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Part I

1 Basic Principles

1.1 Newton Laws

Inertial reference frame is a frame where every body is at rest or in uniform motion unless
acted on by external force.

Practical definition: Inertial reference frame = reference frame at rest or in uniform
motion with respect to distant stars

Newton’s first law actually states that the inertial reference frames do exist. Actually,
there is an infinite number of them.

Newton’s second law: In an inertial frame rate of change of momentum of a certain
body is equal to (vector) sum of all forces acting on it.

d~p

dt
=
∑
i

~Fi (1.1)

Here ~p = m~v is a momentum and ~Fi are forces acting on the body.
If mass m is constant,

m
d~v

dt
≡ m~a =

∑
i

~Fi (1.2)

Note that Newton’s 2nd law is commonly cited as
∑ ~F = m~a but the most general form is

actually Eq. (1.1). It can be used to study motion of system with variable mass such as a
rocket or an evaporating droplet.

Newton’s third law: To each action, there is a reaction of equal magnitude but opposite
direction

~F12 = −~F12 (1.3)

where Fij is a force exerted on body “j” by body “i”. Note that the forces in action-reaction
pair act on different bodies.

W

m

N

Figure 1. Action-reaction pair for the brick on the surface.

Here ~W is a force of weight exerted by the brick on the surface and ~N normal force
exerted on the brick by the surface.
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For the interaction of two particles the forces in the action-reaction pair act along the
line separating particles. As an example, we may consider gravitational

~F12 = Gm1m2
~r1 − ~r2

|~r1 − ~r2|3
, ~F21 = Gm1m2

~r2 − ~r1

|~r1 − ~r2|3
, ~F12 = −~F12 (1.4)

or Coulomb forces

~F12 = − q1q2

4πε0

~r1 − ~r2

|~r1 − ~r2|3
, ~F21 = − q1q2

4πε0

~r2 − ~r1

|~r1 − ~r2|3
, ~F12 = −~F12 (1.5)

1.2 Conservation Laws

Linear momentum ∑
n

~Fn = 0 ⇒ ~p = const (1.6)

Note that the vector nature of this equation, in particular pi is conserved if
∑

(~Fn)i = 0.
Example: projectile motion (see Fig. 2).

v
y

vx
.

g

p  = constx

v

Figure 2. Projectile motion.

Angular momentum
Angular momentum of a particle (with respect to origin) is defined as

~L = ~r × ~p = m~r × ~v (1.7)

where ~r is the position of the particle and ~p is the momentum.
If mass of the particle is constant

d~L

dt
= m~̇r × ~v + m~r × ~̇v = m~v × ~v + m~r × ~a = ~r ×

∑
n

~Fn (1.8)

The quantity in the r.h.s. is called torque

~τ =
∑
n

~τn, ~τn ≡ ~r × ~Fn (1.9)

so
~̇L =

∑
n

~τn (1.10)

and if
∑

n ~τn = 0 the angular momentum is conserved.
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(a)
r

 = r    mg = 0

angular momentum not conserved

g

r’
g

= r’    mg = 0’

angular momentum conserved
(b)

Figure 3. Angular momentum of a particle in a free fall.

Let me note again that both angular momentum and torque depend on the choice of
the origin of coordinate frame.

Example: free fall

Figure a: ~τ = m~r × ~g 6= 0 ⇒ ~L is not conserved.
Figure b: ~τ ′ = m~r′ × ~g = 0 ⇒ ~L′ is conserved.
Work and energy
Suppose a particle moves from point A to point B along some path.

A

B
Fds

Figure 4.

The work done by a force ~F acting on the particle is given by

WA→B =

∫ A

B
d~s · ~F (1.11)

where d~s = ~v(t)dt is an infinitesimal displacement.
Note that if ~F =

∑
n
~Fn the total work is a sum of the works done by individual

forces

WA→B =

∫ B

A
d~s ·

∑
n

~Fn =
∑
n

∫ B

A
d~s · ~Fn =

∑
WA→B
n (1.12)
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The work done by the force leads to the change in kinetic energy of the particle

WA→B =

∫ B

A
d~s· ~F = m

∫ B

A

d~s

dt
dt· d~s

dt2
=

m

2

∫ tB

tA

dt
d

dt

(d~s
dt

)2
=

mv2
B

2
−
mv2

A

2
= TB−TA

(1.13)
Conservative forces
If
∮
C~s · ~F vanishes for any closed contour C then ~F is said to be a conservative force

The well-known examples are gravitational and Coulomb forces:∮
C
d~r · ~r − ~r0

|~r − ~r0|3
= lim

∆ri→0

N∑
i=1

∆~ri ·
~ri − ~r0

|~ri − ~r0|3
= − lim

∆ri→0

N∑
i=1

∆
1

|~ri − ~r0|
= 0 (1.14)

Similarly, the well-known counterexample is a force of friction: the work done by the force
of friction along any path i(closed or not) s always positive.

Stokes theorem:

Figure 5. Stokes theorem.

∮
M
d~a · ~∇× ~v =

∮
C=∂M

d~s · ~v (1.15)

Consequently,
∮
Cd~s · ~F = 0 for any loop C means that ~∇× ~F = 0 which implies that ~F is

a gradient of some scalar function U called the potential energy

~F (~r) = − ~∇U(~r) (1.16)

where minus stands for historical reasons. (Recall that ~∇ × ~∇f(~r) = 0 for any scalar
function f(~r)).

The work done by a conservative force

WA→B =

∫ B

A
d~s · ~F (~r) =

∫ B

A
dU(~r) = − U(~rB) + U(~rA) = − UB + UA (1.17)

is independent of path taken between points A and B.

– 5 –



As we saw above (Eq. (1.13)) the work done by a sum of forces (conservative and/or
non-conservative) is equal to a change in kinetic energy so∑

n

WA→B,n =
∑

conserv

WA→B,n +
∑

non−conserv

WA→B,n = TB − TA

⇔
∑
n

WA→B
n =

∑
conserv

(UAn − UBn ) +
∑

non−conserv

WA→B
n = TB − TA (1.18)

and therefore

TA + UA +
∑

non−conserv

WA→B
n = TB + UB (1.19)

where UA ≡
∑

conserv U
A
n (and UB ≡

∑
conserv U

B
n ). The quantity T + U (the sum of

kinetic and potential energies of the particle) is called the total energy of the particle. If
non-conservative forces do no work, the total energy is conserved

TA + UA = TB + UB (1.20)

1.3 Systems of particles

Consider N particles with masses mn
1 and positions ~rn in an inertial reference frame.

Define the position ~R of center of mass by

~R =
1

M

∑
n

mn~rn, M =
∑
n

mn (1.21)

The total momentum of this system of particles is a sum of the individual momenta of each
particle

~P =
∑
n

~pn =
∑
n

mn~vn (1.22)

1.3.1 Center of mass motion

For each particle, the 2nd law of Newton reads

~̇pn(t) =
∑

~Fn (1.23)

Among forces ~Fn acting on particle “n” there are external forces ~F ext
n due to agents outside

the system and internal forces ~F int
n =

∑
m6=n

~Fmn ewhere ~Fmn is a force which particle “m”
exert on particle “n”.

ṗn(t) = ~F ext
n +

∑
m 6=n

~Fmn = ~F ext
n +

1

2

∑
m6=n

(~Fmn+ ~Fnm) =
∑

~F ext
n (1.24)

Now, differentiating Eq. (1.22) with respect to t we obtain

~̇P =
∑
n

mn~̇pn(t) =
∑
n

~Fn =
∑
n

~F ext
n +

∑
n

∑
m 6=n

~Fmn

=
∑
n

~F ext
n +

1

2

∑
m 6=n

(~Fmn + ~Fnm) =
∑
n

~F ext
n (1.25)

1From now on, unless specified, the mass of each particle is assumed to be constant
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where we used Newton’s third law ~Fmn = −~Fnm. Thus, the center of mass motion is not
affected by the internal forces and is determined by action of all external forces.

Note that Eq. (1.25) is a vector equation corrrect for each component separately so
if the projection of external forces on some axis vanishes the corresponding component of
c.m. momentum ~P is conserved

Example:

F
m

1 2

F2 1
1 2m

N1 N 2

W1 W2

No friction P  ,P   = constx y

Figure 6. Two masses connected by a spring on x, y plane.

1.3.2 Angular momentum

Total angular momentum for a system of particles is defined as sum of the individual angular
momenta

~L ≡
∑

~Ln =
∑

~rn × ~pn (1.26)

Differentiating this equation with respect to time one obtains

~̇L =
∑
n

mn
~̇Ln(t) =

∑
n

(~rn × ~̇pn + ~̇rn × ~pn)

=
∑
n

~rn ×
(
~F ext
n +

∑
m

~Fmn
)

=
∑
n

~rn × ~F ext
n +

∑
n

∑
m 6=n

~rn × ~Fmn =
∑
n

~τ ext
n +

∑
m6=n

~rn × ~Fmn

If the forces in action-reaction pair are along the line connecting two particles, we get

~̇L =
∑
n

~τ ext
n (1.27)

because∑
n

∑
m6=n

~rn× ~Fmn =
1

2

∑
m 6=n

(~rn× ~Fmn+~rm× ~Fnm) =
1

2

∑
m 6=n

(~rn−~rm)× ~Fmn = 0 (1.28)

NB: the assumption that forces are aligned with the separation between particles is not
universal - for example, it is not true for general electromagnetic forces of moving particles.

Part II

1.3.3 Decomposition of ~L into ~Lc.m. and ~L′

Let us decompose vector ~rn for each particle into a sum of vector ~R and separation from
the c.m. ~r′:

~rn = ~R+ ~r′n, ⇒ ~vn = ~̇rn = ~̇R+ ~̇r′n ≡ ~V + ~v′n (1.29)
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where ~R is a position of center of mass and ~V = ~̇R is its velocity.

R

r

r’n

n
c.m.

Figure 7.

Note that ∑
n

mn~r
′
n =

∑
n

mn(~rn − ~R) =
∑
n

mn~rn −M ~R = 0 (1.30)

due to the definition of the center of mass (1.21). This also implies that∑
n

mn~v
′
n =

∑
n

mn~̇r
′
n =

d

dt

∑
n

mn~r
′
n = 0 (1.31)

Using these formulas one can rewrite ~L with respect to an arbitrary origin in terms of ~L′

w.r.t. center of mass:

~L =
∑

mn~rn × ~vn =
∑
n

mn(~R+ ~r′n)× (~V + ~v′n) (1.32)

= M ~R× ~V + ~R×
∑

mn~v
′
n +

∑
n

mn~r
′
n × ~V +

∑
mn~r

′
n × ~v′n = M ~R× ~V + ~L′

Now, from Eq. (1.27) we get
~̇Lc.m. + ~̇L′ =

∑
n

~τ ext
n (1.33)

On the other hand

~̇Lc.m. = ~̇R× ~P + ~R× ~̇P = ~R×
∑
n

~F ext
n (1.34)

and therefore

~̇L′ =
∑
n

~τ ext
n − ~̇Lc.m. =

∑
n

~τ ext
n − ~R× ~̇P =

∑
n

(~rn − ~R)× ~F ext
n (1.35)

so
~̇L′ =

∑
n

~r′n × ~F ext
n (1.36)

The rate of change of angular momentum ~L′ is equal to the sum of external torques about
center of mass. NB: this relation holds for arbitrary motion of center of mass, even in the
case if it is accelerating (a frame attached to c.m. would not be inertial in this case).
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1.3.4 Work and energy

WA→B =
∑
n

∫ A

B
d~s · ~Fn (1.37)

where d~s = ~v(t)dt is an infinitesimal displacement.
Note that if ~F =

∑
n
~Fn the total work is a sum of the works done by individual

forces

WA→B =
∑
n

∫ B

A
d~sn · ~Fn =

∑
n

∫ A

B
d~s · ~Fn =

∑
WA→B
n (1.38)

Now, d~sn = ~vndt and mnv̇n = ~Fn so

WA→B =
∑
n

∫ B

A
dt ~vn ·

(
mn~̇vn) =

∑
n

mn

2

∫ B

A
dt

d~v2
n

dt
=
∑
n

(
TBn − TAn ) = TB − TA

(1.39)
where T =

∑
n
mn
2 v2

n is the sum of the kinetic energies of particles. Note that

T =
∑
n

mn

2
v2
n =

∑
n

mn

2
(v′n + V )2 =

∑ mi

2
v2
i +

M

2
V 2 = T ′ + Tc.m. (1.40)

where we used Eq. (1.31). Next, assume that both external and internal forces are conser-
vative, then

~F ext
i (~rn) = − ~∇iV ext(~rn) (1.41)

and
~Fji(~rn) = − ~∇iV ext(~rij) = −

~∂

∂rij
V (~rij) (1.42)

Note that in order to satisfy Newton’s 3rd law V (~rij) must be a function of the magnitude
rij : V (~rij) = V (|~rij |). Indeed, since ~rij = ~ri − ~rj

~Fij = − ~∇jV ext(rij) =
~∂

∂rij
V (rij) = − ~Fji (1.43)

The formula for the work (1.38) takes the form (~∇ij ≡ ~∂
∂rij

):

WA→B = −
∑
n

∫ A

B
d~rn · ∇nV ext(~rn)−

∑
i,j

∫ A

B
d~ri

~∂

∂rij
V (rij) (1.44)

= −
∑
n

V ext(~rn)
∣∣∣B
A
− 1

2

∑
i,j

∫ B

A

(
d~ri · ~∇ijVij + d~rj · ~∇jiVij

)
However, due to V (rij) = V (rji) and ~∇ij = −~∇ji the second term in the above equation
can be rewritten as

− 1

2

∑
i,j

∫ B

A
(d~ri − d~rj) · ~∇ijV (rij) = − 1

2

∑
i,j

V (rij)
∣∣∣B
A

(1.45)
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and therefore

WA→B =
∑
n

(
V ext
A (~rn)− V ext

B (~rn)
)

+
1

2

∑
i,j

(
VA(rij)− VB(rij)

)
(1.46)

Since WA→B = TB − TA (see Eq. (1.39)) we get

TB +
∑
n

V ext
B (~rn) +

1

2

∑
i,j

VB(rij) = TA +
∑
n

V ext
A (~rn) +

1

2

∑
i,j

VA(rij)

⇒ T +
∑
n

V ext(~rn) +
1

2

∑
i,j

V (rij) = const (1.47)

It is straightforward to identify the l.h.s. of this formula with the total energy of the system.
Note that if all ~rij do not change (e.g. for a rigid body), the last term in the above

equation reduces to a constant which means that the internal forces do not do any work.

