigi(t) = 3 el Cjeos(wjt + ) (4.67)
or, in explicit form,
m) = =EW+a0).  ml) = OO -a0) @)
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As we discussed above, C; and ¢; are determined by the initial conditions. For example,
let us take 71(0) = a, 172(0) = 171 (0) = 72(0) = 0. Using Eq. (4.64) we get

60) = 60 = 170 &0 = &0 = 0 (1.69)

&) = l\/?acoswlt, &(t) = l\/fozcoswgt (4.70)

From Eq. (4.68) we get

and therefore

m(t) = %(cosw1t+cosw2t)

m(t) = %(cos w1t — coswat) (4.71)
Using cosa 4+ cosb = 2cos “T*'b cos “T_b we can rewrite this in a different way
mt) = afcos w2 ; 1 t)(cos ¥2 —;_ w1 t)
m) = a(sin 222 (sin 22 2hy) (4.72)

Let us consider the case of weak coupling between the oscillators

k
Wy —wy Cwptw E<<% (4.73)

The formula (4.72) describes rapid oscillations with frequency % and slowly fluctuating

amplitude ~ cos 25,

4.3 Example 2: longitudinal waves in one-dimensional crystal

Figure 53. A model for one-dimensional crystal: a set of springs

a = l’? 1 a?? - length of spring when unstretched, 7; = z; — :L'? - displacement from
equilibrium
T = %(5@% 24+ 32 (4.74)
V = g(:cl —a)? + g(:cg —z1—a)*+ ...+ g(xN —an_1 —a)*+ g(Na +a—xN)?
k N
= Gt + R + D0 —miea)?] (4.75)
i=2
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It is convenient to define ng = 0 = ny 41, then

L=T-V = %Zﬁffgz:(m*mqf
i=1

N+1 N+1

=1

Let us find Euler-Lagrange equations

oL
o "

oL

om k(i —mi—1) + k(mivr —mi) = — k(20 — 01 — mim1)

and therefore the equations of motion are

mijy = — k(21; — Nig1 — Ni—1)

which describes “nearest-neighbor” interaction between oscillators.

Define

The matrix m is trivial

but the matrix v is not

m
2

NN

= m{l}
00 0 ..1
00 0..0°1
2 -10 0 0 .0 0
~12-10 0 ..0 0
0-12-10..0 0
00 -12-1..0 0
0000 0..2-1
00 0 0 0 ..-12

The Lagrangian in the matrix form (4.52) is

1., . 1

L = gn'mn—on'vy

— 77 —

(4.76)

(4.77)

(4.78)

(4.79)

(4.80)

(4.81)

(4.82)



Part XIII

4.3.1 Eigenvalues

To find normal coordinates we need to solve the eigenvalue equation det |v — w?m| = 0.

It is convenient to define constant A = %wz — 2, then

Al
1 A
01
00

00
00

_ > = O

0
0

> = O O

_ o O O

o O O O

A
1

o o o o

1
A

To find the determinant of this matrix (up to factor k) we define

DM(N\) = det

S O R

0
0

[

0
0

_ > = O

0
0

> = O O

0 ..
0 ..

— o O O

o O O O

A
1

o o o o

1
A

and find the recursion relation between DXY)()\) and D=1 ())

(4.83)

N (4.84)

A1 000 . 00 10000 .00
1X100..00 1A 100..00
01 A 10..00 01 X 10..00
00 1 X 1..00 00 1 A 1..00
DM(X\) = Mdet — det
0000 0 ..x1 0000 0 ..X1
00 00 0 .. 1A 00000 ..1
N-—1 N-—1
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1
A 000 00 A1 0 0..00
121 00..00 Ly 1 00
01 X1 0..00 1 1"00
00 1 X 1..00 h
= Mdet| . —det | = ADN=D(N)=DWN=2)())
1
00 0 0 O 1 8 8 8 8 i\)\
00 0 0 O 1
(4.85)
N-1 N -2
We get the recursion relation
DM () = ADW=D(X) — DWN=2()) (4.86)
The first two terms are D(M(X) = X and
1
D@ () = det iA’ = A2-1 (4.87)
S0
DA = AN —1) =X = A3 —2),
DM = M=3A2+1,
DO = X —4x3 4 3),
DON) = .. (4.88)
Ing. guess:
DM(\) = AN)eNBX (4.89)
With this ansatz we obtain
. . A
1 = X BN _ 72BN o cos B(A) = B (4.90)
so we must have [A/2| < 1, otherwise there will be no solution. The equation cos B = %

has two solutions

o
—n

e A
B\) = vy, ¢ = arccos - (4.91)
The solution for DXY)()) should be some superposition of two solutions (4.89) with B())
given by Eq. (4.92):
DM = AL (NN + A_(N)e VY (4.92)
Since constants A4 (A) do not depend on N we can figure them out from the first two

determinants

DWA) = X = 2cosp = A eV +A_e W
DA = X -1 = dcos?p—1 = A ¥ + A_e 2V (4.93)
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Solution of the system of two equations with two unknowns

A + A_e™™ = 2cosp
ALe®™ + A_e™? = 4cos’yp—1

gives
i e i e W
A g —_——_——_— A_ = - == A*
+ 2sin ¢’ 2sin ¢ i
and therefore
i(N+1)y o~ (N+1)Y in(N +1
D(N)()\) = _76‘74_ Le i = sin( . + )¢’ P = aurccosé
2 siny 2 singy sin 2

Next, we need to find zeros of our determinant D™)()). There are N zeros:
(N+1)¢p, = mm = 7#(N+1—-n), m(andn) = 1,2,..N

so the corresponding eigenfrequencies are

k
%wi—Q =\, = 2costp, = w2 = 4w cos? 1/;” wg = oo
or, in the explicit form
. ™ ™m
Wy, = 2wosm<m>, A = —2COSN+1
4.3.2 Eigenvectors
The eigenvectors are the solutions of the equation (4.19)
(n)
A1 00 0 .. 0 O P1
1M 1 0 0..00 P
001X 1 0..0 0 o\
00 1A 1..00 o
(v — m)p =0 & . , = 0
000 0 0 ..A\ 1 p%@l
000 0 O 1 A pg\?)
We get a set of equations
)\npgn)‘i'Pgn) =0
(n) +)\npg) (n) -0
(N) (n) (N)

+>\np3 +p4 - O

pngm),g + )\npg\[) 1+ p(n) =0

ng)_l + )\npgv) =0
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which is not easy to solve.
A trick: go back to Eq. (4.78) for n’s

. k
ihio= —wg(20 — nip1 — mic1), wi = m (4.102)
and try the “traveling wave” ansatz
ni = R(Aeiarl =it (4.103)

where 2 is the equilibrium position of it.h mass Since the equations (4.102) are linear, we
can try to find complex solution of the form

n = Aelari—iwt (4.104)

and take the real part in the end of the day.
Substituting the ansatz Eq. (4.104) to the equation of motion (4.102) we obtain

—wQAequi iwt —|—w86 iwt [26 9Ty _ oTgT_ zqa:i_,'_l]
0 .0 .0 _,0 . a
& w? = wi[2— et m) _gialln =] = 402 sin? % (4.105)
so we get the “dispersion relation”

W = 4u? sing% (4.106)

Note that the dispersion relation is even in ¢ so the solution of Eq. (4.102) will be a
superposition of left-moving and right-moving traveling waves:

i) = AgeldnTiol g emianiiwt (4.107)

Next, we need to satisfy “fixed end” boundary conditions

) = Aje™™ A ™ =0 = AL = —A_ (4.108)
N1 (t) _ A+€iqa(N+1)—iwt + Aie—iqa(N-l-l)—iwt _ 27;A+6_iwt sin qa(N + 1) -0
which means
(N +1) & ik 1,2,..N (4.109)
a = 7 = ———— n= .
q qn a(N + 1) ) ) )
which is Eq. (4.99). Next, from dispersion relation (4.106) we get
) ™
Wn — 2(&)0 Slnm (4110)
so Eq. (4.107) turns to
n;i(t) = 2iA e “rsin qnxg = Be =% gin g aj (4.111)

where we have redefined 2iA, = Be™™ (with real B and ¢).
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The general solution of Eq. (4.102) is a sum of solutions (4.111) with arbitrary coeffi-
cients

N N
ni(t) = 3%{ Z Bpe~wnt=ion gin qnaj} = Z B, cos(wpt + ¢p,) sin graj (4.112)

n=1 n=1

Now we can return to the system (4.101) and check that
pén) = apsingpaj (4.113)
is a wanted solution corresponding to eigenvalue w,. Indeed, for 1 < k < N we have

p,(ﬂn)l + )\np,gn) + pgj_)l = an(sin gna(k — 1) + A\, sin gpak + sin qua(k + 1))

= ay (2 sin qnak cos g,a — 2 cos NW:_L 1 sin qnak‘) =0 (4.114)
(recall that ¢, = (N+1)) while for the endpoints
)\npgn) + p(n) = ap ()\n sin gpa + sin 2qna) = ap (2 sin g, a cos gna — 2 cos NZ 1 sin qnak) =0
pg\rfll + /\npgg) = ap(sin2g,a(N — 1) — 2cos Ni 1 sing,aN) = 0 (4.115)

The constants «,, can be found from the normalization condition (4.34)

N -1
p™Mimp™ = 1 = mZai sin guaj = ol = ~ m2 — (4.116)
pt 2 =1 807 5y
The sum in the denominator can be simplified as:
al 1 1
o oidi i
Zsm i = 52(1—00521/}] = ZZ — ¥ _ ¢ ““)
7j=1 7j=1 7j=1
N .
N 1 1 ) ) N —+1 20p(N+1) _ 1 —2@¢(N+1) -1
= S oY [ g (e = 2 - (4117
2 2 4 = 2 4(e2 — 1) 4(e=2% 2T
In our case ¥ = 2(]7\;’11) so eF2W N+ — 1 and therefore
N
.92 ™™ 3 N + 1 9 2
= = — 4.11
;sm 5(N + 1) 5 T T Nt (4.118)

Thus, the orthonormal set of normal modes is given by Eq. (4.113) with normalization
(4.118)

(n) _ 2 in " 4.119
Pi m(N+1) (N + 1) (4.119)

and the general solution of Eq. (4.113) can be represented as

N
() = Y Cucos(wnt + ¢)p!" (4.120)
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4.4 Example 2a: transverse waves

Consider N identical point masses equally spaced on a stretched massless string with uni-
form string tension 7.
We will study transverse oscillations in xy plane.

Figure 54. Transverse oscillations

Equation of motion of mass m

my = 7sinf — Tsing (4.121)
We assume that angles are small so sinf ~ tanf ~ % and sin¢ ~ tan¢ ~ %
and the equation of motion (4.120) turns to
. T .
mi; = (Y1 =295+ y5-1),  J = L2, Yo =yn+1 =0 (4.122)

This system is governed by the same equation (4.102) as the one-dimensional crystal. The
solution is still given by Eq. (4.120)but now it describes transverse oscillations:

N
yi(t) = Z Cy, cos(wnt + qﬁ)pgn) (4.123)
n=1

where eigenvalues w, and eigenvectors pg-n) are given by Eqs. (4.110) and (4.119)

T . ™ (n) 2 . Tin
_ 9] " _ 4.124
“n ma " o(N+1) P mN+1) (Nt 1) (4.124)

Let us introduce
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e L = (N +1)a- length of the string
e ¢ = /7> - characteristic speed of a string

In these terms

c . mna
Wnp = 25 S i, (4125)
The corresponding wavelength is
27 27 L
N o= — 9~ 4.126
" kn mn/L n ( )

Low frequency modes with n < N correspond to long wavelengths ~ L and high-frequency
modes have wavelength of the order of “lattice spacing” a.