1.4 Central forces

A central force is a force directed towards a fixed point: ~F (~r) = r̂F (r). Well-known
examples: gravitational and Coulomb forces.

Central force is conservative:(
~∇× ~rf(r)

)
i

= εijk
∂

∂rj
rkf(r) = εijk

[
δjk + rkrj

f ′(r)

r

]
= 0 (1.48)

where I used chain rule ∂r
∂rj

= ∂r
∂r2

∂r2

∂rk
= rk

r = r̂k.
The potential for the central force depends on r. Indeed,

~F (~r) = − ~∇V (r) = (~∇r)dV (r)

dr
= r̂V ′(r) ⇒ F (r) = − V ′(r) (1.49)

1.4.1 Conservation laws

Energy : E =
mv2

2
+ V (r) = const (1.50)

Angular momentum : ~τ = ~r × ~F = 0 ⇒ ~L = ~r × ~p = const (1.51)

Next, since ~L is conserved

~r · ~L = 0 ⇒ d

dt
~r · ~L = 0 = ~v · ~L+ ~r · d

dt
~L ⇒ ~v · ~L = 0 (1.52)

so the velocity is always orthogonal to ~L ⇒
⇒ the motion occurs in a plane orthogonal to ~L.
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center of force

.
r

m

Figure 8. Polar coordinates in x, y plane.

1.4.2 Description of motion

It is convenient to assume ~L ‖ ẑ and use polar coordinates

x = r cosφ, y = r sinφ (1.53)

In general, both r and φ change as particle moves:

vx = ẋ = ṙ cosφ− rφ̇ sinφ

vy = ẏ = ṙ sinφ+ rφ̇ cosφ (1.54)

The kinetic energy in polar coordinates takes the form

T =
m

2
(v2
x+v2

y) =
m

2

[
(ṙ cosφ−rφ̇ sinφ)2+(ṙ sinφ+rφ̇ cosφ)2

]
=

m

2

[
ṙ2+r2φ̇2

]
(1.55)

Since the energy is conserved

E =
m

2
(v2
x + v2

y) + V (r) =
m

2

(
ṙ2 + r2φ̇2

)
+ V (r) = const (1.56)

Similarly, since angular momentum ~L = Lẑ is conserved

Lz = (~r × ~p)z = xpy − ypx = m(xẏ − yẋ) (1.57)

= m
[
r cosφ(ṙ sinφ+ rφ̇ cosφ)− r sinφ(ṙ cosφ− rφ̇ sinφ)

]
= mr2φ̇ = const

Note that sign of φ̇ is always the same as sign of Lz so no motion as in Fig. 9 is allowed.
Note also that if φ increases r must decrease and vice versa. In addition, due to Eq. (1.57),

Figure 9. Such motion is not allowed (sign of φ̇ should not change)
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r

dd

2r  d2
1

rd
t

t+dt

A = 

d
d

Figure 10. Area change

the change of the area swept by the particle is constant (see Fig. 10) Indeed,

dA =
1

2
r(rdφ) =

1

2
r2φ̇dt (1.58)

⇒ Ȧ =
1

2
r2φ̇ =

L

2m
= const

Kepler’s 2nd Law: the rate of change of the area swept by the particle is constant

same time interval

slowfast

Figure 11. 2nd Kepler’s law

1.4.3 Effective potential

Due to the conservation of angular momentum in the form of 2nd Kepler’s law (1.58) the
central problem can be reduced to 1-dimensional problem with an “effective potential”:

E =
m

2
ṙ2 +

m

2
r2φ̇2 + V (r) =

m

2
ṙ2 + V (r) +

m

2
r2 L2

m2r4

=
m

2
ṙ2 + V (r) +

L2

2mr2
=

m

2
ṙ2 + Veff(r) (1.59)

Thus, the energy of the particle in central potential is equal to the energy of the particle
moving in one dimension (at r > 0) in the effective potential

Veff(r) = V (r) +
L2

2mr2
(1.60)
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Since E − Veff(r) = m
2 ṙ

2 ≥ 0, the equation

V (r) +
L2

2mr2
≤ E (1.61)

determines the region of space where the motion can occur.
For example, consider gravitational force:

V (r) = −mγ

r
⇒ Veff(r) =

L2

2mr2
− mγ

r
(1.62)

V    

r

V   (r)eff

1 rmin 2r r
r’

E’

E

min

Figure 12. Effective potential for gravitational force
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General considerations:

• E < Vmin: no motion is possible (v2 6< 0!)

• Vmin ≤ E < 0: motion is confined in the region of space between r1 and r2 (see Fig.
13)

r

1r

2

Figure 13. Motion at E < 0

• E ≥ 0: motion in the region r ≥ r′ (see Fig. 14)

r’

Figure 14. Motion at E < 0
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Part III

Another example: harmonic oscillator in 3 dimensions. The effective potential is

Veff(r) =
m

2
ω2r2 +

L2

2mr2
(1.63)

(see Fig. 15)

eff

E

r2

V    (r)min

r1 rmin

V   (r)

Figure 15. Effective potential for 3d oscillator

1

2r

r

Figure 16. Typical trajectory for the 3d oscillator

We see that for any E ≥ Vmin we can have motion only between r1 and r2.
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1.4.4 Form of the trajectory in space

Motion (= trajectory in space) is uniquely specified by initial position and velocity. Indeed,
the motion is determined by Newton’s 2nd law

mẍ = Fx(x, y), mÿ = Fy(x, y) (1.64)

and the solution of 2nd order differential equation is uniquely specified by initial conditions
at t = t0

x(t0) = x0, y(t0) = y0 (1.65)
dx(t)

dt

∣∣∣
t=t0

= ẋ(t0) ≡ ẋ0,
dy(t)

dt

∣∣∣
t=t0

= ẋ(t0) ≡ ẏ0

Alternatively, we can use four initial conditions

r0 = r(t0), φ0 = φ(t0), E =
m

2
(ṙ2

0 + r2
0φ̇

2
0) + V (r0), L = mr2

0φ̇0. (1.66)

Trajectory:
from Eq. (1.59) we get

ṙ =
dr

dt
= ±

√
2

m

√
E − Veff(r) (1.67)

where the sign depends on whether r(t) is increasing (sign “+”) or decreasing (sign “-”) at
time t, In other words, the sign depends on the direction of radial motion (sign “+” for the
motion out and sign “-” for the motion in). The trajectory will be the same: change of sign
corresponds to change t→ −t which does not alter the trajectory (“T-invariance of classical
mechanics). Taking “+” solution we get

dt =

√
m

2

dr√
E − Veff(r)

(1.68)

⇒ t =

∫ t

0
dt =

√
m

2

∫ r

r0

dr′
1√

E − Veff(r′)

Once the integration is performed, the above equation can be inverted to provide r = r(t).
Moreover, if r(t) is known, the equation (1.57) can be easily integrated

dφ

dt
=

L

mr2(t)
⇒ φ(t)− φ0 =

∫ φ

φ0

dφ′ =
L

m

∫ t

0
dt′

1

r2(t′)
(1.69)

The equations (1.68) and (1.69) give the trajectory in the parametric form r = r(t)

and φ = φ(t). One can eliminate t from these equations and get the trajectory in polar
coordinates in the form r = r(φ). There is , however, a more direct way to determine r(φ).
From Eqs. (1.57) and (1.68) we see that

dt =
mr2

L
dφ ⇒ ±

√
m

2

dr√
E − Veff(r)

=
mr2

L
dφ

⇒ dφ = ± L√
2m

dr

r2
√
E − Veff(r)

⇒ φ− φ0 =

∫ φ

φ0

dφ′ = ± L√
2m

∫ r

r0

dr′
1

r′2
√
E − Veff(r′)

(1.70)
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Suppose that at t = 0 the particle is at one of the inversion points, say r1 (see Fig.
13). Let us calculate the change in φ as the particle moves to outer inversion point r2 and
back. We get

∆φ = 2(φ2 − φ1) =

√
2L

m

∫ r2

r1

dr′
1

r′2
√
E − Veff(r′)

(1.71)

Q: When the orbit is closed?
A: when ∆φ = 2πmn . Indeed, after n repetitions of time interval required to get from r1 to

Figure 17. Typical trajectory for the confined motion

r2 and back to r1, the position vector, having done m round, returns to the initial point
(see Fig. 17).

In general, confined motion is not closed and after sufficiently large time the trajectory
will come infinitely close to any point between r1 and r2.

There are two cases which lead to closed orbits: V (r) ∼ 1
r and V (r) ∼ r2.

For the potential V (r) = γm
r (inverse square gravitational force) we have

V (r) = − γm

r
⇒ Veff = − γm

r
+

L2

2mr2
(1.72)

so we can find rmin and Vmin:

V ′eff(r) = 0 ⇒ mγ

r2
min

=
L2

mr3
min

⇒ rmin =
L2

γm2
, Vmin = − m3γ2

2L2
(1.73)

1.4.5 Confined motion in a gravitational field

If Vmin ≤ E < 0 the motion is confined, see Fig. 12. If E = Vmin, the motion is circular
since due to Eq. (1.59) ṙ = 0 ⇒ r = const. If E > Vmin (but E < 0) the trajectory of the
particle is elliptical.

Let us demonstrate this. From Eq. (1.70)

φ− φ0 =

∫ φ

φ0

dφ′ = − L√
2m

∫ r

r0

dr′
1

r′2
√
E + γmr′ −

L2

2mr′2

(1.74)
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(here we took “-” sign which differs from “+ sign” by t→ −t substitution). After change of
variables

u′ =
1

r′
⇒ du′ = − dr′

r′2
(1.75)

the integral (1.74) reduces to

φ− φ0 =
L√
2m

∫ u

u0

du′
1√

E + γmu′ − L2u′2

2m

=

∫ u

u0

du′
1√

−2m |E|
L2 +

(m2γ
L2

)2 − (m2γ
L2 − u′

)2
=

∫ u

u0

du′
1√

a2 −
(m2γ
L2 − u′

)2 , a2 ≡ − 2m
|E|
L2

+
(m2γ

L2

)2
=

2m

L2
(E − Vmin)(1.76)

Another change of variables:

x =
u∗ − u′

a
⇒ dx = − 1

a
du′ where u∗ =

1

rmin
=

m2γ

L2
(1.77)

We get

φ− φ0 = −
∫ u−u0

a

u∗−u0
a

dx
1√

1− x2
= arccosx

∣∣∣∣
u−u0
a

u∗−u0
a

(1.78)

⇒ φ = φ0 + arccos
u∗ − u
a
− arccos

u∗ − u0

a
⇒ cos(φ− φ0 + δ) =

u∗ − u
a

where δ = arccos u∗−u0
a .

In terms of original variables

u∗ − u
a

=
(γm2

L2
− u
) 1√

m4γ2

L4 − 2m|E|
L2

=
(
1− L2u

γm2

) 1√
1− 2|E|L2

m3γ2

(1.79)

so the trajectory equation (1.76) takes the form

(
1− L2u

γm2

) 1√
1− 2|E|L2

m3γ2

= cos(φ− φ0 + δ) (1.80)

⇒ 1

r
=
m2γ

L2

[
1−

√
1− 2|E|L2

m3γ2
cos(φ− φ0 + δ)

]
= C

[
1− ε cos(φ− φ0 + δ)

]
where C = m2γ

L2 = 1
rmin

and ε =
√

1− |E|
|Vmin| < 1.

Without loss of generality, let us assume that φ0 = 0 at t = 0 so the equation (1.76)
takes the form

1

r
= C(1− ε cosφ) (1.81)

This is actually an equation for ellipse

(x− x0)2

a2
+
y2

b2
= 1 (1.82)
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a

x0
b

r

Figure 18. Elliptical trajectory in gravitational potential

with
x0 =

ε

C(1− ε2)
, a =

1

C(1− ε2)
, b =

1

C
√

1− ε2
(1.83)

The center of force (origin ~r = 0 is located in one of the foci of the ellipse. Indeed, let us
check

r +
√
r2 + 4x2

0 − 4x0r cosφ = r +

√
r2 + 4x2

0 − 4x0

(r
ε
− 1

Cε

)
= r +

∣∣r − 2

C(1− ε2)

∣∣ =
2

C(1− ε2)
= 2a (1.84)

Thus, the trajectory of the confined motion in a gravitational force is an ellipse with the
focus being the center of the force. The parameters of the ellipse are

a =
1

C(1− ε2)
=

mγ

2|E|
, b =

L√
2m|E|

, x0 =
mγ

2|E|

√
1− 2|E|L2

m3γ2
(1.85)

(Recall that |E| < Vmin = m3γ2

2L2 , see Eq. (1.73)).
Kepler’s 3rd law.

In a period T the particle sweeps the area of the ellipse

A = 4b

∫ a

0
dx

√
1− x2

a2
= 4ab

∫ 1

0
dx
√

1− x2 = 2ab

∫ 1

0
dy y

−1
2 (1−y)

1
2 = πab = πa2

√
1− ε2

(1.86)
On the other hand,

A =

∫ T

0
dt Ȧ = T

L

2m
⇒ T =

2m

L
πa2
√

1− ε2 = 2π
a

3
2

√
γ

(1.87)

This is Kepler’s 3rd law: T 2 ∼ a3.
Similar methods can be applied to other potentials. In general, confined orbits (if they

exist) are open. The only known potentials for which all confined orbits are closed, are
gravitational (or Coulomb) potentials V (r) ∼ 1

r and harmonic potentials V (r) ∼ r2.
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1.4.6 Open motion in the gravitational field.