C e
n<<N Wn = an = Wmin = fa Amax = 2L
"o N wp = Wmax = 25, Amin = 2a (4.127)
a

The snapshot (form at a fixed time) of n-th mode of the string

Tina

yM(y,t) = C’ncos(wnt+¢)p§-n) = a(t)p(n) = A(t)sin (4.128)

is a sinusoid with n — 1 knots.
The normal mode amplitudes are propagating wave forms generated by the envelope
of the displacements of the particles.

4.5 Continuum limit: non-relativistic string
Continuum limit: N — oo, a — 0 such that L = NA = fixed. In this limit
yit) = y(ja,t) — y(,t)

where z is the x-coordinate of the string.
The equations of motion in the discrete case are

. T
i = (Y Y-~ 2y5) (4.129)
Asa—0
1 . t) —y:(t (t) — u._1(t
i (t) +yima(t) - 205(0)] = til >a 5 _ 50 - 1) (4.130)
1 . t) —y:(t () —y._1(t
L ® + a0 - 2g0) = 20080 90— i)
_ yUa+at)—y(at) yl(jat)—y(ja—a,t)
a a
a0 Oy(z,1) _ Oy(z,t) o 0Py(a,t)
— a:[] x:ja_,’_% aa,/. w:ja—% = a at2 x:ja (4131)

— 84 —



and therefore the equation of motion in the continuum limit is

Py(x,t) 1 Py(x,t)

ot2 o Ot2

where 0 = 7t = (constant) mass density. If one rewrites this equation as

1yt Oyle
2 Ot? N ot?

it becomes the wave equation with sound velocity ¢ = /7% = \/g

4.5.1 Eigenfrequencies and eigenvectors in the continuum limit

Eigenfrequencies in the continuum limit: from Eq. (4.135) we get

9 2 /T . ™ 2 . mna g—0 TNC
n = —t/—sSih———~ = —csin—— — —, n = 0,1,2,...00
2

“ (N+1) o 7oL L

a g

and the eigenvectors are

(n) 2 . Tmjn a—0

Pim T\ mvr ) V1 D)

Orthogonality of eigenvectors: from Eq. (4.116)

N N L
n) (m m (n) (m) a—=0 m n
S y_mp" g™ = Y am ™ 0/0 dzp™ (2)p™ (x)
= =1

Next, the general solution of Eq. (4.133) has the form

oo o 2
y(z,t) = Z Ch cos(wnt + ¢n)p™(z) = Z Ch cos(wnt + dn)4/ T sin %
n=1 n=1

with the initial conditions

Expanding in eigenvectors, we get
flz) = Z Chcos ppp™(z), g(zx) = — Z Crwn €08 ¢ p™ ()
Multiplying both sides by p("™ (x) and integrating over = we get
L
7 [ dn f@)p" @) = oo,
0

L
7 [dn @)™ (@) =~ Coiom o5
0

From these equations it is easy to determine C), and ¢y,.
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4.5.2 Lagrangian in the continuum limit
N N

N
my . T T .9 T Yi+l — Y52
L) = Y S =5 D (Wi —w)* = a) [—yf-——(g) ] (4.141)
, a4 , 2 2 a
j=1 j=1 j=1
In the continuum limit 2= — /() and aZ;-V: ;= fOLda? so the Lagrangian

(4.141) takes the form

r=ja

L o T L
L(t) "=° /0 d:c[ (gi’) _’(gi) - ;/0 dz [o9?(x,t) — 79/ *(2,1)] (4.142)

L . 1 .9 12
= L(t) = /0 dx L(x,t), L(z,t) = L(y(x,t),y(z,t)) = =|oy*(z,t) —TY (x,t)}

51

L(x,t) is called a Lagrangian density.

The wave equation (4.133) can be obtained from Hamilton’s principle: the action with
y(z,t) fixed at t = ¢1 and ¢ = t9 is minimal on classical configuration g(z,t). (We assume
the boundary condition y(0,t) = y(L,t) = 0)

The action has the form

t2 to L
S = / dt L(t) — / dt/ do L(z,1) (4.143)
t1 t1 0

and the requirement 65 = 0 gives

0 = 55 — /tht L) = /tht/de 5L (5 (x, )5/ (z.1))

t1 t1 0

B 2 L 85(3'/,3/) . 3£(y,y/) ,
= / dt/0 dx [T(Sy(x,t) + Ty,(Sy (x,t)}

t1 )
ot (9.9') d OL(y,y') d

/t1 dt/o d [ i %(5 (x,t) + oy @(531(:6,15)}

o) e o),

S P Aad AL D o] I P Mtad AL O

| e = e, )|, F =y evet)

t2 d Gﬁ(y, ) d Gﬁ(g),y’)
/tl dt/ dz §y(x, t dt a5 + %T/] (4.144)

The requirement of fixed initial and final y(x,t) means dy(x,t1) = dy(x,t2) = 0 and the
boundary requirement y(0,t) = y(L,t) = 0 gives dy(L,t) = 0y(0,t) = 0 so we get

to X ,
/ dt/ dxéyxt daﬁ(y, )_i_df)[,(y,y)}
t1

dt  Jy dr 0y
d OL(y, d 0L(y,
(ﬁ%w+m(§jyfg/) =0 Euler — Lagrange equations (4.145)
In our case £L = 3[oy*(z,t) — Ty (x, t)] so we get wave equation (4.133)
4 D+ L@ 1) = 0 j(xz,t "(z,t) = 0 4.146
Soi(et) (@ 0) = 0 & oi(nt) (5. = (4.140)
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In general, the Lagrangian density may depend on 7, ¥/, and y

S — /ttht Lt /ttht/ dz L(y(z,8), 5@, 1),y (,1) (4.147)

with y(x,t) satisfying some given boundary conditions at end points = 0, L, typically
fixed-end conditions y(0,t) = y(L,t) = 0 or periodic conditions y(0,t) = y(L,t), v'(0,t) =
y'(L,t). In this case we get

0 =08 = / dt L(t /tht/ dz 0L (y(z, t)y(z, 1),y (z,1)) (4.148)

t1

[ ali(y,y,y) . OL(y,9,v) ., L(y,9,y)
= /t1 dt/o dx [Téy(:ﬂ,t) + Téy (x,t) + T&y(z, t)]

2 b raL(y.y) d aL(9,y) d OL(y,9.y')

L to t S L
T M N / o W@W)
t1 0

0
t ool .y
/th/ o dy(w,)[2EW2Y) | A0LW9Y) | 4 OLW 9]
t1

oy(z,1)

oy dt 0y dz oy’
Again, with fixed-end or periodic boundary conditions and fixed initial and final y(x,t) the
non-integral terms in the r.h.s. vanish and we get the FEuler-Lagrange equations
OL(y,v,y') doL(y,v.y) d OL(y.9.Y)

= — — 4.14
oy dt Y + dx oy’ ( %)

Part XIV

5 Rigid body dynamics

A rigid body is a special case of a system of particles such that the relative distance
between any two particles is fixed. This is clearly an idealization, but a useful one to
discuss properties of approximately rigid bodies.

Consider a system of N particles with constraints r;; = |rij| = ¢;; where ¢;; are

W constraints, but not all

constants. on the first glance, it looks like the system has
of them are independent. Let us count the number of degrees of freedom for N particles
starting from N = 3. For three particles in a general non-collinear positions, we have 3x3=9
coordinates and 3 constraints (712, r23, 713 = fixed). Thus, for 3 particles we have 6 degrees
of freedom. Next, for 4 particles we get an extra 3 degrees of freedom for particle #4 but
also three new constraints (r14, 724, 734 = fixed) so the number of degrees of freedom is still
6. If we add particle #5, we get 3 new coordinates but only 3 new constraints (715, 25, 735
= fixed) since the constraint ry5 = fixed will be satisfied automatically. Thus, for N=5 we
still have 6 degrees of freedom. One can continue adding points and for each new point
we have 3 additional coordinates 7, and 3 new constraints (71, 72n, 73, = fixed). Thus,

for arbitrary number of particles with fixed interparticle distances the number of degrees
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of freedom is 6 which can be identified with the number of translations plus number of
rotations of a rigid body.

Three coordinates are needed to specify the origin O’ of the system of coordinates
fixed at a point in the rigid body (this point is usually taken in a center of mass), and tree
additional coordinates are needed to specify the orientation of the z’,1/, 2’ axes fixed in the
rigid body relative to a coordinate system with axes parallel to original ones but with the
origin at O’.

There are many ways to specify the orientation of z’,3/, 2’ axes with respect to original
x,y, z axes. For example, one can choose the scalar products of unit vectors specifying the

primed and unprimed axes

€y - é;; = cosfi1, €;- éfy = cosfio, é;- é’z = cosf3

~ N; A~ ~/ A A~/

€y €, = cosbhy, &- €y, = cos 022, €y-€, = cosbhs

éy- €, = cosbs, é,- é; = cosf3y, é,-€, = cosfss (5.1)

Clearly, the 9 parameters cos6,,,, are not independent since

A/ A

N
€y €y = €6 = &,-6, =
A~/ A~/ ~ ~ A~/ A~/
€pby = &6, =¢é,-¢é =0 (5.2)
so we have 6 constraints
Zfl—l COSQGW’H = 17 m = 17273 >
= & E €08 O, cos Oy, = Oy (5.3)
Y1 €080y cos by, = 0, m #1 ot

Thus, among 9 different cos 6,,,,, we must choose 3 independent parameters which may be

functions of #’s. The most common choice is 3 Euler angles introduced below, but first we

need to discuss properties of matrix of rotation from z,y, z frame to 2/, 3/, 2’ frame.
Denote cos 0,,,,, = amn and define matrix of rotation

aii, ai2 ai3
A = a1, G22 a23 (5.4)
asi, asz ass

The property (5.3) means that matrix A is orthogonal
3
> ApiAn = b & ATA =1 (5.5)
1=1

The matrix A specifies the rotation from z,y, z frame to 2,4/, 2’ frame whereas AT de-

scribes the rotation back:

¢ &y &y &
5! _ 5 A _ T N
€y = A ¢, and éy = A" | ¢, (5.6)
& e & &
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One can relate components of any vector V in primed and unprimed frames by
144 V; —

. : V = Vie, + Vaé, + Vaé.

V2 = A Va 150 150 150 (5'7)

vy Vi = Vie, +Vye, + Ve,

We know that rotations are described by transformations of the Eq. (5.7) type with

orthogonal matrices A. For example, (passive) rotation on an angle # around z axis is given

by

¥y = m1cosh+ xosinf cosf sinf 0
xh, = 9 — x1sinf + cosf = A = | —sinf cosf 0 (5.8)
Ty = T3 0 0 1

Summarising, at any time the orientation of a rigid body (2,4, ') relative to external
system (z,y, z) is specified by an orthogonal transformation described by an orthogonal
matrix A(t). The 9 elements of this matrix may be expressed in terms of some suitable set
of 3 parameters (e.g. Euler angles described below). In general, this orientation changes in
time so A = A(t).

Let us prove that the determinant det |A(t)] = 1. Indeed, from A(t)TA(t) = 1 we see
that det |A(t)| = =+ 1. If the (2/,y/, 2’) frame is chosen to coincide with (z,y, ) frame at
t = 0 the matrix A(0) =T and det |[A(0)] = 1. At a later time, A(¢) might be # I, but it
must be a continuous function of time, which means that det|A(t) cannot jump from +1

to -1 value.