Open motion corresponds to E ≥ 0 (see Fig. 12). The solution of the Newton’s equations
proceeds in a way similar to the case E < 0 even thogth the resulting orbits are very
different (parabola for E = 0 and hyperbola for E > 0). The equation for trajectory is still
(1.74) but now we have E ≥ 0.

φ− φ0 =

∫ φ

φ0

dφ′ = − L√
2m

∫ r

r0

dr′
1

r′2
√
E + γmr′ −

L2

2mr′2

(1.88)

Next, we make the same substitutions u′ = 1
r′ and x = u∗−u′

a with u∗ = (m
2γ
L2 = 1

rmin
and

a =
√

m4γ2

L4 + 2mE
L2 (see Eqs. (1.75-1.77)) and get

φ− φ0 = −
∫ u−u0

a

u∗−u0
a

dx
1√

1− x2
= arccosx

∣∣∣∣
u−u0
a

u∗−u0
a

(1.89)

⇒ φ = φ0 + arccos
u∗ − u
a
− arccos

u∗ − u0

a
⇒ cos(φ− φ0 + δ) =

u∗ − u
a

where δ = arccos u∗−u0
a .

In terms of original variables

u∗ − u
a

=
(γm2

L2
− u
) 1√

m4γ2

L4 + 2mE
L2

=
(
1− L2u

γm2

) 1√
1 + 2EL2

m3γ2

(1.90)

so the trajectory equation (1.76) takes the form(
1− L2u

γm2

) 1√
1− 2|E|L2

m3γ2

= cos(φ− φ0 + δ) (1.91)

⇒ 1

r
=
m2γ

L2

[
1−

√
1 +

2EL2

m3γ2
cos(φ− φ0 + δ)

]
= C

[
1− ε cos(φ− φ0 + δ)

]
where C = m2γ

L2 = 1
rmin

and ε =
√

1 + E
|Vmin| ≥ 1.

Again, w.l.o.g. we assume that φ0 − δ = 0 at t = 0 so the equation (1.76) takes the
form

1

r
= C(1− ε cosφ) (1.92)

with ε ≥ 1. Actually, the case E > 0 corresponds to the hyperbola trajectory while the
trajectory of the particle with E = 0 is parabolic.

Let us start with the first case E > 0. If we continue analytically the equation for
ellipse (1.82)

(x− x0)2

a2
+
y2

b2
= 1 = C2(1− ε2)2

(
x− ε

C(1− ε2)

)2
+ y2C2(1− ε2) (1.93)

to ε > 1, we get

C2(1− ε2)2
(
x+

ε

C(ε2 − 1)

)2
= 1 + y2C2(ε2 − 1) (1.94)

– 20 –



which can be rewritten as
(x+ x0)2

a2
− y2

b2
= 1 (1.95)

with

a =
1

C(ε2 − 1)
=

mγ

2E
, b =

1

C
√
ε2 − 1

=
L√

2mE
, x0 =

ε

C(ε2 − 1)
=

mγ

2E

√
1 +

2EL2

m3γ2

(1.96)
The Eq. (1.96) is an equation of a hyperbola. The asymptotic behavior at large x, y is

± y

b
= ±

√
(x+ x0)2

a2
− 1 ' ±x+ x0

a
⇒ y = ± b

a
(x+ x0) (1.97)

x0
.

a

r

Figure 19. Hyperbolic trajectory in gravitational potential at E > 0

Case E=0 (parabolic motion)
The equation (1.100) turns to

1

r
= C(1− cosφ) (1.98)

where C = 1
rmin

= m2γ
L2 .

which can be rewritten as an equation for a parabola:

1

r
= C(1− cosφ) ⇒ 1

r
= C − Cx

r
⇒ 1 + Cx = Cr ⇒ 1 + 2Cx = C2y2 (1.99)

or
y2 =

2

C

(
x+

1

2C

)
= 2rmin

(
x+

rmin

2

)
(1.100)
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rmin
2

.
r

Figure 20. Parabolic trajectory in gravitational potential at E = 0

1.5 Two-body problem with central potential

Two particles: m1 and m2, potential V = V (r) where r ≡ |~r1 − ~r2| . Newton’s 2nd law:

m1~̈r1 = − ~∇1V (r) = − r̂ dV (r)

dr
(1.101)

m1~̈r2 = − ~∇2V (r) = r̂
dV (r)

dr
(1.102)

CM and relative coordinates

~R =
m1~r1 +m2~r2

m1 +m2

~r = ~r1 − ~r2 (1.103)

Inverse formulas read

~r1 = ~R +
m2

m1 +m2
~r ⇒ ~̈r1 = ~̈R +

m2

m1 +m2
~̈r

~r2 = ~R − m1

m1 +m2
~r ⇒ ~̈r2 = ~̈R − m1

m1 +m2
~̈r (1.104)

Adding Eqs. (2.1) and (1.102) one gets

m1~̈r1 +m2~̈r2 = 0 ⇔ (m1 +m2) ~̈R = 0 ⇒ ~̈R = 0 (1.105)

so the center of mass moves along straight line (or remains at rest). As to the relative
separation, subtracting Eq. (1.102) from Eq. (2.1) we get

m1~̈r1 −m2~̈r2 = − 2~r
dV (r)

dr

⇒ m1m2

m1 +m2
~̈r = − ~rdV (r)

dr
(1.106)

where
µ ≡ m1m2

m1 +m2
(1.107)
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So, the two-body problem with a potential depending on the separation reduces to a one-
body problem of mass µ moving in a central potential V (r)

Part IV

1.6 Scattering

Consider motion of a particle in central potential V (r) which we assume to vanish at infinity

V (r)
r→∞
→ 0. The energy of a free motion at t→ −∞ is E = m

2 v
2
∞ and the angular momentum

is L = mv∞b where b is called an impact factor. The typical picture of the scattering from
a repulsive potential is shown in Fig.

One can have in mind Coulomb potential V (r) = qQ
4πr as a typical example.

The point at the minimal distance r0 is the inversion point for given energy E and
angular momentum L. Since ṙ(r0) = 0 from Eq. (1.59) we see that r0 is a solution of the
equation

Veff(r0) = E ⇔ V (r0) +
L2

2mr2
0

= E (1.108)

If we know r0, the angle φ0 can be obtained from Eq. (1.70)

φ0 = − L√
2m

∫ r0

∞
dr′

1

r′2
√
E − V (r′)− L2

2mr′2

(1.109)

(The minus sign is due to the fact that ṙ < 0 if the particle is approaching the scattering
center).

After reaching r0 the particle moves again to infinity and the change of angle between
r0 and infinity is

φ′0 =
L√
2m

∫ ∞
r0

dr′
1

r′2
√
E − V (r′)− L2

2mr′2

(1.110)

Note that φ0 = φ′0 and the trajectory is symmetric with respect to line parallel to vector
~r0 (see Fig. 21)

For future use, it is convenient to represent φ0 in terms of b and v∞ as

φ0 =

∫ ∞
r0

dr′
b

r′2
√

1− b
r′2
− V (r′)

mv2
∞/2

(1.111)

The deflection angle (the angle between velocities at plus and minus infinity) is

θ = π − 2φ0 (1.112)

Q: What changes if the potential changes to attractive V (r) → −V (r) (for example
qQ
4πr → −

qQ
4πr )?

A: Very little: formula (1.111) stays the same but the reflection angle is now θ = 2φ0 − π,
see Fig. 22. In fact, we can treat two cases (repulsive and attractive potentials) similarly
just using θ = |2φ0 − π|.
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v

0 b

r0

Figure 21. Scattering from a repulsive potential

v

.
b

r0 0

Figure 22. Scattering from an attractive potential

1.6.1 Cross section

Consider a uniform beam of particles incident on a central potential

beam of particles

v

.
center of force

Figure 23. A beam of particles incident on a central potential
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Flux Φ is a number of particles per unit area per unit time
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Figure 24. Transverse view of a beam of particles

Each particle has a definite b abd v∞ and will be deflected by angle θ = |π− 2φ0|. Let
us consider now particles in a ring between b and b+ ∆b. The number of particles crossing
area of a ring b < r < b+ ∆b per unit time is

dn = 2πb∆b Φ (1.113)

.
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.. ..b b +   b

Figure 25. Particles in a ring between b and b+ ∆b

These particles will be deflected by angle between θ and θ + ∆θ, see Fig. 26. (Due to
azimuthal symmetry, the deflection angle ∆θ does not depend on φ).

b +   b

v

b

center of force
.

  

Figure 26. Scattering of particles with impact parameter between b and b+ ∆b

Cross section dσ is defined as

dn(θ) = Φdσ(θ) (1.114)
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Note that dσ has the dimension of an area since dn has a dimension of 1
time (from Eq.

(1.113) dn = number of particles
time ).

Since θ = |π − 2φ0(b)| one may think of b as a function of θ and get from Eqs. (1.113)
and (1.114)

6Φdσ(θ) = 6Φ2πbdb ⇒ dσ(θ) = 2πb
∣∣db(θ)
dθ

∣∣dθ (1.115)

The reason for modulus
∣∣db(θ)
dθ

∣∣ in the r.h.s. of this equation is that dσ(θ) is a positive
definite quantity (=number of particles

flux ) while b(θ) is generally decreasing function of θ (the
greater the impact parameter b, the smaller is the deflection angle θ), see Fig. 26.

It is convenient to write down the derivative of the cross section with respect to solid
angle (so-called ”differential cross section” dσ

dΩ). Recall that dΩ ≡ sin θdθdφ ⇒

dσ(θ) =
b

sin θ

∣∣db(θ)
dθ

∣∣dΩ ⇒ dσ

dΩ
=

b

sin θ

∣∣db(θ)
dθ

∣∣ (1.116)

The total cross section is defined as

σtot ≡
∫
dΩ

dσ

dΩ
(1.117)

so it is a number of particles scattered in a unit time in all directions divided by flux.
Example: scattering from a rigid ball of radius a. The potential is

V (r) = 0 if r ≥ a and V (r) = ∞ if r < a (1.118)

From Fig. 27 we see that sinφ0 = b
a (for b < a, at b ≥ a the particle will not be deflected)

v

0

0

a

 b > a
 b < a

Figure 27. Scattering from the rigid ball

so

θ = π − 2 arcsin
b

a
⇒ b

a
= sin

π − θ
2

= cos
θ

2
⇒ db

dθ
= − a

2
sin

θ

2
(1.119)

and therefore
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dσ

dΩ
=

b

sin θ

∣∣db(θ)
dθ

∣∣ =
a cos θ2

2 sin θ
2 cos θ2

× a

2
sin

θ

2
=

a2

4
(1.120)

Not that the obtained cross section

dσ

dΩ
=

a2

4
(1.121)

is isotropic (does not depend on θ. In other words, regardless of where the detector is
placed, it will detect the same number of particles per unit time per unit solid angle (for a
given flux Φ).

The total cross section is

σtot ≡
∫
dΩ

dσ

dΩ
=

∫
dΩ

a2

4
= 4π × a2

4
= πa2 (1.122)

(which means that we defined the cross section (1.115) in accordance with our everyday
intuition).

1.6.2 Rutherford scattering

Consider two particle with masses m and M and charges ze and Ze. In c.m. variables
(1.103) the effective potential is

Veff(r) =
Zze2

r
+

L2

2µr2
, µ ≡ mM

m+M
(1.123)

(see Fig. 28)

0

v 2

2
µE = 

V   (r)eff

r

Figure 28. Effective potential for a scattering from a Coulomb center

The inversion point r0 can be found from the equation

E =
Zze2

r0
+

L2

2µr2
0

, µ ≡ mM

m+M
(1.124)

or, in terms of v∞ and b

2α
b

r0
+
( b
r0

)2
= 1, α ≡ Zze2

µv∞b
(1.125)
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This is a quadratic equation with a (positive) solution

r0 =
b√

1 + α2 − α
(1.126)

Now we can find the angle φ0. Since we are considering repulsive force (Zz > 0) the
trajectory looks like Fig. 29

.
v

0 b

r0

Figure 29. Scattering of particles from a Coulomb center

and therefore θ = π − 2φ0 where φ0 is given by Eq. (1.111)

φ0 =

∫ ∞
r0

dr′
b

r′2
√

1− b
r′2
− 2Zze2

µv2
∞r
′

u′=1/r′
=

∫ 1
r0

0

du′√
1− b2u′2 − 2αbu′

(1.127)

x=u′b
=

∫ b
r0

0

dx√
1− x2 − 2αx

= arcsin
x+ α√
1 + α2

∣∣∣∣∣
b/r0

0

=
π

2
− arcsin

α√
1 + α2

because ( br0 + α)2 = 1 + α2, see Eq. (1.126). The deflection angle takes the form

θ = π − 2φ0 ⇒ 2 arcsin
α√

1 + α2
⇒ sin

θ

2
=

α√
1 + α2

(1.128)

and therefore
1

sin2 θ
2

= 1 +
1

α2
= 1 + b2

( µv2
∞

Zze2

)2
(1.129)

To find differential cross section from Eq. (1.116) we need to rewrite the impact parameter
b as a function of deviation angle θ which is easily done inverting the above equation: 2

b(θ) =
∣∣∣Zze2

µv2
∞

∣∣∣ cot
θ

2
(1.130)

The differential cross section (1.116) takes the form

dσ

dΩ
=

b

sin θ

∣∣db(θ)
dθ

∣∣ =
∣∣ zZe2

2µv2
∞

∣∣∣2 1

sin4 θ
2

(1.131)

This is the famous Rutherford’s formula. Properties:
2We have derived this formula for the repulsive potential, but it can be easily demonstrated thatEq.

(1.130) equation is valid for attractive Coulomb potential as well.
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• dσ
dΩ is independent of the sign of charges ze and Ze (≡ cross section is the same for
attractive and repulsive Coulomb potential).

• dσ
dΩ ∼

1
θ4 for small angles (large impact parameters) ⇒

• The integral for the total cross section (1.117) σtot =
∫
dΩ dσ

dΩ diverges at small θ

The last property means that the total cross section σtot is poorly defined for Coulomb
potential since all particles are deflected regardless of how large is b. This behavior (diver-
gence of σtot) is a characteristic of potentials falling as 1

r at large separations.

Part V

2 Accelerated coordinate systems

2.1 Rotating coordinate systems

v

e(0)1

e3

e(0)3

e1

e2
e(0)2

Figure 30. Transformation to a rotating coordinate system

~v = v
(0)
i ê

(0)
i

~v = viêi (2.1)

Since unit vectors e(0)
i are fixed

(d~v
dt

)
inertial

=
dv

(0)
i

dt
ê

(0)
i (2.2)

and therefore (d~v
dt

)
inertial

=
dvi
dt
êi + vi

dêi
dt

(2.3)
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The first term in the r.h.s. is the rate of change of ~v as seen by an observer in the moving
(body-fixed) frame (d~v

dt

)
body

=
dvi
dt
êi (2.4)

so (d~v
dt

)
inertial

=
(d~v
dt

)
body

+ vi
dêi
dt

(2.5)

2.2 Infinitesimal rotations

Suppose vectors êi are changing in time: at t+ dt we have êi(t+ dt) = êi(t) + dêi. Since
êi · êj = δij at any time t we get

ê(t+ dt) · ê(t+ dt) = ê(t) · ê(t) + 2ê(t) · dê + O(dt2) ⇒ ê · dê = 0 (2.6)

Next, we expand dê in the moving basis

dê = dΩij êj (2.7)

From Eq. (2.6) we see that dΩij êiêj = 0 so dΩij must be antisymmetric with respect to
i↔ j:

dΩij = − dΩji (2.8)

which means that 3×3 matrix dΩij has 3 independent components which can be associated
with components of (pseudo) vector d~Ω

dΩ1 ≡ dΩ23, dΩ2 ≡ dΩ31, dΩ3 ≡ dΩ12 (2.9)

With this definition the formula (2.7) can be rewritten as

dê = d~Ω× ê (2.10)

Indeed,

dê1 = dΩ12ê2 + dΩ13ê3 = dΩ3ê2 − dΩ2ê3 =
(
dΩ1ê1 + dΩ2ê2 + dΩ3ê3)× ê1

and similarly for other components.
Geometrical interpretation of vector d~Ω: d~Ω × ~r describes the following rotation of

vector ~r: first, on the (infinitesimal) angle dΩ1 around axis e1, then on angle dΩ2 around
axis e2 and finally on dΩ3 around the axis e3.

Proof: after the first rotation ~r → ~r′ where

r′1 = r1 (2.11)

r′2 = r2 cos dΩ1 − r3 sin dΩ1 = r2 − r3dΩ1 + O(dΩ2
1)

r′3 = r3 cos dΩ1 + r2 sin dΩ1 = r3 + r2dΩ1 + O(dΩ2
1)

After the second rotation ~r′ → ~r′′ where

r′′1 = r′1 cos dΩ2 + r′3 sin dΩ2 ' r1 cos dΩ2 + r3 sin dΩ2 ' r1 + r3dΩ2 (2.12)

r′′2 = r′2 ' r2 − r3dΩ1

r′′3 = r′3 cos dΩ2 − r′1 sin dΩ2 ' r3 + r2dΩ1 − r′1dΩ2
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Finally, after third rotation ~r′′ → ~r′′′ such that

r′′′1 = r′′1 cos dΩ3 − r′′2 sin dΩ3 ' r1 + r3dΩ2 − r2dΩ3 = r1 + (d~Ω× ~r)1

r′′′2 = r′′2 cos dΩ3 + r′′1 sin dΩ3 ' r2 − r3dΩ1 + r1dΩ3 = r2 + (d~Ω× ~r)2

r′′′3 = r′′3 = r3 + r2dΩ1 − r1dΩ2 = r3 + (d~Ω× ~r)3 (2.13)

Thus, as a result of these three successive rotations, we get the rotation ~r → ~r′′′ = ~r+d~Ω×~r.
As seen from the definition of the cross product, this is the rotation around the axis defined
by ˆ

d~Ω on the angle |d~Ω|:
d~r = d~Ω× ~r (2.14)

Note that infinitesimal rotations around x, y and z axis commute with one another. This is
a general property: given two successive infinitesimal rotations described by d~Ω1 and d~Ω2,
the resulting rotation is

~r′′ ' ~r′+ d~Ω2×~r′ = (~r+ d~Ω1×~r) + d~Ω2× (~r+ d~Ω1×~r) ' ~r+ (d~Ω1 + d~Ω2)×~r (2.15)

It should be mentioned, however, that finite rotations do not commute.
Returning to Eq. (2.10) we get

dê

dt
=

d~Ω

dt
× ê = ~ω × ê (2.16)

where

~ω(t) =
d~Ω

dt
(2.17)

is the instantaneous angular velocity of the rotating frame as seen from the inertial frame.
Substituting Eq. (2.16) into Eq. (2.5) we get(d~v

dt

)
inertial

=
(d~v
dt

)
body

+ ~ω × ~v (2.18)

Note that we did not use the specific form of ~v in the derivation of Eq. (2.18) which means
that it holds true for any vector A measured in there two frames(d ~A

dt

)
inertial

=
(d ~A
dt

)
body

+ ~ω × ~A (2.19)

In particular, this equation can be applied to ~A = ~ω and then we get(d~ω
dt

)
inertial

=
(d~ω
dt

)
body

(2.20)

2.2.1 Accelerations

Differentiating formula (d~r
dt

)
inertial

=
(d~r
dt

)
body

+ ω × ~r (2.21)

with respect to t, we get

d2

dt2
ri(t)êi(t) = êi(t)

d2

dt2
ri(t) + 2

( d
dt
ri(t)

) d
dt
êi(t) + ri(t)

d2

dt2
êi(t) (2.22)
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d2

dt2
ri(t)êi(t) = êi(t)

d2

dt2
ri(t) + 2

( d
dt
ri(t)

) d
dt
êi(t) + ri(t)

d2

dt2
êi(t) (2.23)

= êi(t)r̈i(t) + 2ṙi(t)(ω(t)× êi(t)) + ri(t)
d

dt
(~ω(t)× êi(t))

i = êi(t)r̈i(t) + 2ṙi(t)(ω(t)× êi(t)) + ri(t)
( d
dt
~ω(t)

)
× êi(t)) + ri(t)(~ω(t)× d

dt
êi(t))

= êi(t)r̈i(t) + 2ṙi(t)(ω(t)× êi(t)) + ri(t)
(
~̇ω(t)

)
× êi(t)) + ri(t)(~ω(t)× (~ω(t)× êi(t)))

or( d2

dt2
~r(t)

)
inertial

=
( d2

dt2
~r(t)

)
body

+ 2~ω ×
(d~r(t)
dt

)
body

+ ~̇ω(t)× ~r(t) + ~ω(t)×
(
~ω(t)× ~r(t)

)
(2.24)

Part VI

2.2.2 Translations and rotations

If the origin of the body-fixed frame moves as ~α(t) the relation between ~r and ~r0 is

~r0 = ~r(t) + ~α(t) ⇒ ~r0 − ~α(t) = ~r = êi(t)ri(t)

⇔ r
(0)
0i (t)ê

(0)
i − α

(0)
i (t)ê

(0)
i = êi(t)ri(t) (2.25)

The change of unit vectors êi is determined only by rotation of the moving frame and
does not depend on the translational motion of that frame⇒ our proof of ˙̂ei = ~ω× êi (see
Eqs. (2.10-2.16) stays valid in the case of moving origin of the body-fixed frame.

Now, repeating the derivation of Eq. (2.23) we see that

r̈
(0)
0i (t)ê

(0)
i − α̈

(0)
i (t)ê

(0)
i =

d2

dt2
ri(t)êi(t) = êi(t)r̈i(t) + 2ṙi(t) ˙̂ei(t) + ri(t)¨̂ei(t) (2.26)

= êi(t)r̈i(t) + 2ṙi(t)(ω(t)× ê(t))i + ri(t)
(
~̇ω(t)

)
× ê(t))i + ri(t)(~ω(t)× (~ω(t)× ê(t)))i

or(
~̈r0

)
inertial

=
(
~̈α
)

inertial
+
(
~̈r
)

body
+ 2
(
ω× ~̇r

)
body

+
(
~̇ω×~r

)
body

+
(
~ω× (~ω×~r)

)
body

(2.27)

which is correct for the origin undergoing an arbitrary acceleration ~̈α(t).

2.2.3 Newton’s laws in accelerated coordinate systems

From the 2nd law in the inertial system

m
(
~̈r0(t)

)
inertial

= ~F (t) (2.28)

and Eq. (2.27) we get Newton’s 2nd law for an observer sitting in the translating and
rotating frame

m
(
~̈r
)

body
= ~F −m

(
~̈α
)

inertial
− 2mω ×

(
~̇r
)

body
−m~̇ω × ~r −m~ω × (~ω × ~r)

Coriolis force centrifugal force

(2.29)

(recall that
(
~̇ω
)

body
=
(
~̇ω
)

inertial
).
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2.3 Motion on the surface of the Earth

Assume circular orbit of the earth around the sun with radius Rse = 1.5 × 1011m with
period τse = 3.16 × 107s ⇔ ωse = 2 × 10−7s−1, and daily rotation of the earth with
Re = 6.4× 106m, period τe = 8.64× 106s and angular frequency

ωe =
2π

τe
= 7.3× 10−5 1

s
(2.30)

The inertial frame is fixed at the sun’s center and the moving non-inertial frame is fixed in
the rotating earth at the origin in the earth’s center. The equation (2.29) takes the form

m
(
~̈r
)

e
= ~F −m

(
~̈α
)

inertial
− 2m(~ωe + ~ωse)×

(
~̇r
)

e
−m(~ωe + ~ωse)× ((~ωe + ~ωse)× ~r)(2.31)

where ~F = ~F e
g + ~F s + ~F ′ is a sum of earth’s gravitational force, sun’s gravitational force,

and any other relevant forces ~F ′ (we assume that ~ωe and ~ωse do not change with time).
Suppose we are considering some object on the earth’s surface. Since ωse

ωe
∼ 2.73×10−3

we can neglect ~ωse in the above formula and get

m
(
~̈r
)

e
= ~F ′ + ~F e

g + ~F s −m
(
~̈α
)

inertial
− 2m~ωe ×

(
~̇r
)

e
−m~ωe × (~ωe × ~r) (2.32)

For a body on the earth’s surface the ratio of the gravitational forces due to the earth and
due to the sun is

~F s
g

~F e
g

=
MeR

2
s

MsR2
e

∼ 1.7× 10−3 (2.33)

Moreover, at earth center ~F s would be exactly equal to m
(
~̈α
)

inertial
so we can safely neglect

m
(
~̈α
)

inertial
in the above equation and get

m
(
~̈r
)

e
= ~F ′ + ~F e

g − 2m~ω ×
(
~̇r
)

e
−m~ω × (~ω × ~r) (2.34)

where ω is ωe.

2.3.1 Falling particle

Consider a particle released from height h� Re above the earth’s surface. From Eq. (2.34)
we get

m~̈r = mg − 2m~ω × ~̇r (2.35)

where
~g = −GMe

~r

~r3
− ~ω × (~ω × ~r) (2.36)

The second term here is the acceleration due to centrifugal force. 3

We choose a local frame on the earth’s surface with êx southward, êy eastward, and
êz vertically upward as shown in Fig. 31. We will solve Eq. (2.35) perturbatively, keeping

3 At the poles, ~g is radial with the magnitude GMe
~r
~R2
e
but at the equator ~g =

(
−GMe

~r
~R2
e

+ ω2Re
)
r̂.

Numerical estimates give the second term of the scale about 3.5 % of the first term.
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Figure 31. Earth-fixed frame

first two terms of the expansion in ω 4:

~r(t) = ~r0(t) + ~r1(t) (2.37)

In the leading order the Eq. (2.35) reads

~̈r = ~g = − gêz (2.38)

The correction to g due to centrifugal force is ∼ ω2. It exceeds our accuracy so we can
assume

~g = − gêz, g =
GMe

R2
e

∼ 9.8
m

sec2
(2.39)

and get

~r0(t) = ~r(0)− 1

2
gt2ẑ (2.40)

Substituting Eq. (2.37) into Eq. (2.35) we get in the first order in ω

~̈r0 + ~̈r1 = − gẑ − 2~ω × ~̇r0 ⇒ ~̈r1(t) = 2~ω × ~̇r0(t) = − 2t~ω × ~g (2.41)

Using the initial conditions ~r1(0) = 0 and ~̇r1(0) = 0 we get

~r1(t) = − t3

3
~ω × ~g =

1

3
ωgt3 sin θêy (2.42)

so the total trajectory becomes

~r(t) =
(
h− g

2
t2
)
êz +

1

3
ωgt3 sin θêy (2.43)

Properties of Eq. (2.43)

• The vertical motion is independent of ω in the first order.
4The corresponding dimensionless parameter is ωt0 where t0 is the time of free fall from a height h. For

h=100m ωt0 = 3.3× 10−4
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• The particle is deflected eastward and the effect is the same in northern and southern
hemisphere. It is maximal at the equator (sin θ = 1). Foe example, at h =100m the
equatorial deflection is 2.2cm.

• The eastward deflection may seem surprising since Earth itself rotates to the east.
However, in the inertial frame ~v0 has abn eastward component which increases as r
decreases due to conservation of angular momentum.