5.1 Euler angles

We can perform the transformation from (z,y, z)to (2,1, 2') frame by a sequence of three
successive rotations. Each of this rotations is characterized by an angle. It should be noted
that the conventions of these three rotations differ in the literature. We will use conventions
from our textbook (Fetter & Walecka).
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Euler Angles

. . . . . based on FW-29
We need three angles to specify the orientation of a rigid body (or

relate the inertial frame (¢}, 22, &3} to a body fixed frame {é,, é,, é}):

1. Starting initially with the frame
coinciding with the inertial frame,
rotate about ¢3 through an angle o till
you bring ¢é, to the line of nodes
(perpendicular to both ¢ andé; )

2. Rotate about the line of nodes
through an angle  till you bring €3
to its final position.

3. Rotate about the new €3 through
an angle y till you bring é, to its
final position.

ne of nodes

\ wy= &

Figure 55. Euler angles

e First rotation z,y,z — Z,%, 2: Rotate by angle « in positive direction (anticlockwise)
about z axis bringing ¢ to the orientation denoted as the “line of nodes” (orthogonal
to both z and 2’ axes). The corresponding matrix is

COs & sinae 0 T T
D = | —sina cosa 0 = 7 = DJ|y (5.9)
0 0 1 z z

e Second rotation 7,7,z — .9, 7"
Rotate counterclockwise by angle 5 about ¢ axis thus bringing Z to final orientation
2/ = Z'. The corresponding matrix is

cosfB 0 —sinf T’ z
C = 0 1 0 = 7 = C| vy (5.10)
sinf 0 cospf Z P

e Third rotation 2/, ¢, 2 — 2,9/, 2’: Rotate counterclockwise by angle v about 2z’ = 2’

axis thus bringing 7 to final orientation y’. The corresponding matrix is

cosy siny 0 x z
B = | —siny cosy 0 = Y = B| ¢ (5.11)
0 0 1 2 Z
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After this three rotations

x x x
v = BCD| y = Aly (5.12)
2 z z
where
cosy siny O cosf 0 —sinp cosa sina 0
A = —siny cosy 0 0 1 0 —sina cosa O
0 0 1 sinf 0 cospf 0 0 1
cos v cos  cosy — sin asin vy sin v cos 3 cosy + cos a:sin vy — sin 8 cosy
= —cosacosfBsiny —sinacosy — sinacos S sin~y 4 cos acosy sin G sin 7y
cos asin 3 sin v sin 8 cos 3
(5.13)
Note that
e « and +y varies between 0 and 27 while 3 varies between 0 and 7
e the line of nodes is orthogonal to the plane specified by z and 2’ axes
e « and [ specify the orientation of 2’ axis relative to (z,y, z) frame.
5.1.1 Angular velocity in terms of Euler angles
The unit vectors in 2’3/, 2’ frame are given by the same matrix
e €y
el = Ale, (5.14)
é, é,
(easy to see from '€}, +y'é) 4 2'¢, = xé, +yé, + 2¢.) so the vector of angular velocity
of the moving frame defined in Eq. (2.17) can be determined from Eq. (2.16) as
dé’ L d(él) . dAim, . - .
o = WX ¢ = (d:f) = m@(€)m = d;m (em)k = €xmi(Ainen)m
dtZ = €pmWAim = AjiT; = Q@ = &= Semn (A E)m”
(5.15)
The matrix (%AT) can be obtained from Eq. (5.13)
dA . . .
ATE = D'c’BTBCD + D’Cc’CD + DD (5.16)
Using formula
€ijkMim Mijn My = €yny det M (5.17)
we see that for any orthogonal matrix M with det M =1
fijk:Mijkm = Mjé€mn (518)
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and therefore

dA

eijk(EAT)jk = €imn(DTD)n + DY e1nn (CTC) i + (DTCH)j1€1mmn (BT B) . (5.19)

Thus, from Egs. (5.15) and (5.19) we see that & can be represented as

w = w® 4+ DTw® + DTCTWLM (5.20)
where
1 0 1 0 1 0
& = §€ijk(DTD>jk =lo|, &= §€ijk(CTC)jk =6 &= §€ijk<BTB)jk =10
G 0 4
(5.21)
Thus, the explicit form of the result (5.20) for vector & is
—Bsina + 4 cos asin 3
W o= /3 cos o + 4 sin asin 8 (5.22)
&+ ycos B
5.1.2 Check of % = & x ¢
¢/ = (cosacos 3 cosy — sin asiny — cos acos Bsin~y — sin a cosy + cos asin 3)é;
+ (sincos 3 cosvy + cos asiny — sin av cos 3 siny + cos acos v + sin asin f3)éy
+ (—sin S cosy + sin Bsiny + cos 5)é3 (5.23)
Explicit check of the 1st component
(@ x ¢ = [(~Bsina++cosasinB)é; + (B cosa+ 4 sinasin B)é + (& + 4 cos B)é3)
X [(cos acos B cosy — sinasiny — cos a cos 3 siny — sin a cos y + cos asin 3)é;
+ (sinacos B cosy + cos asiny — sin a cos siny + cos acos v + sin asin 3)éy
+ (—sin S cosy + sin Ssin~y + cos B)és)1
= (Bcosa + 4sinasin B)(—sin B cosy + sin Bsiny + cos ) (5.24)
— (&4 A cos B)(sin o cos B cosy + cos asiny — sin « cos B sin -y + cos a cos 7y + sin asin 3)
&) = —(cosacos 3 cosy — sinasiny — cosacos Bsiny — sinacosy + cosasin ) = r.h.s. of Eq. (5.24)

dt

We will need also the components of angular velocity vector @ in the “body” (2/,y', 2)

frame. It has the form

—dvsin B cosy + Bsiny

~ 92—

desin Bsiny + fcosy
qcos B+

(5.25)



Part XV

5.2 Moments of inertia

We have established earlier that the motion of a rigid body with one point fixed is a pure
rotation. Denote the inertial frame with the origin somewhere in the body by (z,y, z) and
body-fixed frame with the same origin as (2/,y’, 2’). these two frames are connected by the

rotation ), = Az, with some orthogonal matrix A,,, (for example, parametrized by

2
n

Euler angles as in Eq. (5.13). The kinetic energy for the set of particles is T' = ) "o
(where v’s are velocities in the inertial frame). By differentiating 77 = ri(t)él(-o) = ri(t)é;(t)

with respect to time and using Eq. (2.16) we get

(g) mertial (Cf;l)body FExT (5.26)

(cf. Eq. (2.20)). Now, our rigid body is such system of particles that the all the distances

are fixed so (%) = 0 and we get
body

n d_)n n I - — n — —
T = ;2(;)2 = zn:w;[w X rn]2 = Z%[uﬂri— (@) (5.27)

inertial

(here we used A-(Bx C) = (Ax B)-C). It is convenient to rewrite this formula in terms
of (&)pody = &'. From Egs. (5.7) and (5.25) we get
W = (AL (ALwp) = WP, 37 = AR Aprl = & -7 (5.28)

and therefore

3
T = Z %[a)ﬂr’i —(d" - 7:;1)2] = Z wgw; Z %[r’iézj — T’;LiT’;Lj] (5.29)
n ij=1 n
This can be rewritten as T = Z?,j:l wiw;I;; where
My 12
L; = Z 7"[7”’”(51-]- = ThiTn;] (5.30)

n

is called tensor of moments of inertia. Now we see why Eq. (5.29) is more convenient than
(5.27) - in the inertial frame I (defined as (5.29) but with 7,,’s in place of r},’s) would depend
on time!
For the continuous distribution of particles with density p(r’)
1

1
T = 3 /d37"/p(r/) [leT/Z — (& - 7_‘;'1)2] = 3 ngw;f{j (5.31)
]

where

I' = /d3r’p(r’)[r’25i- — 7] (5.32)

is the tensor of moments of inertia of a rigid body. It depends only on distribution of the
mass in the body (and does not depend on time).
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5.2.1 Angular momentum of a rigid body

For a set of particles
L= mn(fnxin) = Y ma(inx (@ xin) = Y mpldrg —in(@-7)]  (5.33)
n n

(here we used Eq. (5.25 ¥,, = & X 7). It is convenient to rewrite this in a fixed-body
frame. Since 72 and w - 7 are scalars we get

L= > malwlrl? = ()@ 7)) = Thw) (5.34)

This formula obviously holds true in the case of continuous distribution. Note also that

1
~wiL (5.35)

T:2’LZ

Parallel axes theorem

Consider a body-fixed frame centered at the center of mass (CM) of the rigid body. Let us
denote by I;; the moments of inertial with respect to (w.r.t.) CM and by I;; the moments of
inertial w.r.t. a body-fixed frame with axes parallel to the CM ones but located a distance
a apart. It is easy to see that

Lij =TI = /d37“lp(7“')[(77/—67)25ij — (" —a)i(r' —a);] = /dsrlp(rl)(T'Q(Sz‘j —rir’)
- 25ij6-/d3r’p(r')1ﬂ + Q(Qi/d?)r’p(r')r;- +ie j) + (a%6;; — aiaj)/d3r'p(r')
= Ij; + M(a’0;j — aay) (5.36)

because by definition of the center of mass [d®r'p(r') = 0 (and [d®'p(r') = M).
Example: disc of radius R and thickness h with uniform mass distribution

r r

Figure 56. Disc

h/2 R 2 M M R? N 3MR?
Ity = d’/d”/d’( )’2: = I'. = I'.+MR? =
33 /—h/2 : 0 e 0 ¢ wR2h)” 2 5 3+ 2

(5.37)
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5.2.2 Principal axes

In general, the inertia tensor is not diagonal: Ij; # 0 if i # j. However, because Ij; is
a real symmetric matrix, it can be diagonalized by an orthogonal transformation. Such
transformation is of course some rotation (recall that rotations are described by orthogonal
matrices). In this new rotated (body-fixed) frame

e o 0
I/IleW — 0 I/;lew 0 (538)
0 0 I35

The axes forming this new frame are called principal axes. To determine the principal axes
ons should use the simmetry of the body (if it has one). For example, the matrix for the
disc in Fig. 62 is

70 0
=107 o0 (5.39)
00 ME

For the angular momentum we get then

/mew /mew /mew /mew /mew /mew /mew /mew mew
Ly =TIy Wy, Ly™ =Ty Wy, Ly = TI's ws (5.40)

and for the kinetic energy
1 1
D ST S o
In what follows we will always assume that we work in the principal-axes frame and omit
the label “new”.

5.3 Euler’s equations

The motion of a rigid body is governed by equations (1.25) and (1.36)
MR = STES, L= 3@ = S x B = e (5.42)
n n n

The acceleration of the center of mass (position denoted by R ) is due to the sum of all
external forces acting on the rigid body. The rate of change of the angular momentumZL’
relative to the CM position os due to all external torques calculated with the respect to the
origin in CM.

From Eq. (2.20) we get

dL d .
at =z Jx L = I 5.43
( dt >inertia1 < dt )body twx ( )
SO B /
I = (= e = T —Gx L 5.44
( dt )body < dt )bodye] w X ( )
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Multiplying this by &, we get

mext

dL;
( i N A—— (5.45)

dt >body -

Let us select the body-fixed frame made of principal axes so that L, = I/w}, then

dw] >
I ;;Z = I8 = N el (5.46)
Ji.k=1
or, in the explicit form
I/M — Text LT — T
. - €] +whws(ly — Iy)
Igdd%f = T &)+ wwh(I — 1)) (5.47)
L% = T & 4 uwiwh(l] - 1)

Euler equations are not very simple because external torques are projected on time-dependent
body-fixed principal axes. However, they are very useful for the description of torque-free
motion.

5.4 Torque-free motion

In this case I'™** = 0 so in the external system L is constant and its components as seen by
an observer in the external system do not change with time. However, the observer in the
body-fixed frame will see the components L] of L = L/é; change with time.

Euler equations for the torque-free motion

L% = wpll, - 1)
LG = wwl(ll-1L) (5.48)
LG = wwy(L, — 1)

Three cases

e Spherical top: I = I} = I_. From Euler’s equations (5.48) we see that w=const (for
example, rotating sphere in a free fall).

e Symmetric top: I; = I, 7 I’. From the third of Euler’s equations (5.48) we see that
I eons
w,=const.

e Completely asymmetric top: I, # I, # I_. Analysis is complex

5.4.1 Symmetric top

As we saw, w,=const so the other two FEuler’s equations read

dw!
x — _Q /
i ‘v (5.49)
7 = Quw
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where ) = w;=5=. They are easily solved by going to complex
n(t) = wi(t) + iy (t) (5.50)
The equation (5.49) turns to
W0 = i) = ) = O = @LO) +i0)d”  (551)
Taking real and imaginary parts we get
wy(t) = Rn(t) = w,(0)cosQt — w, (0)sin Qt
Wy

wy(t) = In(t) = w(0)sin Qt + w, (0) cos At (5.52)

To visualize this motion, consider a particular set of initial conditions

Whl,_, = wsinA wi(t) = wsinAcos
wyl,y = 0 = wy(t) = wsinAsinQ (5.53)
Wi|,_, = wecosA w, = wcos A

The solution (5.53) means that & (as seen in 2/,y/, 2’ frame) precesses around z axis with
angular velocity €2 in positive or negative direction depending on the sign of €, see Fig 57.

9

Z

Figure 57. Symmetric top
Note that |&| is constant.

5.4.2 Asymmetric top

The analysis in this case is rather complex, but it is simplified by an observation that there

are two constants of motion: kinetic energy and square of angular momentum

EQ _ I’iw'i+l'§w’§+[’iw’§
1 1-
T = §(I;w’§ F LW+ T = oL@ (5.54)
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Let us prove the first equation. From Euler’s equations (5.48) we get

%%LQ = %% (I'W2 + 1w’ + Iw')) = Thilwl, + I'hol Wl + I 26w,
= WL — I, + W (I — I + ! (I — I, = 0 (5.55)
Similarly, we get conservation of the kinetic energy:
d y s B
%T = Lwyw, + Lwyw, + Lw,w,
= wyw, (I — I)w, + wpw (I — I)w, + wyw, (I, — I)w, = 0 (5.56)

One can use Eq. (5.54) to eliminate w!, and w; from Euler’s equations in favor of T,
L% and w!, then
Wy = wi(wl, T, L),  wy = wy(wl,T,L% (5.57)

From the third of equations (5.48) one obtains

t—t L / dw! ! (5.58)
— = W .
T L -1 ) (Wl T, LP)w) (W, T, L)

The integral can be expressed in terms of elliptic integrals (see more advanced textbooks).

Part XVI

5.4.3 Motion in external (inertial) system

Angular momentum is conserved L = const.

Spherical top: I} = I} = I, = L=1I& = &—const. The torque free motion for a
spherical top reduces to a rotation about a fixed axis with angular velocity of magnitude
w=1L

Symmetric top ( I, = I, = Iy # I = I3):

The Lagrangian L = T is simplified to
1 I I . I
L = El(w’i + wlz) + gwlg = El(dQ sin? B8 + %) + 53(02 cos B +4)? (5.59)
where we used Eq. (5.25) for w’’s in the body-fixed frame. Note that the Lagrangian (5.66)

does not depend on a and 7 so the corresponding generalized momenta are conserved

oL
Pa = 5= = Licsin® B + I3(cecos B+ ) cos 3 = const
oL
py = % = I3(decosf+4) = const (5.60)

(0)

Let us demonstrate that p, is the projection of angular momentum on e’ axis in the inertial
frame and p, on €, axis in the body-fixed frame. First, from Eq. (5.25) we immediately
see that

L-& =L = Luw, = Bacosf+75) = py (5.61)

z
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Second, from Eq. (5.34) and Eq. (5.22) we get

L0 = (Luwlé, + hwé, + Lwlel) 60 = Lw, + (I3 — L)wlé, - e
= Li(a+~AcosB)+ (I3 —I1)(&cos S+ ) cos B = pa (5.62)
Last, the generalized momentum pg is a projection of L on the line of nodes
en = o0 5(0) s VA 5
3 = €] cosa+éy sina = €)siny+ é5cosy
oL .
v = — = Lf 5.63
Y (5.63)

L-ég = (Luwlé, + hwié, + awlel) ég = Lad-ég+ (I3 — L)wié, - ég = LB

Now let us choose external (inertial) frame such that the (conserved) vector L points in the

(0)

z direction, than since line of nodes is always orthogonal to €z we get pg = L eg = 0.
Thus, we get (wy = dcosf+7)

oL
Do = % = Iiésin® B+ I3(cecos 4 ) cos 3 = const
oL
py = = = I3(ccosf+5) = const
oL
pg = — = 0 = 8 = const 5.64
5= 33 (5.64)
L
0 = gﬁ = L1a%sin fcos f — Izasin B(ccos f 4 4) = cesin B(I1évcos 8 — Iwh)
and therefore
I I
dcosB = uwh = (acosB+7)
I 5L
L -1
N /7 _ 1[1 3 - 0
w =7 o'aé:(,,()) + el = @, L, and & lie in one plane (5.65)
oL
= — = La&“sinfcosf — Izasin B(acos B+ ) = asinf(l1ccosf — Izw
0 = 55 = ha¥sinfeos — hasinA(Geos d+9) = dsinf(lidcos § ~ L))

Motion at Is > I; (see Fig. 58a):

e & = const, § = const = constant precession of the symmetry axis about L at a fixed
polar angle S.

e 4 = const<0 = constant rotation of the object about the symmetry axis. Inertial
observer sees a backward motion about égo) while body-fixed observer sees a positive

precession of & about the symmetry axis.

Motion at I; > I3 (see Fig. 58b):
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Figure 58. Symmetric top

e & = const, # = const = constant precession of the symmetry axis about L at a fixed

polar angle 3.

e 4 = const>0 = constant rotation of the object about the symmetry axis. Inertial
observer sees a forward motion about ééo) while body-fixed observer sees a positive

precession of & about the symmetry axis.

- 100 —



5.5 Symmetric top with a fixed point in the gravitational field

In this case, gravity exerts a torque and changes angular momentum. From Fig. 59 we see
that the direction of the torque is along the line of nodes, i.e. orthogonal to both z and 2.
The Lagrangian isnow L =T —V
I

I 1 . I
L = 5 (W2 + u/z) + ngli = El(dQ sin® B + %) + 53(0'1 cos B+ 4)2 — Mglcos 8 (5.66)

Figure 59. Symmetric top in a gravitational field

L
Do = g = Liasin® B+ I3(dcos B +4) cos f = const
6%
oL
Py = > = I3(Gecos B+ ) = const
oL
pg = % £ 0 = B # const (5.67)
~- oL o . N . :
LB = % = L&"sinBcos f — Izasin f(ccos f+7) + Mglsin 3
From the first two equations
. Da — P~ COs 3 . ( 1 cos? 3 ) Pq COS B
_ ’ — — 4 — _ 5.68
“ I, sin? 8 7 Py Is  I;sin?p 5L s1n2,8 ( )
and therefore the Euler-Lagrange equation for 8 turns to
P oL .2 . - . . .
LB = a5 = IL1&°sinfcos B — I3asin B(ccos B+ %) + Mglsin 3
o cos 3 2 2 PaP~ .
= I]_B = m(pa — 2pap»y COSIB +p’7) — Il Sinﬁ + Mgl SIH,B (569)

If we solve this equation, we can find o and ~ from Egs. (5.68).
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5.5.1 Method of effective potential
First integral of Eq. (5.71)

. cosf3 PaP~
I = — 2Pa, Mgl
186 = 5(1.1 Smgﬂ( DaD~ cosﬁ—l—pv) Tysin 3 + Mg smﬁ)
d I 52 d ((pa — Py COSB) 3
Sar - 2 2 om
a2 dt( 21, sin? 8 s 213 + Myl COSB)

1. .
= F = 51162 + Verr(B) = const
= we get conservation of energy

1 .
E = 51162—1-%&(5) = const

2

(pa — Py cos )?
1 Mgl
21, sin® 3 s 2[ +Mglcos s

Vet (B) =
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This is the one-dimensional problem with effective potential Veg(S) shown in Fig. 60.
Potential diverges as  — 0, 7 which corresponds to the “angular momentum barrier”. There

The effective potential: E

turning points

l (p, — p, cos f?
2/, sin* B

E : %’132 + Verr(B)

gy = P PioS BY | Py
Vere(B) = 21, sin? B +2l; + Mgl cos B ' N
- constant |V 2 M minimum energy,
(1731 149
diverges for =10, n \ >3 N circular orbit
angular momentum barrie! »2lo ,\1‘/ \\.1 2 x ,
: :

Only bounded orbits: | arccos (pfp:) N\

zerp at N

E > Veff(B) KP i
}“\\‘-

with turning points: E = V,,(8.) Mgl cos f

Figure 60. Effective potential

are only bounded orbits with turning points £ = Veg(f+). As E = Veﬁin the orbit becomes
circular.
Let us study the circular orbit. The corresponding Sy is found from the equation

av:eff Cosﬁ 2 2 PaP~y .
95 |ss =~ I Sing/B(pa Papry cos B+ p3) Trsing T M9 sinfi = 0 (5.72)
Once we know [y, from Eq. (5.68) we see that
a T 1 2 o
0= P 1.?72008/3075, Y - py(_ cos 260 ) P gozﬁot (5.73)
I, sin” 3y I3 I sin” By I; sin”

Let us now study small oscillations about steady motion. Expanding

B(t) = Bo+n(t)
we get

Vet (B) O*Verr (B)

1
35 lses, 3O g2g sy + 00" (570

Ver(B(t)) = Ver(Bo) +n(t)
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Since steady motion corresponds to Sy such that 6\/%;55(,8) s = 0, we get
=P0
1
Ver (B() = Verr(Bo) + 50 (1) 197 (5.75)
where
Q2 _ iagveff(ﬁ) _ PaD~ _IlMgl(3_4Sin2 BO)
Iy 0?8 lp=po I cos By
(5.76)
The energy (5.71) takes the form
1
E = §I1 (7 + *n%) + Veg(Bo) = const = 7>+ Q*n? = const (5.77)
This is the harmonic oscillator problem with the solution
B(t) = Bo~+ nocos(2t + ¢p) (5.78)
which describes simple oscillations about By. They are stable if Q2 > 0. Looking back at
pa = L- égo) and py, = L. ¢’ we see that Q22 > 0 requires sufficiently large angular
momentum.