2.3.2 Horizontal motion

Consider a particle located at polar angle θ moving with horizontal velocity along the
direction making angle φ with x axis on Fig. 31. We get

ω̂ = − êx sin θ + êz cos θ, ~v = v(êx cosφ+ êy sinφ) (2.44)

so the Coriolis force (2.29) takes the form

~Fc = − 2m~ω × ~v = 2mωv(êx cos θ sinφ− êy cos θ cosφ+ êz sin θ sinφ) (2.45)

For example, Coriolis force pulls a north-moving particle (φ = π) in the northern hemishpere
(cos θ > 0) to the east and south-moving particle to the west. Conversely, in the southern
hemisphere a north-moving particle is pulled to the west and a south-moving particelto
the east. That is why hurricanes rotate counterclockwise in the northern hemisphere and
clockwise in the southern hemisphere.

2.4 Foucault pendulum

Consider a pendulum composed of massless rigid rod fixed at some support point on one
end and with particle of mass m attached to the other end (see Fig. 32). The equation of

Figure 32. Foucault pendulum
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motion is (2.34):

m~̈r = ~T +m~g − 2m~ω × ~̇r (2.46)

where ~g is given by Eq. (2.36) and the velocity and acceleration are those seen by the
terrestrial observer.

Here again we will calculate the motion in the leading order in ω so ~g = −gêz. Using
the same frame as in Fig. 31 we get

ω × ~̇r = − ωêx cos θẏ + ω(sin θż + cos θẋ)êy − ω sin θẏêz (2.47)

and
m~g + ~T = − T êx sinψ cosφ− T êy sinψ sinφ+ êz(T cosψ −mg) (2.48)

Consider first the equation for vertical motion

mz̈ = T cosψ −mg + 2mωẏ sin θ (2.49)

Since ωv � 1 (numerical estimate for v = 1m
s is ωv ' 7 × 10−5 m

s2 ) we can neglect
the last term in r.h.s. of Eq. (2.49) in comparison to two other terms. Moreover, the
vertical displacement z = l(1− cosψ) is small for small displacements form the equilibrium
(r � l⇒ ψ ' r

l � 1 ⇒ z ' r2

l � l) so we get approximately

T cosψ ' T ' mg (2.50)

At the next step we consider equations for the horizontal motion

mẍ = − T sinψ cosφ + 2mωẏ cos θ (2.51)

mÿ = − T sinψ sinφ − 2mω(ẋ cos θ + ż sin θ) (2.52)

Note that in the last term in the r.h.s. of Eq. (2.52) the ż term can be omitted in comparison
to ẋ term since z ∼ r2

l � x ∼ r. Moreover, since sinψ cosφ ' x
l and sinψ sinφ ' y

l (see
Fig. 32) we get from Eqs. (2.50-2.52)

ẍ = − g

l
x+ 2ωẏ cos θ

ÿ = − g

l
y − 2ωẋ cos θ (2.53)

where ω cos θ = ω · êz = ω⊥ is the vertical projection of earth’s angular velocity.
Trick to solve Eq. (2.53): multiply the second equation by “i” (imaginary unit) and

add to the first equation. We get

ζ̈ = − g

l
ζ − 2iωζ̇ cos θ (2.54)

where
ζ ≡ x+ iy (2.55)
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The equation (2.54) is a differential equation with constant coefficiens ⇒ in can be solved
by exponential ansatz ζ(t) = ζ0e

−iσt. We get

σ2 − 2ωσ cos θ − g

l
= 0 ⇒ σ± = ω⊥ ±

√
ω2
⊥ +

g

l
(2.56)

so the general solution of Eq. (2.54) can be written as

ζ(t) = Ae−iω⊥t−iqt +Be−iω⊥t+iqt q ≡
√
ω2
⊥ +

g

l
(2.57)

W.l.o.g. let us assume that the pendulum rod is displaced as small distance a southward
and released, then ζ(0) = x0 = a and ζ̇(0) = 0 so we get

ζ(t) = ae−iω⊥t
(

cos qt+ i
ω⊥
q

sin qt
)

(2.58)

Typically, ω2
⊥ �

g
l and the motion is approximately

ζ(t) = a(cos qt)e−iω⊥t (2.59)

so

x(t) = <ζ(t) = a(cosω⊥t) cos
(
t

√
g

l

)
y(t) = =ζ(t) = − a(sinω⊥t) cos

(
t

√
g

l

)
(2.60)

Since ω⊥ �
√

g
l these equation represent a superposition of two perpendicular oscilla-

tory motions proportional to cos
(
t
√

g
l

)
but with slowly varying amplitudes: a cosω⊥t and

−a sinω⊥t.
Dividing y(t) by x(t) we get

tanφ =
y(t)

x(t)
= − tanω⊥t (2.61)

Thus, the motion occurs in a plane

φ = − ω⊥t (2.62)

rotating with angular velocity ω⊥. This rotation is clockwise (as viewed from above) in
the nothern hemisphere and counterclockwise in the southern hemisphere. On the poles,
Foucault pendulum would make a full 360◦ turn exactly in one day (and on the equator it
does not rotate).
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2.5 Tides

There is another (and very visible) effect due to non-inertial nature of the frame on Earth’s
surface. From our beach experience we know that every day there are two low tides and
two high tides in the ocean. This phenomenon can be explained by analysis of Newton’s
2nd law in the Earth frame.

D

z

Moon
Earth

m
R

r

Figure 33. Earth-Moon system

Let us first ignore rotation of Earth about its axis and influence of the Sun. Even
in this approximation, Earth is not an inertial frame. The origin of the reference frame
attached to the center of Earth is accelerating. This acceleration is due to the gravitational

Earth Moon Earth

CM 

Figure 34. Top view of xy plane of Earth’s orbit around CM

force between the Earth and the Moon

Me~ae = −GMeMm

~D

D3
= −GMeMm

D̂

D2
⇒ ~ae = −GMm

D̂

D2
(2.63)
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Since we neglect Earth’s rotation, Newton’s 2nd law (2.29) reduces to

m~a = ~F −m~ae ≡ ~Ft +m~g (2.64)

where ~Ft is an attraction force between the body and the Moon minus the m~ae term. Let
us consider the tidal force ~Ft

~Ft = −GmMm
R̂

R2
+GmMm

D̂

D2
(2.65)

Note that ~Ft vanishes at the center of Earth.
It is useful to decompose ~Ft into z and y components. Since ~R = ~D + ~r and r

D � 1

F t
x = −GMmm

{ D + x(
(D + x)2 + z2

) 3
2

− 1

D2

}
= − GMmm

D2

{ 1 + tx(
(1 + tx)2 + t2z

) 3
2

− 1
}

(2.66)

where tx ≡ x
D and tz ≡ z

D . Since tx, tz � 1 we get

F t
x ' − GMmm

D2

{
(1 + tx)(1− 3tx)− 1

}
' 2GMmm

D2
tx =

2GMmmx

D3
(2.67)

Similarly,

F t
z = −GMmm

z(
(D + x)2 + z2

) 3
2

= − GMmm

D2

tz(
(1 + tx)2 + t2z

) 3
2

= − GMmmz

D3

(2.68)

The cartoon of these tidal forces is shown in Fig. 35.

0

z

Moon

Earth

x

Figure 35. Two tides

If the earth was rigid, the tidal forces would have no effect on it, but the water in
the oceans is free to move around, so it bulges around the Earth-Moon line. As the Earth
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rotates, the person on the surface sees the bulge rotating in opposite direction, so at a given
spot one sees two low tides and two high tides per day 5.

In addition, there are tides due to Sun’s influence. One may expect them to be even
bigger than the tidal waves due to the Moon influence since the ratio of forces of gravity is

FSun

FMoon
=
(GMs

R2
es

)
:
(GMm

R2
ms

)
' 175 (2.69)

However, the explicit formulas for the tidal forces (2.68) and (2.69) tell us that

FSun

FMoon
=
(GMs

R3
es

)
:
(GMm

R3
ms

)
' 0.45 (2.70)

so the tide due to the Moon is twice as big as the tide due to the Sun. These two tides may
add up if the Moon is close to the Sun-Earth line, or partially cancel if the Moon is at 90◦

with respect to Earth-Sun vector.

Part VII

3 Lagrangian dynamics

3.1 Generalized coordinates

Consider a particle moving in 3 dimensions under the action of a force ~F :

m~̈r = ~F (3.1)

If the position of the particle is completely specified by the three components ~r(t) = x(t)êx+

y(t)êy + z(t)êz we say that the particle has three degrees of freedom. Given ~r(0) = ~r0 and
~̇r(0) = ~̇r0 ≡ ~v0 we can predict its motion at all later times because the solution of the
second-order differential equation (3.1) is uniquely defined by initial conditions ~r0 and ~v0.

However, if we consider a particle being constrained to slide along a wire, it is sufficient
to specify the position of the particle on the wire so we have a system with one degree of
freedom.

5Strictly speaking, the moon rotates about the Earth so in 28 days we will see only 55 pairs of tides.
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x = a
y = b

a

z = z(t)

x

b
y

z

Figure 36. Constrained motion: example 1

The position of the particle is=n 3-dim space is given by three coordinates x, y, and z
but there are two constraints

• #1: x = a

• # 2: y = b

so the position of the particle is specified by a single “generalized coordinate” z = z(t).
The constraints may change in time, for example:

x = a
y = b sin(wt)

a

z = z(t)

x

b
y

z

Figure 37. Constrained motion; example 2

These ideas can be generalized for a system of N particles. A “configuration” of the
system is specified by 3N Cartesian coordinates. However, they may be not all independent
due to the presence of some constraints. These constraints may be specified by equations
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of the type
f1(x1, x2, ....x3N , t) = 0

f2(x1, x2, ....x3N , t) = 0

.

.

.

fk(x1, x2, ....x3N , t) = 0


k constraints, k ≤ 3N (3.2)

Here we used the notation x1 ≡ x1, x2 ≡ y1, x3 ≡ z1 for particle # 1, x4 ≡ x2, x5 ≡ y2, x3 ≡
z2 for particle # 2, ..., and x3N−2 ≡ xN , x3N−1 ≡ yN , x3n ≡ zN for particle # N. of some
constraints. These constraints may be specified by equations of the type

x1 ≡ x1, x2 ≡ y1, x3 ≡ z1 for particle #1

x4 ≡ x2, x5 ≡ y2, x6 ≡ z2 for particle #2

.

.

x3N−2 ≡ xN , x3N−1 ≡ yN , x3n ≡ zN for particle #N

(3.3)

Because of the k constraints, there are 3N − k independent coordinates. These are the
“generalized coordinates” q1, q2, ...q3N−k and the system has 3N − k degrees of freedom.

For example, consider the system of the wedge and the block that slides along the
incline of the wedge. This system has two degrees of freedom, and generalized coordinates

l

xX

z

Figure 38. Constrained motion; example 3

can be chosen as the position of the center of mass of the wedge X and the position of the
block along the incline l.

– 42 –



NB: Not all constraints can be expressed in the form (3.2). If it is possible to do so,
the constraints are called holonomic constraints. In some instances, this is not the case.

constraint r > R
R

r
m mass m slides on the surface, and then

at some time t leaves the surface:

Figure 39. Non-holonomic constraint r ≥ R

For example, the point mass m sliding on the surface under the weight of gravity has
a non-holonomic constraint r ≥ R.

Another example: wheel rolling on the surface without skidding.

P

 => constraint  x = R
point of contact P is instantaneously at rest
wheel rolling on a plane:

x

R

x.
. .

Figure 40. Non-holonomic constraint ẋ = Rφ̇

NB: The constraints exert forces which are not known a priori.

m g

T
String tension T needs to be determined

Figure 41. Constrained motion: pendulum

We want to formulate the dynamics in such a way that these forces do not appear in
the equations of motion explicitly.

To carry out this program, first we define the virtual displacement δx: δxi is an in-
finitesimal displacement of the coordinates consistent with the constraints.

NB: If constraints depend on time t the virtual displacement is taken at a fixed time t
so the time is “frozen”.
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y
x
y

x

y

= tan

x

Figure 42. Example: displacements with the constraint
√
x2 + y2 = const

In terms of the generalized coordinates

xi = xi(q1, q2, ...q3N−k; t), i = 1, 2, ...N (3.4)

⇒

δxi =
∂xi
∂q1

δq1 +
∂xi
∂q2

δq2 + ...+
∂xi

∂q3N−k
δq3N−k =

3N−k∑
n=1

∂xi
∂qn

δqn (3.5)

Note that change of the coordinates dxi = xi(t+ dt)− xi(t) is

dxi =
3N−k∑
n=1

∂xi
∂qn

δqn +
∂xi
∂t

= δxi +
∂xi
∂t

dt (3.6)

d’Alembert principle: the forces due to the constraints do no work (friction is ignored
here). For example, in the case of pendulum, string tension T is orthogonal to the displace-
ment ⇒ does no work:

m g

T
String tension T does no work

Figure 43. Constrained motion: pendulum

D’Alembert principle can be now used to eliminate the forces of constraints from the
dynamical equations. Consider a set of Newton’s 2nd laws:

~̇pj = ~Fj + ~Rj , j = 1, 2, ..., N (3.7)

where ~Rj are forces due to constraints and ~Fj are other (known) forces. In our notations
(3.3) the above equation reads

ṗi = Fi +Ri, i = 1, 2, ..., 3N (3.8)
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and therefore
3N∑
i=1

(Fi +Ri − ṗi)δxi = 0 (3.9)

Note that
3N∑
i=1

Riδxi =
N∑
j=1

~Rj · δ~xj = 0 (3.10)

due to d’Alembert principle (forces of constraints do no work).
Thus, the equation (3.9) reduces to

3N∑
i=1

(Fi − ṗi)δxi = 0 (3.11)

where the forces due to constraints has been removed. Note, however, that in the presence
of constraints the displacements δxi (i = 1, 2, ..., 3N) are not independent, for example
δy = −δx tan θ in Fig. 42.