In the case of “sleeping top” (= rapidly spinning top with vertical symmetry axis) we

have & cosfy = 1, ééo) = €5, Py = Pa SO the stability condition 02 > 0 reads

p> > 4L Mgl (5.79)
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5.5.2 Precession and nutation
Small nutation around steady trajectory are described by Egs. (5.75) and (5.73)
B(t) = Bo+ nocos(€2t + ¢o)

o Do — pycosf(t)
o) = T a0

~ o+ n(t)a

1 cos? By Pa €COS By )
Y = — — ~ A9+ n(t)A 5.80
" Py (Ig Iisin? By I sin? By Fo+n(t)7n ( )
b ™
Ao >
[T \‘*\\/<‘/ P 4
Bon ™, 7/ ,
Y Ll
Zqo / /// ~——
/ 7 i)
T A
Vi
V24
4
P P s

(2)o > nola), (a)o = nola), (2)o < nola),
Figure 61. Nutation of a symmetric top

Part XVII

6 Hamiltonian dynamics

6.1 Hamilton’s equations

In the Hamiltonian formulation, generalized coordinates and generalized momenta appear
on equal footing. We write down generalized momenta as usually

oL
o« = — 1
p 9a. (6.1)
define
H = pato - LUa d1.1) (6.2)

and re-express all ¢, in Eq. (6.2) in terms of p, and ¢, and maybe ¢t. The obtained function
is called Hamiltonian

H(pa, qa; t) = ZPQQQ({q’p}a t) - L({Qay (Q({Q7p}7 t))}’ t) (63)
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Hereafter {q, ¢} denotes a set of qu, 4o, {q, ¢} a set of gu,pa etc.
In this formulation, the Euler-Lagrange equations are expressed as Hamilton’s equations

dga _ 9H({g.p},1

dt Opa
dpa 0H({g,p},t)
oo A4
dt Jqa (64)
Let us prove that they follow from Lagrange equations
oH({q,p},t) _ . 94a({g,p},t) OL({g,d},t)\ _ .
0H({g,p},t) 94s({g,p}, 1) 9L({q,q({a.p}, 1)}, )
= — 6.5
e ZB: EYRG 94a (6.5)
_ Zzaqﬁ({q,p}ﬂt)pf 3 3L({q,d},t)’ 3 Zi')ﬁ({w]}-f) 94s({q: p},t)
3 8sz ‘ aQOz ds=ds({gq,p}:t) 3 ()(]i dg=4s({a.r}:t) 8QO<
_ 5L({q74}7t)‘ _ _daL({q,d},t)’ _ 4
0o lds=ds({am} 1) dt o lis=ds({aw}) dt™"

Mathematically, the Lagrange equations are n differential equations of the second order
while Hamilton equations are 2n first-order differential equations (equivalent to n second-
order equations).

Note that if the Lagrangian does not depend on time explicitly (= %—f = 0), the
Hamiltonian (6.3) is a constant of motion:

dH:Z<87H% 87}[%):2( OH O0H BH(?H):O (6.6)

ra Ope di | Oqu di  Opa 0da | g0 Opa

e}
Moreover, if potential energy and the (holonomic) constraints do not depend on time, the

conserved Hamiltonian is the energy, see Eq. (3.111).
Example: free particle in one dimension

ma? oL ma? P2
L = — = — = [ H = r — —— = =X 6.7
5 T P T M= Pr=y om (6.7)
Equations of motion (6.4):
dp, _ oH dx OH _ pa

_ _ ar- ol _ Pz
il el 0 = p = const, o o - T To + mt (6.8)

It is possible to obtain Hamilton’s equations (6.4) from variational principle

([t [ aattahome — H({ap).0)]) = 0 (6.9)

t1 @

with boundary conditions fixed for both ¢’s and p’s:
dq(t1) = dq(ta) =0 and  Ip(t1) = op(t2) =0 (6.10)

The action integral (3.83), expressed in terms of H, is stationary with respect to independent
variation of ¢’s and p’s (for proof see the textbook).
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6.2 Example: charged particle in the electromagnetic field
6.2.1 Lagrangian
The motion of charged particle in the electromagnetic field is governed by Newton’s laws
with Lorentz force .
; . P
mr = e(E+ - x B) (6.11)
c

(we use cgs system here). Let us prove that the this equation of motion can be obtained
from the Lagrangian

. 1 .
L(F,Ft) = §mf2—e<1>(F,t)+e£-A(F,t) (6.12)

where ®(7,t) and A(7,t) are scalar and vector potentials defined by
_LOA( )
c Ot
B(Ft) = V x A(7,1) (6.13)

E(Ft) = —V®(F t)

The partial derivatives of the Lagrangian (6.12) are

oL e
= 'i 7AZ' _’7
Br- mri + - (7,t)
oL 7; OA; (T, 1)
= = —edi® el 11 14
or; cOid +e c Or (6.14)
so Euler-Lagrange equations are
d o1 B 10A;(7,t) 75 0A;(T,t)
$(mn + EAz(r,t)) = e0;® + <o + o
10A;(7t) . 10A;(7t i OA; (Tt
ooy = - LOAD e LAY 704, (6.15)
c Orj c Ot c Or;

Let us now rewrite the Lorentz force (6.11) in terms of potentials (6.13)

- 1 = 1 AZ qat .
mr; = e(EZ- + Eeijkf'jBk) = — e&@(ﬁt) — Caa(tr) + EeijkeklmrjalAm(r, t) (6.16)
1 8141 _’7 t . .
= —e0;®(7,t) — 00(:) + E(rjaiAj(r, t) — 750;Ai(r,t)) = r.hs. of Eq. (6.15)
where we used €;j1€mr = 0i0jm — dimdj (summation over k is implied as usual). Thus,

the Eq. (6.12) is the correct Lagrangian for a particle in electromagnetic field.

6.2.2 Hamiltonian

Canonical momenta:

8L . e o N N
pi = — = mri(t)—l—EAi(r,t) & p= mr+

A 1
or. (6.17)

ol

If ® and A do not depend on x, the corresponding generalized momentum p,. is conserved
but not equal to ordinary momentum mz.
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The Hamiltonian is

. 1 . —S 1 .
H = pii—L = mr- (7+ S/D - imf’a ted—el A = §mf'2(t) +ed(7,t) (6.18)
c c
which is clearly the sum of kinetic and potential energy of the particle in electromagnetic
field. Note, however, that the Hamilton must be expressed in terms of p; rather than z;.

We get
1 e - 2
H(F, 7 t) = —[*—714 *,t} O(F, t 6.19
(Bt) = g |P= ZAF )] +ed(7) (6.19)
Let us check that corresponding Hamilton equations (6.4) reproduce Newton’s 2nd law with

Lorentz force.

dT‘i oOH 1 (& N

G g o GRS MGD)

dp; oH e OA e -

Wi _ 9% €I (5 CAF ) - edid(F, 2
dt or; me Or; (p c ('r,t)) €D, ®(7' 1) (6.20)

Differentiating the first equation with respect to ¢t we get

1 ( e DA t) gaAi(F,t)fj)

i = m pi— c ot c Orj
B e OAi(Ft) e OAiFt). e DA . .
= %782‘; %781-] 7"] %877’-2 . (mf‘) eal(p(rp t)

€ . — . . € . -
= eEi(7,t) + —7;[0:;A4,(T,t) — 0;Ai(7,t)] = eB;(r,t) + —e€ijnrj Br(7,t) (6.21)
me me
which is Eq. (6.11). (In the last line we used the formula from Eq. (6.16)).

6.3 Canonical transformations
6.3.1 Point transformations in the Lagrangian formulation

Suppose we have a Lagrangian L(qa, da,t), @ = 1,2...n. Consider so-called point transfor-

mations

Ga = QQ(Q17Q27"'Qn7t)7 o= 17271 (622)

which are assumed to be non-singular and invertible

Qo = Qulq1,q2,---qn,t), a=1,2..n (6.23)
Th :
o 4oL oL ddL _ 0L 621)
dt 94e  Oqa dt9Q,  0Qa '
Proof:
Consider
) . d d
26 L (08(@0:05(@.00:1) = S oL{a3(@20). 05(Qys0)1)
_ 9 9 9gp _ 0L 9gs
= 0. L@@t 50t + 557 0nt) = o (6.25)
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Taking now derivative with respect to t, we obtain

d 0 ) _d@Lan_aqgiai 8Ld8q5
& o0, L(a3(@r 0,45(@0001) = 945 00 Qi 045  9d di 0Qa
_ 0L % | 0L 045 OL (6.26)

aQB 0Qaq aQB 0Qq 0Qq

where we used

0 d 0 /0 9qs _ 0 95 “45

a0, %@t = 50 (5‘15%(@7’ b+ 8Q7Q7) = 200, JrQ“*aQaaQ7

d 0 _ Pq O Ogp

@0, = GG, 4 5 L (6.27)

= jt aagl = %dd—t (nontrivial due to dt rather than 6t) The proof is complete.

Example: transition to spherical coordinates (z,y,z) — (r,0,¢) for a particle in a
central potential V (r).

e In Cartesian coordinates L = %(w +2 422 — V(\/m2 + y? + 22) = Euler-Lagrange
equations are complicated

e In spherical coordinates L, = % (i + 20 + r2¢? sin? §) — V(r) = Buler-Lagrange
equations are simple

Part XVIII

6.3.2 Transformations in the Hamiltonian formulation

The coordinates and momenta enter the Hamiltonian formulation on equal footing so it is

natural to consider transformations of the type

oo = QQ(Qﬁapﬁ,t) Qa — Qa(QB,pﬁ,t)
Pa = pa(Q,B,P/g)t)} = {Pa _ Pa(qﬁ,pg,t) (6.28)

which are again assumed to be invertible and non-singular. Note that this class of trans-
formations is more wide than point transformations (6.22) since, for example, the new
coordinates may depend on old velocities.

Still, the transformations (6.28) should describe the same physical problem (same Euler-
lagrange equations <> same Newton’s 2nd law). For a general set of transformations (6.28)
this is not always the case. For example, consider a free particle with H = % described
by Hamilton equations (6.7) and (6.8)

dp OH dq OH D D
dp _ OH _ o — comst, 9 _9% _ P ., ,_ Ly (6.29
7 94 P const, gt ap m q qo + m ( )
or Euler-Lagrange equations (L = —mé”z)
oL d 0L P
oL _ g o 49L _ s o - 2y 6.30
5a iiog — ™ ¢ = aq+ (6.30)
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Now consider a transformation

Q = m2’ P =g (6.31)
The Hamiltonian is now
1 : 1
HP.Q) = 5Qm = L@QQ) = -;Qm (6:32)
and the Euler-Lagrange equation reads
oL m oL
— = -, = =0 = m = 0 6.33
which is not the correct description of our problem with m # 0.
On the other hand, consider
Q= —p P=g (6.31)
The Hamiltonian is now
QQ i i 2
H(P = — L t) = (A+ Bt)QQ — — .35
(P.Q) = £ = L@QQ1) = (A+BHQ- = (6.35)
and the Euler-Lagrange equation gives
oL Q oL Q
— = - = — = A+B B = —-——= = —Bm =
90 90 + Bt = - = Q m const
oL
P9 _uip - - (6.36)
oQ m

which gives Eq. (6.30) after inverse transformation p = —Q, ¢ = P.

We see that not all of the transformations (6.28) are acceptable, only those which do
not change physics of our problem < do not change Euler-Lagrange equations < do not
change Hamilton equations. Such transformations are called canonical transformations.

Definition: the transformations

Qo = QQ(Qﬂap,Bat) Qo = QQ(Qﬁvpﬁat) 7
Pa = pa(QB7PB7t>} - {Pa = Palgp,pp,t) (637

are called canonical if for the new Hamiltonian

H(Q,Pt) = H(Q({g.p},1), P({g,p},1).t) (6.38)
we have the Hamilton equations of the same form:
Yo = et } . { e - S 6.9
dc%x _ —aH%Zf}’t) % _ _8H(gg,f},t) :

The canonical transformations may be very useful. Imagine that we have found such
transformation (g, p) — @, P that H = H(P), then all momenta P are conserved so the
solution of Hamilton equations in terms of () and P is trivial.

Thus, the task is to find a suitable canonical transformation which simplifies our prob-
lem. This sometimes can be done with the method of finding the suitable generating

function.
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6.3.3 Method of generating function

Recall that one can derive the Hamilton’s equations from a modified form of the least action

/tt2 (Zpi% - H(q,p;t)> dt (6.40)

with constraints that both dp;(¢) and d¢;(¢) vanish at the endpoints t = ¢; and t = ta, see
Eq. (6.9). We should have

principle applied to

to
6 [ (Dowidi— Higpst))dt=0 (6.41)
t1 i

in old variables and

5[ (Z PO; — H(Q, P; t)) dt =0 (6.42)
t1 i

in the new variables. These two relations are satisfied simultaneously if the two integrands
differ by full time derivative of some function F"

. - dF
Pi i_H ,P;t: zz_H 5 ;t - . 6.43
Ei: Qi — H(Q, P;t) Zi:pq (g:p:0) + — (6.43)
Indeed, the variation of dF/dt is
2 dF
4] rr dt = 6(F(t1) — F(t2)) = d(const) , (6.44)
t1

where “const” is independent of the shape of d¢;(t) and 0p;(t), since dg;(t1) = 0gi(t2) = 0
and 5pi(t1) = (5pi(t2) =0.
Rewriting Eq. (6.43) as

dF =Y PdQi — > pidg + (H — H)dt (6.45)
we find that OF OF OF

= ——— , Pi= , H=H - — . 6.46

Pi= "5y, 90, o (6.46)

The function F is called the generating function of the canonical transformation.
If F(q,p,Q, P;t) does not depend on t explicitly, we can write H = H and

dF sz dqi
Y = R - T,
dt 2 it~ & n

(6.47)

i.e., in this case H(q,p) and H (Q, P) are the same functions just written in different vari-
ables: H(p,q) = H(Q(q,p), P(¢,p)) and

dF =3 PdQi — ) pidg; . (6.48)
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Since the differential of F' is determined by changes in (differentials of) ¢; and @Q;, Eq. (6.48)
generates F as a function of 2s variables {¢;, Q;}.
NB: In general, since new and old variables are related by 2s equations

the function F({g;, pi}, {Qj, P;};t) has only 25 = 4s—2s canonical variables as independent.
Thus, the possible choices are Fi(q,Q;t), Fa(q, P;t), F3(p, Q;t), Fy(p, P;t). A particular
choice is determined by convenience of application to a particular problem.

Example: take F' =), ¢;Q;, then

OF 0, . P— oF
9

so this transformation interchanges coordinates and momenta.

pi = =q , (6.50)

Another example:

w2

F(q,Q) = — qu2 cot Q for harmonic oscillator with H = p + - 02,
dF mq’w | 2P [2P |
— = P = = _
dq 2sin? Q sin Q mw o @
dF
~ 0 = p = mwqcotQQ = V2Pmw cos @ (6.51)
The Hamiltonian in new coordinates takes the form
~ 2 22
H(Q.P) = H(q(Q.P).p(Q.P)) = j—+ =% = wP (6.52)
Thus, in new variables the Hamiltonian is cyclic in ) so
H(Q, P :
9 é%’): —-P =0 = P = Py = const
OH(Q, P :
g%):Q:w = Q = Qo+ wt (6.53)

and the solution in terms of the original coordinates

2P .

q = {/—sin(Qo + wt)
mw

p = V2Pymw cos(Qq + wt) (6.54)

takes the familiar form ¢ = Ag cos(wt + ¢g) with ¢g = Qo and Ag = v/2Pymw.

In general, switching from a generating function F(q, @;t) that depends on the variables
q, Q to another generating function that depends, say, on P and ¢ is accomplished by the
Legendre transformation

—d® = d(F — ZPZ-QZ-)
_ [ZPdQZ Zpldqz (H — H)dt} S (PdQ; + QidP)

= — Q.dP; — pidg; + (H — H)d (6.55)
> Z
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We see that the differential d® is determined by differentials dP; and dg;, i.e. ® should
be treated as a function of P and ¢: ® — ®(¢,P) = ®({¢;},{P;}). The coefficients in
front of dP; and dg; are the respective partial derivatives, which results in the following

transformation: 5% 9%
Rl p— 6.56
pi=g. 0 @=5p (6.56)
so the Legendre transform reads
(g, P) = —F(q,Q)+Y_PQi = —F( qz, ZP (6.57)
7
Example: identity transformation g; = Q);, p; = P; The generating function is
(9(1)0 a(I)O
P = = — =P, == =qj 6.58
Z q; L5 Dbi EX i Qi op, qi ( )
(see Eq. (6.56)).
Example: point transformation.
Take ® =3, fj(q,t) Pj, then
0P
- = f(a.t 6.59
QZ 8Pl fZ(Q7 ) ’ ( )

i.e., the new coordinates are functions of only old coordinates (but not momenta): this is a
point transformation (6.22).
From the first equation in (6.56), we obtain

pbi = an Z 8f] Z aQ] P; = Z Pjaj; . (6.60)
J

where a,;, = ‘%QT;". Note that since

=0~ 50 = 2 5 30, 6o
aji (a_l)ik
the matrix inverse to aj;; = 0Q;/0¢; is given by
(@™ Vir = ;Qq; . (6.62)
Inverting relation between p; and P;, we derive
Pi=> pila )iy =) ggj Di - (6.63)
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which agrees with

P = i.L(qk(Q,t),q'k(Q,t),t) -9 (qk(Q t), Qk(Q t) + Qi

0Q; 8QJ
oL Oqy 8qk
g A 0Q; Z Praq;

(6.64)

(cf. Eq. (6.26). Thus, any point transformation (6.59) (plus Eq. (6.64)) is canonical.

Example of a non-canonical transformation:

Take a harmonic oscillator with H = % + mw ¢’ , then

. _OH p oOH 9
— , pP=—— = —Ww
= 9p  m Jdq e
Consider the transformation
Q=qhL , P=pjlnl,
q0 Po
or
q=qoe?/? | p=poe/ro

The Hamiltonian in the new variables is

- ~ 2 2
H=H(P,Q) = 2%621’/120 i %q(%e?@/qo _

Now, using @ = ¢ In(q/qo), we can find

sl G4 _q._ P _dp _ dopoe””
Q=q—— —=—"4==—

Q/QO qo q qgm mq mqer/qo ’

or
Q= Po ,P/po-Q/a0
m

Let us check whether this coincides with g—g:

oH p% 2 e2P/po — @6213/110
OP ~ 2mupo m '

Hence, Q 75 5p > 1-e., the transformation is not canonical.

6.4 Poisson brackets

(6.65)

(6.66)

(6.67)

(6.68)

(6.69)

(6.70)

(6.71)

If f=7f({q,pi},t) and g = g({qi,pi},t) are two functions of dynamical variables p; and g;

the Poisson bracket [f, glqp is defined as

w =[O 05 Of 0y
[th}%p - ;[an apk 3pk8%]

The full time derivative of f = f({gi, pi},t) can be represented as

% 8f Z( Qk+fpk>
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Using Hamilton’s equations, we get

f of of oH 0f oH\ _ oOf
=50+ 3 (oncoe~ hec) = a1~ Sl

where

OH 0f OH af)
H, = oy s wal
[, f] (a:p) ; <8qk Opr Opk Ogy,

is the Poisson bracket for H and f.

For f to be constant in time, f must satisfy

of
ot [H’ f] (ap) — 0,

or, if f does not depend on t explicitly, it is constant when [H, f](,,) = 0.
ExAMPLES. Let g = ¢;. Then

of 0q; of 0q;
[qul](q,p):;<f 4 _7f q)

Oqi, Opr,.  Opy, Oqi;
:Z<8f 0—8—f 5ik>:_8f.
% Oy, '

Oqy Opi
Similarly,
B of op;  Of 51%)
17 pz](q,p ) zk: <C9Qk Opr Opk Ogy
of of > of
= 0; 0) =—.
Z,; (5% © opk 9q;
and
[Qka QZ] (a.,p) =0, [pk’pz] (a.,p) =0, [Qkupl] (a.p) = 0k -
Using Poisson brackets, we can write Hamilton’s equations as
. 0H OH
q; = A, = - [H, Qi] (¢,0) or [H, Qi} (ap) — Op; )
and
OH OH

pi = — dq; - _[H’ pi](q,p) or [H’pi](q’p) - 87% ’

in the form explicitly involving only ¢ and p variables.
Properties of Poisson brackets

[f,c] = if ¢ = const

AL+ fo, ] [f1, 9] + [f2, 9]

[fif2,9] = [f1,9]f2 + filf2, 9]

[f.lg.M]] + [g,[h, f1]] + [k, [f.9]]] = O “Jacobi identity”
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(6.75)

(6.76)

(6.77)

(6.78)

(6.79)

(6.80)

(6.81)

(6.82)



(First three properties are trivial and the proof of Jacobi identity can be found in Goldstein’s

textbook).
A consequence of Jacobi identity: if f(q,p,t) and g(q,p,t) are constants of motion, so
is [f, g]-
Proof:
d 0 0 0
0 0
— Y w12 ) = 0 (6.89)

So, one can construct new constants of motion by taking [f[f, gll, [g, [, f1], [, [f, [f, g]]] etc.
Since the number of constants of motion is 2n — 1 (with n being a number of generalized
coordinates, see Sect. 3.7.4), this process will stop at some point: the new Poisson brackets
will be either an old ones or simply constants.

6.4.1 Poisson brackets and canonical transformations

Theorem: the transformation
¢ — Qi(g,p), pi = Pilg;p) (6.84)
is a canonical one if and only if
[Qi, Qilgp) = [Pis Pil(gp) = 0 and [Qi, Pjl(qp) = 0ij (6.85)

Proof: see Goldstein’s textbook.

Example: harmonic oscillator in terms of P and @ introduced in Eq. (6.51)

2P
qg = \/—sin@, p = V2Pmw cos Q@ (6.86)
mw

The inverse formulas are

2
mw o D

Q = arctanmw%, P = -5 B (6.87)
so (arctan’z = H%)
0QoOP 9PI 1 2 1
@, P] = 9QoP 0P oQ = — —1—77120‘)2(1—272 =1 (6.88)
dq Op  Oq Op 1+ mszg—Q P71+ mzwgg—2
Theorem: Poisson brackets are canonical invariants , i.e. if
¢ — Qi(¢;p), pi — Pi(g,p) (6.89)
is a canonical transformation, then
Lf, 9lapy = f-9l@.p) (6.90)
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Proof: if f(q,p) = f(¢(Q, P),p(Q, P)) and g(q,p) = 9(q(Q, P), p(Q, P)), by chain rule we
get a formula

oo = Y[ 2820

dq; Opi  Op; Dg;
_ Zﬂ[ag 8Qj+ 393Pj]_zaf[3g an+ dg OP;

dq; LOQ; Op;  OP; Op; T Op; LOQ; Oq; ~ OP; 0q;
B dg dg
= 250, 1 @ln + 22 55,1 Pl (6.91)
J J
Next, take f(Q, P) = @; in the above formula:
dg B dg Oy
(@i, 9] Z Q“Qﬂ'](q,pﬁzj:apj[Qi’Pf]m,p) =0%%p = o 09

so we can use [f, Qg = — g—}% what follows.
Similarly, taking f(Q, P) = P; in Eq. (6.91) we get

Jg
Pz:.g qap = Z Pqu (qp)+z P, ]](qyp) = _aQi (6.93)
Thus, [f,Qil(gpy = — % and [f, Pilqp = W which means that we can rewrite Eq.
(6.91) as
g of 99 of 9971 _
p Za@ fa Q] (¢,p) +Z (qp) Z [anap_a]gan - [f?g](P,Q)
j
(6.94)

Thus, Poisson brackets evaluated with one set of canonical variables, have the same value
for any other choice of variables related to initial ones by a canonical transformation.