3.2 Euler-Lagrange equations

Let us rewrite Eq. (3.11) as
3N∑
i=1

ṗiδxi =

3N∑
i=1

Fiδxi (3.12)

and consider each term in turn. However, first we need to find the relation between partial
derivatives of usual and generalized coordinates and velocities

From Eq. (3.6) we get

ẋi =

3N−k∑
n=1

∂xi
∂qn

q̇n +
∂xi
∂t

(3.13)

Note that due to Eq. (3.2) ∂xk
∂qk

is a function of the generalized coordinates and time
∂xk
∂qk

= f(q1, ...q3N−k; t). If we consider qk and q̇k to be independent variables, the partial
derivative of the l.h.s. of Eq. (3.13) with respect to q̇k is simply

∂ẋi
∂q̇j

=
∂xi
∂qj

(3.14)

because ∂xi
∂qj

in the r.h.s. of Eq. (3.13) does not have an explicit dependence on q̇k.
Next, we consider the lh.s. and the r.h.s. of Eq. (3.9) in turn.

3.2.1 LHS of Eq. (3.12)
3N∑
i=1

ṗiδxi =
3N∑
i=1

miẍiδxi =
3N∑
i=1

mi

3N−k∑
n=1

dẋi
dt

∂xi
∂qn

δqn (3.15)

where we used Eq. (3.5). Next, we rewrite the r.h.s of this equation as follows

δxi =

3N∑
i=1

mi

3N−k∑
n=1

[ d
dt

(
ẋi
∂xi
∂qn

)
− ẋi

d

dt

(∂xi
∂qn

)]
δqn (3.16)
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and use Eq. (3.14):

δxi =
3N∑
i=1

mi

3N−k∑
n=1

[ d
dt

(
ẋi
∂ẋi
∂q̇n

)
− ẋi

d

dt

(∂xi
∂qn

)]
δqn

=
3N−k∑
n=1

[ 3N∑
i=1

mi
d

dt

∂

∂q̇n

( ẋ2
i

2

)
−

3N∑
i=1

miẋi
d

dt

(∂xi
∂qn

)]
δqn

=

3N−k∑
n=1

∂

∂q̇n

d

dt

( 3N∑
i=1

mi
ẋ2
i

2

)
−

3N∑
i=1

3N−k∑
n=1

miẋi
d

dt

(∂xi
∂qn

)]
δqn (3.17)

Now, xi = xi(q1, ...q3N−k, t)

⇒ d

dt

∂xi({qj}, t)
∂qn

=
3N−k∑
l=1

∂2xi({qj}, t)
∂ql∂qn

q̇l +
∂2xi
∂qn∂t

(3.18)

On the other hand, from Eq. (3.13)

∂

∂qn
ẋi =

3N−k∑
l=1

∂2xi
∂ql∂qn

q̇l +
∂2xi
∂qn∂t

(3.19)

so we get d
dt
∂xi
∂qn

= ∂
∂qn

ẋi. Using this formula, we can rewrite the second term in Eq. (3.17)
as

−
3N∑
i=1

3N−k∑
n=1

miẋi
d

dt

(∂xi
∂qn

)
= −

3N−k∑
n=1

3N∑
i=1

miẋi
∂

∂qn

d

dt
xi = −

3N−k∑
n=1

∂

∂qn

( 3N∑
i=1

miẋ
2
i

2

)
(3.20)

and get

δxi =
3N−k∑
n=1

δqn
∂

∂q̇n

d

dt

( 3N∑
i=1

mi
ẋ2
i

2

)
−

3N−k∑
n=1

δqn
∂

∂qn

( 3N∑
i=1

miẋ
2
i

2

)
=

3N−k∑
n=1

δqn

[ d
dt

∂

∂q̇n
T
(
{qj}, {q̇j}, t

)
− ∂

∂qn
T
(
{qj}, {q̇j}, t

)]
(3.21)

where

T
(
{qj}, {q̇j}, t

)
=

3N∑
i=1

miẋ
2
i

2
(3.22)

is the kinetic energy of the system considered as a function of independent variables qi, q̇i,
and t.

3.2.2 RHS of Eq. (3.12)

Now we turn our attention to the r.h.s. of Eq. (3.12). From Eq. (3.5) we get

3N∑
i=1

Fiδxi =

3N∑
i=1

Fi

3N−k∑
n=1

δqn
∂xi
∂qn

=

3N−k∑
n=1

δqn

( 3N∑
i=1

∂xi
∂qn

Fi

)
(3.23)
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The expressions in the parenthesis are called “generalized forces”

Qn ≡
3N∑
i=1

∂xi
∂qn

Fi (3.24)

The generalized forces can be calculated directly from this definition. Alternatively, they
can be found from the virtual work done by forces ~Fj for virtual displacement along a given
generalized coordinate.

A very important special case is the case of conservative forces

Fi(x1, ...x3N ) = − ∂

∂xi
V (x1, ...x3N ) (3.25)

where the potential V depends only on the positions of the particles. In terms of the
generalized coordinates

V (x1, ...x3N ) = V (q1, ...q3N−k; t) (3.26)

so the generalized forces (3.23) can be represented as partial derivatives of potential energy
with respect to generalized coordinates

Qn = −
3N∑
i=1

∂xi
∂qn

∂

∂xi
V (x1, ...x3N )

∣∣∣
xi=xi({qj},t)

= − ∂

∂qn
V (q1, ...q3N−k; t) (3.27)

3.3 Lagrange equations

Now we are in the position to derive Lagrange equations for dynamics in terms of generalized
coordinates. Combining Eqs. (3.12), (3.21), and (3.23) we get

3N−k∑
n=1

δqn

[ d
dt

∂

∂q̇n
T
(
{qj}, {q̇j}, t

)
− ∂

∂qn
T
(
{qj}, {q̇j}, t

)]
=

3N−k∑
n=1

δqnQn
(
{qj}, {q̇j}, t

)
(3.28)

Since the displacements δqn are independent we get the Lagrange equation in the form

d

dt

∂

∂q̇n
T
(
{qj}, {q̇j}, t

)
− ∂

∂qn
T
(
{qj}, {q̇j}, t

)
= Qn

(
{qj}, {q̇j}, t

)
(3.29)

For the special case of conservative forces the Lagrange equations take the form

d

dt

∂

∂q̇n
T
(
{qj}, {q̇j}, t

)
− ∂

∂qn
T
(
{qj}, {q̇j}, t

)
= − ∂

∂qn
V ({qj}; t) (3.30)

which can be rewitten as of Euler-Lagrange equations

d

dt

∂

∂q̇n
L
(
{qj}, {q̇j}, t

)
=

∂

∂qn
L
(
{qj}, {q̇j}, t

)
(3.31)

where the function which can be rewitten as of Euler-Lagrange equations

L
(
{qj}, {q̇j}, t

)
≡ T

(
{qj}, {q̇j}, t

)
− V

(
{qj}, t

)
(3.32)

is called the Lagrangian.
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Part VIII

3.4 Examples of Lagrangians

3.4.1 Example 1: double pendulum

Consider double pendulum oscillating in XY plane

x

1

1m

l1

2

1m g

T1

l2 T2

2m

T2

2m gy

Figure 44. Double pendulum

One can choose the generalized coordinates as θ1 and θ2. Apart from the constraint
forces ~T1 and ~T2, the only one other is the conservative gravitational force with the potential

V = −m1gy1 −m2gy2 (3.33)

In terms of generalized coordinates

x1 = l1 sin θ1 y1 = l1 cos θ1

x2 = l1 sin θ1 + l2 sin θ2 y2 = l1 cos θ1 + l2 cos θ2 (3.34)

The Lagranfian is

L = T − V =
m1

2
(ẋ2

1 + ẏ2
1) +

m2

2
(ẋ2

2 + ẏ2
2) +m1gy1 +m2gy2 (3.35)

which we need to represent in terms of θ1, θ2 and θ̇1, θ̇2. From Eq. (3.34) we get

ẋ1 = l1θ̇1 cos θ1 y1 = − l1θ̇1 sin θ1

ẋ2 = l1θ̇1 cos θ1 + l2θ̇2 cos θ2 ẏ2 = − l1θ̇1 sin θ1 − l2θ̇2 sin θ2 (3.36)

and the Lagrangian (3.35) takes the form

L =
m1

2
l21θ̇

2
1 +

m2

2

[
l21θ̇

2
1 + l22θ̇

2
2 + 2l1l2θ̇1θ̇2 cos(θ1 − θ2)

]
+ mgl1 cos θ1 +m2g(l1 cos θ1 + l2 cos θ2)

(3.37)
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The Euler-Lagrange equation are

d

dt

∂L

∂θ̇1

=
∂L

∂θ1
,

d

dt

∂L

∂θ̇2

=
∂L

∂θ2
,

(3.38)

The derivatives are
∂L

∂θ1
= −m2l1l2θ̇1θ̇2 sin(θ1 − θ2)− (m1 +m2)gl1 sin θ1

∂L

∂θ2
= m2l1l2θ̇1θ̇2 sin(θ1 − θ2)−m2gl2 sin θ2

∂L

∂θ̇1

= (m1 +m2)l21θ̇1 +m2l1l2θ̇2 cos(θ1 − θ2)

∂L

∂θ̇2

= m2l
2
2θ̇2 +m2l1l2θ̇1 cos(θ1 − θ2)

(3.39)

so the Euler-Lagrange equations (3.38) take the form

(m1 +m2)l21θ̈1 +m2l1l2θ̈2 cos(θ1 − θ2) +m2l1l2θ̇
2
2 sin(θ1 − θ2) + (m1 +m2)gl1 sin θ1 = 0

m2l
2
2θ̈2 +m2l1l2θ̈1 cos(θ1 − θ2)−m2l1l2θ̇

2
1 sin(θ1 − θ2) +m2)gl2 sin θ2 = 0 (3.40)

In summary, the equations of motion are

θ̈1 +
m2l2

(m1 +m2)l1

[
θ̈2 cos(θ1 − θ2) + θ̇2

2 sin(θ1 − θ2)
]

+
g

l1
sin θ1 = 0 (3.41)

θ̈2 +
l1
l2

[
θ̈1 cos(θ1 − θ2)− θ̇2

1 sin(θ1 − θ2)
]

+
g

l2
sin θ2 = 0

It is a set of coupled differential equations. Solving them for a given θ10, θ̇10 and θ20, θ̇20 we
can find θ1(t) and θ2(t).

Let us consider the case of small oscillations θ1, θ2 � 1 and θ̇1, θ̇2τ � 1 where τ is the
characteristic time for the oscillations (we will see below that τ ∼ 1

ω0
∼
√

l
g ). In this limit

the Eqs. (3.41) turn to

θ̈1 +
m2l2

(m1 +m2)l1
θ̈2 +

g

l1
θ1 = 0 (3.42)

θ̈2 +
l1
l2
θ̈1 +

g

l2
θ2 = 0

For simplicity, let us take m1 = m2 = m and l1 = l2 = l and define ω2
0 ≡

g
l . One obtains

θ̈1 +
1

2
θ̈2 + ω2

0θ1 = 0 (3.43)

θ̈2 + θ̈1 + ω2
0θ2 = 0

Ansatz: θ1 = ρ1 cos(ωt+ φ), θ2 = ρ2 cos(ωt+ φ)

ρ1ω
2 +

ρ2

2
ω2 = ω2

0ρ1 (3.44)

ρ1ω
2 + ρ2ω

2 = ω2
0ρ2
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The solutions do exist only and only if

det

∣∣∣∣∣ω2
0 − ω2 −ω2

2

−ω2 ω2
0 − ω2

∣∣∣∣∣ = 0 (3.45)

We will study this case of small oscillations later.

3.4.2 Example 2: pendulum with sliding pivot

Consider a pendulum with pivot at mass m1 which can slide along the wire in x direction
without friction. Again, the motion is supposed to be restricted to XY plane. There are

y

m

2m g

2m

l
x

1

Figure 45. Sliding pendulum

two degrees of freedom which cam be chosen as x and θ:{ x1 = x

y1 = 0

{ x2 = x+ l sin θ

y2 = l cos θ
(3.46)

The kinetic energy takes the form

T =
m1

2
(ẋ2

1 + ẏ2
1) +

m2

2
(ẋ2

2 + ẏ2
2) =

m1 +m2

2
ẋ2 +

m2

2
(l2θ̇2 + 2l cos θẋθ̇) (3.47)

so the Lagrangian in terms of generalized coordinates (3.46) reads

L = T − V = L+m2gy2 =
m1 +m2

2
ẋ2 +

m2

2
(l2θ̇2 + 2l cos θẋθ̇) +m2gl cos θ (3.48)

The partial derivatives are

∂L

∂ẋ
= (m1 +m2)ẋ+m2lθ̇ cos θ

∂L

∂x
= 0 (3.49)

∂L

∂θ̇
= m2l

2θ̇ +m2lẋ cos θ
∂L

∂θ
= −m2lθ̇ẋ sin θ −m2gl sin θ
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so the Euler-Lagrange equations take the form

d

dt

∂L

∂ẋ
=

∂L

∂x
⇒ d

dt

[
(m1 +m2)ẋ+m2lθ̇ cos θ

]
= 0 (3.50)

d

dt

∂L

∂θ̇
=

∂L

∂θ
⇒ d

dt

(
m2l

2θ̇ +m2lẋ cos θ
)

= −m2lθ̇ẋ sin θ −m2gl sin θ

The first of these equations implies that (m1 +m2)ẋ+m2lθ̇ cos θ is a constant. It is easy to
see that this constant is equal to the x-component of the total momentum of two particles:
(m1 +m2)ẋ+m2lθ̇ cos θ = m1ẋ1 +m2ẋ2 = Px. The total momentum of the two particles
is conserved since the only external forces acting on the pendulum are the force of gravity
and normal force at the pivot m1 and both of them are orthogonal to x axis (recall that we
ignore friction at the pivot).