6.5 Canonical transformations and symmetry properties

Consider an infinitesimal canonical transformation
Qi = ¢+6q, P = pi+pi (6.95)

In what follows we will keep only linear terms in dg; and Jp;. Such transformation must
have a generating function which differs from identity generating function (6.58) only in-
finitesimally:
F(q,P) = Y q;P;+¢G(q, P) (6.96)
J

where € is a small parameter. We get then

OF 8G oG
i = 5 = B+ opi = Pi—pi = —e—
P a% 86]1 < b P eaQi
OF oG oG
Qi = or qi+€8P¢ & 0 = Qi—q = O (6.97)
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Since G(q, P) = G(q,p) + O(e), the above equation can be rewritten as

- 0G(g;p) - 0G(q,p)
0q; = 678}9@- , op; = 673%’ (6.98)

so any arbitrary function G(q,p) generates some infinitesimal canonical transformation.
Example: take G(q,p) = H(q,p) and € = dt, then
9H(q,p)

= g;dt, opi = —dt——DE 6.99
q P 94 2 (6.99)

OH(q,p)

0g; = dt
4 Op;

We see that G(q,p) = H(q,p) generates the infinitesimal transformation which takes the
system at time ¢ and evolves it to time ¢ 4+ dt (because Q; = ¢; + 0q; = ¢; + ¢;dt = q;(t + dt)
and similarly for P; = p;(t + dt)).

Now, the evolution of the system between tg and t is generated by a sequence of
infinitesimal (canonical) transformations (6.99). The sequence of canonical transformations
is also a canonical transformation so one can view a time evolution of the system as being
generated by a canonical transformation that takes (qo,po) at time ty to (gq,p) at time t.
This implies the existence of a generating function, and finding of such generating function
is equivalent to solving the problem of time evolution of our mechanical system.

Consider a certain function u(g, p).

e Q: what is the change of u under (¢;,p;) — (g + d¢;, i + 0p;)?
o At du = u(gi+0gi,pi + 6pi) —u(qi,pi) = €u,G]
Indeed,
ou ou
ou = u(qi + 0¢i, pi + 0p;) — ulgi,pi) = ~—0Gi + =—0pi
u = u(q; + 6gi, pi + 0p:) — ulgi, ps) Z[aqqurapip]

%

_ Ez[auaa Ou 0G

guot 2wty _ @ 6.100
0q; Op;  Op; 0g; [, €] ( )

7
If we take u(q,p) = H(q,p), then 0H = e[H, G] gives the change of H under the infinitesimal
transformation generated by G(q,p). Now, if G is a constant of motion [H,G] = 0 which
means that the canonical transformations generated by G’s which are constants of motion
leave H invariant. On the other hand, we know that symmetry properties of the system
indicate which transformations leave H invariant which means that symmetry defines the
set of canonical transformations which leave H invariant.

6.5.1 Total momentum as the generator of spatial translations

Consider an infinitesimal translation of all coordinates of N particles

o= 7L o= T+ € (same € for all /), i = 1,2,..N
p; —> ]3; = p; (6.101)

Q: What is the generating function G(q,p) or this transformation?
ArG =P = >0
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Indeed, from Eq. (6.98) we see that g—g ~dp; = 0so G = G(p;). In addition,
(0Gi)a = € % = €, which is the first line in the above equation. Thus, the translations
in the « directions are induced by P,.
Example: two interacting particles
-9 -9
P P> - -
— + =4+ V(r — 6.102
2m + 2m + V([ —7) ( )

(equal masses for simplicity but no spherical symmetry).

H =

This system is invariant if both particles are translated by € (or equivalently, the frame
is translated by —€). From Eq. (6.100) we get

P P
(6H)o¢ = [H7 Pa] = [H;pla +p2a] = [% + % + V(Tl - TZ)vpla +p2a] =
ov(ry —r ov(ry —
= [V(7 — %), Pra + P2a) = ((;"1 ) VIn—h) _ (6.103)
Tl Oraa

where we used Eq. (6.78). The meaning of this conservation law becomes evident if one
performs the (canonical) transformation to the CM position and relative separation coor-

dinates
R = *1;*27 Fo= -
P = pi+ p= pl;ﬁZ (6.104)
In these coordinates
H = —+ —+ V() (6.105)

—

which is cyclic in R = P = const.

6.5.2 Total angular momentum as generator of rotations

Consider a rotation of all coordinates of N particles about the 7 axis by an infinitesimal
angle €. From Eq. (2.14)

— —

SV (F) = ex V(7) (6.106)
for any vector V' so
o= T, = T+ EX T,
D = P, = P+ EXPi (6.107)

(again of course same € for all particles). In components Eqgs. (6.107) read

(57“1'& = 66a57ﬁ57”i7

OPia = €€aByNBPiy (6.108)
The generating function for this transformation is obtained from Egs. (6.98) so

oG oG
=

0ria = iy = = npyiigr; 6.109
Tioy €€aBy ATy € oo oo €aBy 3Ty ( )
. oG oG .
0Pia = CeapylipPiy = —€5- = G =~ CapypPiy (6.110)
(1% (104
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which is solved by

G(ri,p) = Y €uafuljubia (6.111)
J
Indeed,
0G . .
B = Z@m@ﬂaunupj)\ = €uarupin = 1.hs. of Eq. (6.110)
(10% .
J
oG . .
o = Z‘Sij‘SOéAEW/\nMTJV = €uanury = r.hs. of Eq. (6.109)  (6.112)

J

Now, note that

G(Ti,pi) = quu)\ﬁurjupj)\ = ’ﬁ,MZEHV)\T'ijj)\ = ’ﬁ,E (6.113)

J J

son-Lisa generator of rotations about 7.

Let ﬁ(f',ﬁ) be any vector function of 7 and p; (for example F = >0 = P or
F=rxp= I_:Z) Under rotations on angle € about the n axis it changes according to Eq.
(6.100)

6F = €[F,L -1 (6.114)

On the other hand, the general formula for rotation of any vector is given by Eq. (6.107):
§F = en x F which implies that

[F,L-7i] = AxF (6.115)

If this formula is applied to F =L and /i = é, one obtains

[L,L.] = é.xL & [Ly, L) = — Ly, [Ly,L:] = L. (6.116)
Similarly, one can prove that [L, L,] = L, so we get
[(LasLg]l = €apyLy (6.117)

It follows that

e if any two components of L are conserved, say L, and L,, the remaining component
L, = [Lg, L, is also conserved due to Eq. (6.83)

[2,L,] = [LoLe+LyLy + L.Ls, L) = [LyLy, La] + [L:L., La]
= Ly[Lyv Lx] + [Lya Lx]Ly + L, [Lza Lz] + [L27 Lx]Lz
= —2L,L.+2L,L. = 0 (6.118)

and similarly [EQ,Ey] =0and [L2,L,] = 0.
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Part XIX

6.6 Hamilton-Jacobi theory

Canonical transformations can be used to solve the problem, at least in principle. One
way is to find a canonical transformation which makes H cyclic in all coordinates. An-
other way is to find a canonical transformation that takes ¢(to), p(to) to ¢(t), p(t), then the
transformation equations

g = q(qo,po,t), p = p(qo,po,t) (6.119)

are the solution of our mechanical problem. Such approach is called Hamilton-Jacobi theory.
Consider a generating function ®(q, P,t) yet to be determined. This function generates
a canonical Legendre transformation according to Eq. (6.55):

0d®(q, P,t 0®(q, P, t
bi = 7@ ), Qi = (gp )

9
~ 0P

Suppose @ is such that H = 0. If this is the case, the Hamilton equations (6.4) yield

(6.120)

MOED _ g0 = Q= comst = Qu=@it=0)
(w(gg-])’ﬂ = -P, =0, = P =const = Py=P(t=0) (6.121)

This implies that ®(q, P, t) is really a function of ¢; and t since P; are constant. Define
S(qa t) = @(q, P07 t)

The function S is determined by differential equation (6.120) (with H = 0):

oS oS
H(q; —;t — = 122

or, in explicit form,

s 8S OS(q1 oo qui t
) + (q1y s Gns t)

H(qla“'chTL;vaj ot

R =0 6.123
q1 aQn ( )

In this way we traded 2n first-order coupled differential equations (6.121) for a single partial
differential equation with n + 1 variables (6.121). It is called Hamilton-Jacobi equation. It
has n+1 constants of integration. This is understood by integrating Eq. (6.123) one variable
at a time while keeping the next variable fixed. However, among the n + 1 integration
constants, one is additive

S(Qla"‘an;ala"wa?’L7an+1;t) = S(Ql?"‘aqn;ala"wan;t) + SO (6124)

(where Sy is the (n 4 1)th constant) since the Eq. (6.123) involves only partial derivatives
of S s0 .S — 5+ .5y does not affect the equation.
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Next, we define Hamilton’s principal function
S(qh -5 qn; Pla ceey Pn7t) = S(qh oy Gny 1 — Pla ey Qi —2 Pnat) (6125)

and study the canonical transformation generated by S(q1, ..., qn; Pi, ..., Pn; t).
From Eq. (6.120) we get

' 0
05(q;, P;,t
Qi = (8]])]) (6.126)
Next, from the Hamilton-Jacobi equation (6.123)
S S OS(q1y ey G 1,4 oo 1)
H vy Qs Ty ey — 3 b =0 6.127
(Q17 »q aql 8(]n ) + ot ( )

and Eqs. (6.120), (6.126) we see that

0S(q1y s qn; P1, ... Py t)
Ot

=0 (6.128)

E[(QlaaQny-Plvaant) = H(Qla?QTuplaapnyt) +

a8 a8 ;t) n OS(q1y vy Q01,4 ...t 1)

(QI7 7Qna7aq17 >8qn ot

This, if one solves the Hamilton-Jacobi equation (6.123) one finds the canonical transfor-
mation with H = 0 leading to conserved P; and Q; (see Eq. (6.121)). We already defined
«o; = P; and now we denote

Q; = const = [;
The Eq. (6.126) implies

OS(q1y-ees @i Q14 vy i3 T)
86%

Bi = (6.129)

which can be inverted to give

¢ = qi(o1,...;on; B, ..., Bnit) (6.130)

thus solving our problem.
In practice, to obtain Hamilton-Jacobi equation (6.123) one replaces p; — gTi and then

s 0S(qi;t)
H(a—qi,q,,t) + =0 (6.131)

When H does not depend on time explicitly one can use ansatz

requires that

S(q1y--Gn, Q15 --pyt) = W(q1, . .qn, 1, ...0t) — a1t (6.132)

and then the constant «; is the energy due to Eq. (6.131)

95 N 0S(gt)

- 122 -



so in terms of W we get

H(%Z, qi) _— (6.134)

which is the Hamilton-Jacobi equation for H that does not depend on time explicitly

Let us demonstrate that Hamilton’s principal function S can be interpreted as an action
along the classical path. Suppose we solved our mechanical problem, namely found ¢; in Eq.
(6.130) as functions of ¢ and initial conditions. The coordinates ¢; define some trajectory
in the configuration space of the system. Along this trajectory

dsS oS oS
b i+ — 1
dt - 8qiq + ot (6.135)
since aq,...,a, are constants. Moreover, since S satisfies the Hamilton-Jacobi equation
(6.123), 3—5’; = p; and %—f = — H, so we get
dsS . .
& = pidi—H = g (6.136)
and .
S(t) = S[q(t),...qn(t); a1, ...an;t] = /dt/ L(t") + S(to) (6.137)
to

which shows that S(t) is the action evaluated along the trajectory (6.130). Unfortunately,
the equation (6.137) is useless in determining S since it implies a priori knowledge of the

trajectory.