The second equation (3.49) can be simplified to

θ̈ +
cos θ

l
ẍ+ ω2

0 sin θ = 0, ω2
0 ≡

g

l
(3.51)

Next, we can express ẍ in terms of θ using first Eq. (3.50)

ẍ =
m2l

m1 +m2
θ̇2 sin θ − m2l

m1 +m2
θ̈ cos θ (3.52)

so the equation (3.51) can be rewritten as(
1− m2 cos2 θ

m1 +m2

)
θ̈ +

m2 sin θ cos θ

m1 +m2
θ̇2 + ω2

0 sin θ = 0 (3.53)

For the case of small oscillations (θ � 1)the above equation reduces to

m1

m1 +m2
θ̈ +

m2

m1 +m2
θθ̇2 + ω2

0θ = 0 (3.54)

If we assume also that θ̇ � ω0 we get

m1

m1 +m2
θ̈ + ω2

0θ = 0 ⇔ θ̈ = − ω2
0

(
1 +

m2

m1

)
θ (3.55)

which is the harmonic equation for oscillations with frequency

ω = ω0

√
1 +

m2

m1
(3.56)

Check: in the limit m1 →∞ we get ω → ω0 for the standard pendulum.

3.5 Calculus of variations

Consider the following mathematical problem: find a function y(x) in the interval [x1, x2]

such that the integral

I =

∫ x2

x1

f(y, y′, x)dx, y′ ≡ dy

dx
(3.57)
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is at extremum (≡minimum or maximum). The integral (3.57) is an example of a functional
- function of a function. The integral I

(
y(x)

)
is a number which depends on the form of

the function y(x).
Let us find the condition for a path ȳ(x) to make I stationary (≡ minimal or maximal).

Suppose the function ȳ(x) makes I stationary. Let us take an arbitrary function y(x) and
let us consider a set of functions y(x, α) such that

y(x, α) ≡ ȳ(x) + α
(
y(x)− ȳ(x)

)
(3.58)

If ȳ(x) makes I stationary, the integral

I(α) =

∫ x2

x1

f
[
y(x, α), y′(x, α), x

]
dx (3.59)

must have an extremum at the point α = 0 - otherwise small deviations of the function
α
(
y(x)− ȳ(x)

)
would lead to a change in the value of I(α). Thus, the necessary condition

for ȳ(x) to be an extremum of functional (3.57) is

dI(α)

dα

∣∣∣∣
α=0

= 0 for any y(x) (3.60)

Taking the derivative of Eq. (3.59) we get

dI(α)

dα

∣∣∣∣
α=0

=

∫ x2

x1

{
df(y, y′, x)

dy

dy(x, α)

dα

∣∣∣
α=0

+
df(y, y′, x)

dy′
dy′(x, α)

dα

∣∣∣
α=0

}
dx

=

∫ x2

x1

{
df(y, y′, x)

dy

∣∣∣
y=ȳ

(
y(x)− ȳ(x)

)
+
df(y, y′, x)

dy′

∣∣∣
y=ȳ

(
y′(x)− ȳ′(x)

)}
dx

=

∫ x2

x1

{
df(y, y′, x)

dy

∣∣∣
y=ȳ

(
y(x)− ȳ(x)

)
+
df(y, y′, x)

dy′

∣∣∣
y=ȳ

d

dx

(
y(x)− ȳ(x)

)}
dx (3.61)

Next, we use integration by parts in the second term∫ x2

x1

dx
df(y, y′, x)

dy′

∣∣∣
y=ȳ

d

dx

(
y(x)− ȳ(x)

)
(3.62)

=
df(y, y′, x)

dy′

∣∣∣
y=ȳ

(
y(x)− ȳ(x)

)∣∣∣x=x2

x=x1

−
∫ x2

x1

dx
d

dx

df(y, y′, x)

dy′

∣∣∣
y=ȳ

(
y(x)− ȳ(x)

)
Since by assumption y(x1) = y1 and y(x2) = y2 for any y(x) the non-integral term vanishes
and we get

dI(α)

dα

∣∣∣∣
α=0

(3.63)

=

∫ x2

x1

dx
[df(y, y′, x)

dy

∣∣∣
y=ȳ
− d

dx

df(y, y′, x)

dy′

∣∣∣
y=ȳ

](
y(x)− ȳ(x)

)
Now comes the central point: since y(x) is arbitrary (modulo y(x1) = y1 and y(x2) = y2

conditions), the integrand in Eq. (3.63) should vanish identically so we get the condition
for ȳ(x) to be a stationary point of the functional (3.57) in the form

d

dx

df(y, y′, x)

dy′

∣∣∣
y=ȳ

=
df(y, y′, x)

dy

∣∣∣
y=ȳ

(3.64)
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Figure 46. Variation of the path ȳ(x)

One can represent the derivation of Eq. (3.64) in a more formal way using calculus of
variations. We introduce small variations of the path ȳ(x)

δy(x) = y(x)− ȳ(x), δy(x1) = δy(x2) = 0 (3.65)

The variation of the functional (3.57) is then

δI ≡ I(ȳ + δy, ȳ′ + δy′, x)− I(y, y′, x) =

∫ x2

x1

dx
[
f(ȳ + δy, ȳ′ + δy′, x)− f(ȳ, ȳ′, x)

]
=

∫ x2

x1

dx

{
∂f(y, y′, x)

∂y

∣∣∣
y=ȳ

δy(x) +
∂f(y, y′, x)

∂y′

∣∣∣
y=ȳ

δy′(x)

}
(3.66)

Integrating by parts the second term we get (cf. Eq. (3.62))∫ x2

x1

dx
∂f(y, y′, x)

∂y′

∣∣∣
y=ȳ

d

dx
δy(x)

= −
∫ x2

x1

dx δy(x)
d

dx

∂f(y, y′, x)

∂y′

∣∣∣
y=ȳ

+
∂f(y, y′, x)

∂y′

∣∣∣
y=ȳ

δy(x)
∣∣∣x=x2

x=x1

(3.67)

By definition (3.65), the variations δy(x) vanish at the end points δy(x1) = δy(x2) = 0 so
the non-integral term in the r.h.s. of Eq. (3.67) vanishes and Eq. (3.66) reduces to

δI =

∫ x2

x1

dx δy(x)

{
∂f(y, y′, x)

∂y

∣∣∣
y=ȳ
− d

dx

∂f(y, y′, x)

∂y′

∣∣∣
y=ȳ

}
(3.68)

Since δy(x) is arbitrary, the integrand in the r.h.s. must vanish so we reproduce Eq. (3.64)
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3.5.1 Example 1

Q: what function y(x) minimize the distance between points x1, y1 and x2, y2 on a XY
plane?
To answer this question, we need to determine first the functional for this problem. The
length of the small segment of the curve ∆r is given by (see Fig. 49)

y(x)

1

r

y1

x2
y2

y
x

y

x

x

Figure 47. Length of the curve

∆r =
√

(∆x)2 + (∆y)2 = ∆x

√
1 +

(∆y)2

(∆x)2
(3.69)

For infinitesimal displacements we get

dr = dx

√
1 + y′2 (3.70)

so the total length between x1, y1 and x2, y2 is

I = lim
(∆r)i→0

∑
(∆r)i =

∫ x2

x1

dx

√
1 + y′2 (3.71)

The Euler-Lagrange equation reads

∂f

∂y
= 0 ⇒ d

dx

∂f

∂y′
=

d

dx

y′√
1 + y′2

=
y′′

(1 + y′2)3/2
= 0 (3.72)

so we have
y′′ = 0 ⇒ y′ = const = A ⇒ y = Ax+B (3.73)

This constants A and B can be found from the conditions y(x1) = y1 and y(x2) = y2:

A =
y2 − y1

x2 − x1
, B =

y1x2 − y2x1

x2 − x1
⇒ y = y1 +

y2 − y1

x2 − x1
(x− x1) (3.74)

Thus, the shortest path between two points on a plane is a straight line.
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Figure 48. Length of the curve

3.5.2 Example 2

Consider a particle sliding down some slope from point x = y = 0 to x2, y2 in a uniform
gravity field. Find the form of the slope which minimizes the time of the slide. From the
previous example: the length of the infinitesimal segment of the path is

dr = dx

√
1 + y′2 (3.75)

Now, due to conservation of energy the velocity at the point x, y is

mv2

2
− gy = 0 ⇒ v =

√
2gy

m
=

dr

dt
(3.76)

and we get

dt =
dr

v
= dx

√
m

2g

√
y

1 + y′2
⇒ T =

√
m

2g

∫ x2

0
dx

√
1 + y′2

y
(3.77)

Euler-Lagrange equation

y′′ = − 1 + y′2

2y
(3.78)

The solution is
x = a(θ − sin θ), y = a(1− cos θ) (3.79)

which is a cycloid (x− aθ)2 + (y − a)2 = a2.

3.5.3 Variational principle for a functional of many variables

These ideas can be generalized to a functional I(f) of the form

I(f) =

∫ x2

x1

f
(
y1(x), y2(x), ...yN (x); y′1(x), y′2(x), ...y′N (x), x) (3.80)
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Repeating the steps (3.66) -(3.67) we get∫ x2

x1

f
(
y1(x) + δy1(x), y2(x), ...yN (x); y′1(x) + δy′1(x), y′2(x), ...y′N (x), x)

−
∫ x2

x1

f
(
y1(x), y2(x), ...yN (x); y′1(x), y′2(x), ...y′N (x), x)

= same tricks =

∫ x2

x1

dx δy1(x)
( ∂f
∂yn
− d

dx

∂f

∂y′n

)
(3.81)

⇒ Lagrange equations:

∂f

∂yn
=

d

dx

∂f

∂y′n
, n = 1, 2, ...N (3.82)

Part IX

3.6 Hamilton’s principle

Suppose a particle moves along the trajectory qi = q̄i(t) between points qi(t1) = q
(1)
i and

qi(t2) = q
(2)
i (i = 1, ...N - generalized coordinates). Consider any “virtual path” qi(t) with

the same initial and final points and define the “action”

S(q(t)) ≡
∫ t2

t1

dt L(qi(t), q̇i(t), t), L(qi(t), q̇i(t), t) = T − V (3.83)

Hamilton’s principle: from all virtual trajectories with the same initial and final points,
the actual path has the least action.

Euler-Lagrange equations for minimum of the action coincide with the Lagrange equa-
tions (3.31) which we derived from Newton’s laws. Indeed, relabeling x → t and yi(x) →
qi(t) in Eq. (3.80) we get the condition for the extremum of the functional (??) in the form

∂L(qi(t), q̇i(t), t)

∂qi

∣∣∣
qi=q̄i,q̇i=¯̇qi

=
d

dt

∂L(qi(t), q̇i(t), t)

∂q̇i

∣∣∣
qi=q̄i,q̇i=¯̇qi

(3.84)

The Hamilton principle is equivalent to Newton’s laws: one could have started classical
mechanics course from the statement that for any system there is a function of generalized
coordinates L(qi(t), q̇i(t), t) such that the system moves along the trajectory with minimal
action S(q(t)) =

∫ t2
t1
dt L(qi(t), q̇i(t), t).

NB: Note that one can add to the Lagrangian the total derivative of some function
(with respect to time) and the Euler-Lagrange equations (⇒ Newton’s laws) will not change.
Indeed, if L̃(qi(t), q̇i(t), t) = L(qi(t), q̇i(t), t) + d

dtF (qi(t), t) the new action has the form

S̃(q(t)) =

∫ t2

t1

dt
[
L(qi(t), q̇i(t), t) +

d

dt
F (qi(t), t)

]
= S(q(t)) + F (t2)− F (t1) (3.85)

Since the classical path corresponds to minimum of S(q(t)) at fixed q(t1) = q1 and q(t2) = q2

the extra constant F (q(t2), t2) − F (q(t1), t1) = F2 − F1 does not affect the variations so
Euler-Lagrange equations remain the same.
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Figure 49. Hamilton principle

it can be also proved directly: the new Euler-Lagrange equations are
∂

∂qi
L(qi(t), q̇i(t), t) +

d

dt
F (qi(t), t)

]
=

d

dt

∂

∂q̇i

[
L(qi(t), q̇i(t), t) +

d

dt
F (qi(t), t)

]
⇒

l.h.s. =
∂

∂qi
L(qi(t), q̇i(t), t) +

∂

∂qi

d

dt
F (qi(t), t),

r.h.s. =
d

dt

∂

∂q̇i
L(qi(t), q̇i(t), t) +

d

dt

∂

∂q̇i

(
q̇k
∂F (qi(t), t)

∂qk
+
∂F (qi(t), t)

∂t

)
=

d

dt

∂

∂q̇i
L(qi(t), q̇i(t), t) +

d

dt

∂

∂qi
F (qi(t), t)

(3.86)

We need to check that
∂

∂qi

d

dt
F (qi(t), t) =

d

dt

∂

∂q̇i
F (qi(t), t) (3.87)

Since d
dtF (qi(t), t) = q̇i(t)

∂F (qi(t),t)
∂qi

+ ∂F (qi(t),t)
∂t

∂

∂qi

d

dt
F (qi(t), t)

]
=

∂

∂qi

(
q̇k(t)

∂F (qi(t), t)

∂qk
+
∂F (qi(t), t)

∂t

)
= q̇k(t)

∂2F (qi(t), t)

∂qi∂qk
+
∂2F (qi(t), t)

∂qi∂t
(3.88)

and
∂

∂qi

d

dt
F (qi(t), t) =

d

dt

∂

∂q̇i

(
q̇k(t)

∂F (qi(t), t)

∂qk
+
∂F (qi(t), t)

∂t

)
=

d

dt

∂F (qi(t), t)

∂qi

=
∂2F (qi(t), t)

∂qi∂t
+ q̇k

∂2F (qi(t), t)

∂qk∂qi
= r.h.s. of Eq. (3.88) (3.89)

Example: consider L = 1
2m~̇r

2 and L̃ = 1
2m(~̇r− ~V )2 where ~V is some constant vector.

S̃ =

∫ t2

t1

dt
1

2
m(~̇r − ~V )2 =

∫ t2

t1

dt
1

2
m(~̇r2 − 2~̇r · ~V + ~V 2) =

∫ t2

t1

dt
[1
2
m~̇r2 +m

d

dt

(
~r · ~V +

~V 2

2
t
)]

= S + m
(
~r2 · ~V +

~V 2

2
t2
)
−
(
~r1 · ~V +

~V 2

2
t1
)

(3.90)
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Euler -Lagrange equation is

0 =
∂L̃

∂ri
=

d

dt

∂

∂ṙi
L̃ =

d

dt
(m~̇r − ~V ) = m~̈r (3.91)

which means that the Lagrangian for a free particle can be written as 1
2mv

2 in any inertial
frame - Newton’s law is the same.