6.6.1 Example 1: harmonic oscillator

Let us take ) 5
p mw-q
H = — 6.138
2m * 2 ( )
The Eq. (6.131) takes the form
1 /0S(q,a,t)\2  mw?q®  0S(q,a,t) B
i ay )t o (6.139)

for the harmonic oscillator. (The additive constant Sy is ignored here since it is irrelevant
for the solution). Since ¢ does not appear in H explicitly, we can try the solution in the
form

S(q,a,t) = W(g,a)—at (6.140)
We get

dq

a 1
W(g,a) = =+ \/2m/ dg' (/o — imw2q'2 (6.142)

2 2.2
1 (aw(q,a)) IR’ S, (6.141)

2m 2

which has a solution
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This integral can be easily calculated, but it is of no interest, since the trajectory ¢(«, 53,t)
is determined by Eq. (6.129)

B t

_ 95 _ | /m/q dg' N
oo 2 /a—%mw2q’2
q dd'
& B4t = i,/?/ d
\/a—%mw2q’2

Let us take (—) sign, then

1 2
B+t = —arccos (qwuﬁ> = q = \/—acosw(IH—ﬁ) (6.144)
w 2a mw

where « and 8 are determined now by the initial conditions. Note that the constant « is
actually the energy since from Eq. (6.131) and Eq. (6.140) we get

(6.143)

H =« (6.145)

As an example, let us take initial conditions ¢(0) = gp and ¢(0) = 0, then o = mT“’qu and

B =0:

q(t) = qocosw(t+ ) = ¢(t) = —wqsinw(t+p) = sinwf=0 = =0
= q(t) = qocoswt (6.146)

The function S can be found from Eq. (6.140) and (6.142)

q 2 2 t 2 2
S = — mw/ dq'\/q3 — q% - wt = mw2q(2)/ dt' sin® wt’ — mw2 9, (6.147)

On the other hand, the action is given by

t 2 2.2 rt
S = /dt’(?cﬁ(t’) — %q%t’)) = mu;qo/ dt' (sin? wt’ — cos® wt')
2.2 ot 2 2 t
= mwQ qo/ dt’'(2sin®wt’ —1) = — mw2 D mqug/ dt’ sin? wt’ (6.148)

6.6.2 Example 2: particle in a central potential

The Hamilton-Jacobi equations are useful for the class of problems which admit separation
of variables. As an example, we will consider the motion of a particle in a plane under the
influence of a central force. The Lagrangian is

L = 26+ - V(r) (6.149)
The canonical momenta are
L L .

- 124 -



so the Hamiltonian has the form

)
p? L P
2m  2mr2

H = +V(r) (6.151)

As we discussed above, since this Hamiltonian does not depend on time explicitly we

can try the ansatz
S(qu, qos o, a5t) = Wiq, qo; on, an;5t) — ant (6.152)

and the Hamilton-Jacobi equation (6.123) turns to

ow oW 1 70W\2 1 0W\2
a = Hino 5o g ane) = 5 (o) 55 (G) HV0) = e (615
Let us try now ansatz with separation of variables
W(r,¢,o1,a2) = Wi(r,on,a2) + Wa(¢, a1, a2) (6.154)
We get
1 /0Wp\2 1 OWa\ 2 _
%( or ) 2mr2< 0¢ ) V) = @
oWaN2 OW1\2
= <W> . [Qm[al—V(T)] —( o ) ] (6.155)

The Lh.s. depends only on ¢ while the r.h.s. only on r so both of them must be constant.

Let us choose this constant as a2, then aggg = «ay and hence the Eq. (6.154) reads
W(r,¢,a1,a2) = Wi(r,a1, a2) + az¢ (6.156)

One could have guessed this form for W by observing that H is cyclic in ¢ so

oS oW
- i = 1
Do const = o (6.157)

leading to Eq. (6.156).
Next, using Eq. (6.156) we can rewrite the Hamilton-Jacobi equation (6.155) as

1 an 2 a% B
%( or ) 2mr? V) = o
oW 2
57=1 — \/Qm[al —V(r)] - % (6.158)
and we get
T 2
Wi(r, ¢, a1, a2) = / dr’\/2m[a1 V(') - % + az¢ (6.159)
Now, from Eq. (6.129) we can find 81 and [
oS ow
= — = — t
61 aOél 80[1
oS ow
B2 = Doy = Doy (6.160)
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so we get

P+ B = m/ dr’ ! (6.161)
\/2m[a1 -V — a%r’_2
and " .
¢ = P2+ a2/ % (6.162)
r \/Zm[al - V(] - a%r’_z

which are Egs. (1.68) and (1.70) for the trajectory in a central potential. We see now that
the constant aw is the conserved angular momentum (and «q is energy as we saw above).

6.7 Action-angle variables

Hamilton-Jacobi theory is very convenient for description of conservative systems whose
motion is both separable and periodic. Separability means that

Wiqi, - -qn; o, ....an) = Wilqrou,....an) + Walge; an,y o) + oo + Walgns a1, o)
(6.163)

and two types of periodic motion are libration (Fig. a) and rotation (Fig. b).

p

libration

Real Space Phase Space / 7 / /y I .; ' — Y
W 7 One
/ 27 / -
e.g. harmonic osgillator .
. I rotation
T oy e.g. pendulum going over the top

Figure 62. Libration and rotation

The example of libration is a simple pendulum with small oscillations; the example of
rotation is the pendulum with enough energy to go over the top.
The action variables are defined as

Ji = %pid%’ (6.164)
The integral is the area in phase space taken over one period of the motion.
From Egs. (6.126), (6.132) and (6.163) we get

o ow  OWi(g; a1, -.an)
P= G T - (6.165)

- 126 —



so the Eq. (6.164) gives J; as functions of a’s
Ji = Ji(al, ..Oén) (6.166)

Thus, J; are constants of motion (since «; are). We assume that Eqs. (6.166) can be
inverted

o = Ozi(Jl,..Jn) (6.167)
As we saw in Eq. (6.133), the constant «; is the energy
o] = Oél(Jl,..Jn) = H(Jl,..Jn) = F (6.168)

Now we can take J; as new integration constants in place of ay:

Wlg1, --qn; a1 (), ccan ()] = Wlgr,-qn; J1, - Jn)
Slq1, qn;a1(J), can(J);t] = Slqu, . qn; J1, . Jn;t) = W —tai(J) (6.169)

where bar is added for convenience.
Now let us study canonical transformation (6.126) generated by Hamilton’s principal
function (6.169) with the canonical momenta being .J;

S[ql,...qn;Pl,...Pn;t) = S[ql,...qn;Jl,...Jn;t), P, = Jz (6170)

Rewriting Eq. (6.126) we get

i = BS(qj,Pj,t) _ 8S(qj,Jj,t)
! 8qi ap=const 8qi Jy=const
Qi = op, = 07 (6.171)

In addition, it is easy to check that S|qi,...qn;J1,...Jn;t) satisfies the Hamilton-Jacobi
equation (6.123)

85(Q177qN7t) -
—_— = ] = H(Jl,:]n)
ot
oS oS
= H(q1, .., qn;p1, -Ppn) = H(CA,--.,qn;,faql,--.,—a

qn) (6.172)

Since S satisfies the Hamilton-Jacobi equation the canonical transformation (6.126) gen-
erated by S leads to H = 0 and conserved P; = J; (we already saw that) and conserved

Qi

P, = J; const
Next, we define angle variables
o -
wi(ql,...qn;Jl,...Jn) = 8J~W(q1’mqn;t]1’mjn) (6.174)
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Since 3; = Q; = %jﬁji) are constants of motion, from Eq. (6.169) (S = W —tay(J))

we get

_ as q ,...qn;J ,...Jn;t
Bilquy ons J1, - dn) = (1 8(]’1 )

_ OW (q1, - Gn; J1, ... Jn) B t@al(ql, ceelny J1y o d)
0J; 0J;

Bal(ql, .gn; Jl, Jn)

= wi(q1,-qn; J1, - Ip) — ¢ 07 = const (6.175)
and therefore
w; = vit + f; (6.176)
where the “frequency” v; is defined as
v = Lo (dn) = 2 H( ) (6.177)
T = 8Jz 1\J1y eevdn ) — 8Jl 1y---dn .

Note that each w; increase linearly since 3; and v; are constants of motion.

Now consider periodic motion so the system returns to initial configuration after an
integer number of periods. Let us find change in angle variables after the system goes over
large integer number of periods. The infinitesimal change of w; is

ow; 0 ow
dw; = 3 Sdg; = — > —dg; 1

where we used Eq. (6.174) and the fact that J’s are constants of motion. Next, we recall
that we assumed separability (6.163) and get

0 OWJ' 0
o 0J; - dq; dq a.J; ;deqJ (6.179)

where we used Eq. (6.165).
Now let us integrate Eq. (6.179) over one period At of the system during which each
degree of freedom ¢; undergoes integer number ny of periods 7.

At = NETk, k= 1,2,...77, (6180)

From Eq. (6.176) we get
Awk = VkAt = VEpNgTk (6181)

On the other hand, the total change in wy variable can be obtained by integrating Eq.
(6.179)

d
Aw; = sz:/pjdqj (6.182)

Each degree of freedom w; has executed an integer number of periods n; so

/ pjda; = nj ]{pjdqj' = n;Jj (6.183)
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(recall the definition of action variables (6.164)) and we get
0

Comparing this equation to Eq. (6.181), we see that
y = — (6.185)

which justifies the name “frequency” for v;. They are called fundamental frequencies of the
system. From Eq. (6.177) we see that they are partial derivatives of the energy with respect

to action variables J;.
6.7.1 Example: harmonic oscillator in two dimensions
Consider 2-dim harmonic oscillator with two different spring constants. The Hamiltonian

1s

2 2 k k‘g

P Pa 1 2 2
(change of name a; — «) and the Hamilton-Jacobi equation (6.134) becomes
1 /0W\2 OWN21 ki o ko
i ha — —Zq5 = 6.187
2m[(8q1> +<8q2>}+2q1+2q2 “ ( )
Separation of variables
Wi(q,¢2) = Wilq) + Wal(q2) (6.188)
leads to L oWz k SWon2  k
(2 M o2 o2 M2 o2l
[QWL( 8q1 ) + 2 ql} + [( 8(]2 ) + 2 q2] @ (6189)

which means that two expressions in square brackets are constants:

1 (8W1>2 @ 9

om qu 2(11 = a1

L (OWaN2Z ko 5

%(ETD) P

al+ay = a = F (6.190)

These equatioin can be easily solved:

aw:
i) _ )y fm(2an - k)
dq
dWw.
ﬂ = P2 = + m(2a2—k‘2q%) (6'191)
dgz
where we used Eq. (6.171)
aS’<Qj,Jj,t) dWi(q1, g2)
o= 954 dit) _ aWila, @) 6.192
p 8(],' J=const dq7,‘ ( )
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Now introduce new variables 6

2 /2
qQ = “ sin 64 = dg1 = “ cos 01d64
k‘l kl

2
Qo = —~=sinfy = dgo = iac cos Bodby
kg k2

The action variables (6.164

27
J1 = y{mdch = 20 m/ dfy cos’0; = 2ray n
]{31 0 kl

27
Jo = jgpquQ = 20 m/ dfy cos* 0y = 27ay u
]{32 0 k?

J1 k?l J2 k2
o= oo\ = ooy
2V m 2V m

take the form

~—

SO

and the Hamiltonian defined by Eqs. (6.186) and (??) takes the form

Ji ki Ja [k

From this Hamiltonian we can obtain fundamental frequencies using Eq. (6.177)

o= 9H 1k
1_8J1_27rm

OH 1 [k
]/2: = —4/ —

871]2 2rV m

(6.193)

(6.194)

(6.195)

(6.196)

(6.197)

which are frequencies of independent oscillations in the first and second coordinates.
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