3.7 Constants of motion

Let a system have n degrees of freedom, then qiq̇i determine uniquely the evolution of the
system in time. In general, the positions qi and velocities q̇i depend on time. However,
there may be certain functions of f(qi, q̇i, t) which do not depend on time

d

dt
f(qi, q̇i, t) = 0 (3.92)

and then f at any time is determined by initial coordinates and velocities.
For example, if L does not depend on one or more coordinated qi, the corresponding

generalized momentum is conserved

d

dt

∂L

∂q̇i
= 0 ⇔ pi =

∂L

∂q̇i
= const (3.93)

There are three very important conserved quantities related to the property of homo-
geneity and isotropy of space-time

• i invariance under space translations ⇒ conservation of linear momentum,

• ii invariance under rotations ⇒ conservation of angular momentum

• iii invariance under time translations ⇒ conservation of energy

Note that (i) and (ii) are conservation laws for vector quantities. Depending on the
situation, it may be that only one (or two or none) of the components are conserved - if the
system is invariant under translations along certain direction or rotations around certain
axis.

We will demonstrate now that if the Lagrangian L(~ri, ~̇ri, t) is invariant under these
transformations (space translations,rotations, and time translations) the linear momentum,
angular momentum, and energy are conserved.

Let us consider a system of N particles and assume that there are no constraints so
the Lagrangian can be written as

L =
∑
n

L(~rn, ~̇rn, t) (3.94)

in the Cartesian coordinates.
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3.7.1 Space translations

Consider an infinitesimal translation in êi direction: ~r → ~r + ~ε

δL =
∑
n

L(~rn + ~ε, ~̇rn, t)−
∑
n

L(~rn, ~̇rn, t) =
∑
n

~ε · ~∇(n)L = 0 ⇒ (3.95)

N∑
n=1

~∇(n)L = 0 (3.96)

where ~∇(n)L = êi
∂L

∂(rn)i
. Next, we use Euler-Lagrange equations and get

∂L

∂(rn)i
=

d

dt

∂L

∂(ṙn)i
⇒

∑
n

∂L

∂(ṙn)i
= const (3.97)

Since L =
∑

n L(~rn, ~̇rn, t) =
∑ mn~r2

n
2 − V (~rn, t) we obtain

N∑
n=1

mn(ṙn)i = const ⇔
N∑
n=1

mn
~̇rn =

N∑
n=1

~pn = ~P = const (3.98)

where ~p ≡
∑N

n=1 ~pn is the total momentum of the set of particles.

3.7.2 Invariance under rotations

Consider a rotation on infinitesimal angle ε around axis specified by unit vector n̂. From
Eq. (2.13) we know that the rotation around the axis defined by ˆ

d~Ω on the angle |d~Ω| is
represented by the cross product d~Ω× ~r where

~r → ~r′n = ~rn + d~Ω× ~rn (3.99)

where d~Ω = n̂ε. Also,
~̇r → ~̇r′n = ~̇rn + d~Ω× ~̇rn (3.100)

If we assume δL = 0 we get

0 = L(~rn + d~Ω× ~rn, ~̇rn + d~Ω× ~̇rn, t)− L(~rn, ~̇rn, t) (3.101)

=
∑
n

(d~Ω× ~rn)i
∂L

∂(rn)i
+
∑
n

(d~Ω× ~̇rn)i
∂L

∂(ṙn)i

=
∑
n

(d~Ω× ~rn)i
d

dt

∂L

∂(ṙn)i
+
∑
n

(d~Ω× ~̇rn)i
∂L

∂(ṙn)i

=
d

dt

∑
n

(d~Ω× ~rn)i
∂L

∂(ṙn)i
= ε

d

dt

∑
n

(n̂× ~rn)i
∂L

∂(ṙn)i
⇒ d

dt

∑
n

(n̂× ~rn)i
∂L

∂(ṙn)i
= 0

so∑
n

(n̂× ~rn)i
∂L

∂(ṙn)i
=
∑
n

(n̂× ~rn)i(pn)i =
∑
n

(n̂× ~rn) · ~pn = n̂ ·
∑
n

~rn × ~pn = const

(3.102)
which means that the component of total angular momentum ~L =

∑
n ~rn × ~pn along n̂

direction is conserved.

– 59 –



3.7.3 Invariance under time translations

Consider the time derivative of L (here the constraints may be present)

d

dt
L(qi, q̇i, t) = q̇i

∂L

∂qi
+ q̈i

∂L

∂q̇i
+
∂

∂t
L (3.103)

= q̇i
∂L

∂qi
+
d

dt

(
q̇i
∂L

∂q̇i

)
− q̇i

d

dt

∂L

∂q̇i
+
∂

∂t
L

= q̇i
∂L

∂qi
+
d

dt

(
q̇i
∂L

∂q̇i

)
− q̇i

∂L

∂qi
+
∂

∂t
L =

d

dt

(
q̇i
∂L

∂q̇i

)
+
∂L

∂t

where the summation over all coordinates i of all particles is implied. We get

d

dt

(
q̇i
∂L

∂q̇i
− L

)
= − ∂L

∂t
(3.104)

so, if L does not explicitly depend on time (≡ ∂L
∂t = 0), the Hamiltonian

H = q̇i
∂L

∂q̇i
− L (3.105)

is conserved.
If there are only time-independent potentials and time-independent constraints, the

Hamiltonian (3.105) is not only constant, but also the total energy. Indeed, the kinetic
energy T = 1

2

∑N
n=1mnṙ

2
n can be expressed in the generalized corresponds as

T =
N∑
n=1

mn

2

3N−k∑
i=1

∂xn
∂qi

q̇i

3N−k∑
j=1

∂xn
∂qj

q̇j =
3N−k∑
i=1

q̇i

3N−k∑
j=1

q̇j

N∑
n=1

mn

2

∂xn
∂qj

∂xn
∂qi

(3.106)

where we used Eq. (3.13) with ∂xi
∂t = 0

ẋi =

3N−k∑
n=1

∂xi
∂qn

q̇n +
∂xi
∂t

=

3N−k∑
n=1

∂xi
∂qn

q̇n (3.107)

(here k is a number of constraints). Let us define the symmetric matrix

mij ≡
3N∑
n=1

mn

2

∂xn
∂qi

∂xn
∂qj

, (3.108)

then the kinetic energy can be written as

T =
1

2

3N−k∑
i,j=1

mij q̇iq̇j (3.109)

Let us compare it to Hamiltonian (3.105). Since the potential energy does not depend on
velocities, we get

∂L

∂q̇i
=

∂T

∂q̇i
=

3N−k∑
j=1

mij q̇j (3.110)
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and therefore

H =

3N−k∑
i=1

q̇i
∂L

∂q̇i
− L =

3N−k∑
i,j=1

mij q̇iq̇j −
1

2

3N−k∑
i,j=1

mij q̇iq̇j + V (qi)

=
1

2

3N−k∑
i,j=1

mij q̇iq̇j + V (qi) = T + V (qi) = E (3.111)

When the constraints do depend on time, ther emay be the situation where Hamiltonian
(3.105) is conserved but not equal to the total energy.

3.7.4 Number of constants of motion

Consider an isolated system with n degrees of freedom. For isolates system the Lagrangian
does not depend on time and so the equations of motion do not involve explicit t-dependence.
Q: How many constants of motion are there?
A: In general, 2n− 1.

Proof: suppose we have solved equations of motion with the initial conditions q1(t0) =

c1, q2(t0) = c2, ...qn(t0) = cn, q̇1(t0) = cn+1, ...q̇n(t0) = c2n and the solution is

q1 = q1(t, c1, ...c2n), q2 = q2(t, c1, ...c2n), ...qn = qn(t, c1, ...c2n),

q̇1 = q̇1(t, c1, ...c2n), q̇2 = q̇2(t, c1, ...c2n), ...q̇n = q̇n(t, c1, ...c2n) (3.112)

Since the system is isolated, it is invariant under time translations so the constants ci can
be rearranged in such a way Ci = Ci(c1, ...c2n) that C2n = t0 so that

q1 = q1(t− t0, C1, ...C2n−1), q2 = q2(t− t0, C1, ...C2n−1), , ..., qn = qn(t− t0, C1, ...C2n−1), ,

q̇1 = q̇1(t− t0, C1, ...C2n−1), q̇2 = q̇2(t− t0, C1, ...C2n−1), ..., q̇n = q̇n(t− t0, C1, ...C2n−1)

(3.113)

Now we can solve one of these equations, say the last one

t− t0 = f(q̇n, C1, C2, ...C2n−1) (3.114)

and substitute the obtained t− t0 in the remaining 2n− 1 equations (3.113). We get

q1 = q1(f(q̇n; {Ci}), C1, ...C2n−1), ...qn−1 = qn−1(f(q̇n; {Ci}), C1, ...C2n−1), qn = qn(f(q̇n; {Ci}), C1, ...C2n−1),

q̇1 = q̇1(f(q̇n; {Ci}), C1, ...C2n−1), ...q̇n−1 = (f(q̇n; {Ci}), C1, ...C2n−1) (3.115)

At each time t we can solve this system of (2n-1) equations with (2n-1) unknown Ci to
get Ci = Fi

(
q1(t), ..qn(t), q̇1(t), ...q̇n(t)

)
. Since Ci are constants, the obtained expressions

Fi
(
q1(t), ..qn(t), q̇1(t), ...q̇n(t)

)
will not depend on time (≡ d

dtFi
(
q1(t), ..qn(t), q̇1(t), ...q̇n(t)

)
= 0).
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3.7.5 Example: particle in the potential V (r) = − γ
r .

The Lagrangian is
L =

m

2
ṙ2 − γ

r
(3.116)

Since L is time-independent (no constraints are present) the energy is conserved

E = H =
m

2
ṙ2 +

γ

r
= const (3.117)

The Lagrangian is invariant under rotations about any axis passing through the center
of the force so ~L = ~r × ~p is conserved. The energy plus 3 components of L give four
constants of motion. Moreover, there are three additional constants of motion given by the
components of Runge-Lenz vector

~A = ~p× ~L+mγr̂ (3.118)

Indeed,

d

dt

(
~p× ~L+mγ

~r

r

)
= ~̇p× ~L+mγ

~̇r

r
−mγ ~r

r2
ṙ = γ

~r

r3
× (~r ×m~̇r) + mγ

( ~̇r
r
− ~rṙ

r2

)
=

mγ

r3
[~r(~r · ~̇r)− ~̇rr2] +

mγ

r3
[~̇rr2 − ~rrṙ] = 0 (3.119)

where we’ve used formula

~a× (~b× ~c) = ~b(~a · ~c)− ~c(~a ·~b) (3.120)

and the fact that ~r · ~̇r = 1
2
d
dt~r

2 = 1
2
d
dtr

2 = rṙ.
Thus, it looks like we have 4 = 3 = 7 constants of motion in contradiction with our

theorem which gives 3× 2− 1 = 5 constants. In fact there is no contradiction since not all
of our 7 constants are independent; there are two relations among them. The first one is
trivial. Since ~a · (~a×~b) = 0

~L · ~A = ~L · (~p× ~L) +m
γ

r
(~L · ~r) = m

γ

r
~r · (~p× ~r) = 0 (3.121)

The second relation is less trivial

~A2 = (~p× ~L)2 +m2γ2 + 2mγr̂ · (~p× ~L)
~L⊥~p
= ~p2~L2 +m2γ2 + 2mγr̂ · (~p× ~L)

= ~p2~L2 +m2γ2 + 2mγ(r̂ × ~p) · ~L =
(
p2 +

2mγ

r

)
L2 +m2γ2 = 2mH +m2γ2 (3.122)

Thus, the number of independent constants of motion is 7− 5 = 2

Part X

3.8 Forces of constraints

Consider a system described by 3N Cartesian coordinates, k holonomic constraints, and
hence 3N − k degrees of freedom. We can find generalized 3N − k coordinates, express the
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Lagrangian in terms of these coordinates, and solve the resulting Euler-Lagrange equations.
However, this method will tell us nothing about the forces due to the constraints. To find
these forces, one needs the method of Lagrange multipliers outlined below.

Suppose we haveN particles with coordinates ~r1 = (x1, x2, x3), ~r2 = (x4, x5, x6),...~rN =

(x3N−2, x3N−1, x3N ) with k constraints

f1(x1, x2, ....x3N , t) = 0

f2(x1, x2, ....x3N , t) = 0

.

.

.

fk(x1, x2, ....x3N , t) = 0


k constraints, k ≤ 3N (3.123)

What we have done before is to solve the equations (3.123) and find the generalized coor-
dinates. However, sometimes it is difficult to solve these equations. Fortunately, there is a
trick which enables us to avoid the explicit solution of equations (3.123).

Method of Lagrange multipliers
Consider the system with 3N +k generalized coordinates described by the Lagrangian:

L̃(x1, ..., x3N , ẋ1, ..., ẋ3N ;λ1, ..., λk; t)

= L(x1, ..., x3N , ẋ1, ..., ẋ3N ; t) +
k∑
j=1

λkfk(x1, x2, ....x3N , t) (3.124)

where xi, ẋi are our 3N original coordinates and λ1, λ2, ..., λk are k additional coordinates
(called Lagrange multipliers).

Hamilton principle for the action

S̃ =

∫ t2

t1

dt L̃(x1, ..., x3N , ẋ1, ..., ẋ3N ;λ1, ..., λk; t) (3.125)

gives us δS̃ = 0 provided xi(t1) and xi(t2) are fixed. Considering variations of extremal
path x̄i(t) → x̄i(t) + δxi(t) and infinitesimal changes of parameters λ̄j → λ̄j + δλj we get
(cf. Eq. (3.66))

δS̃ =

∫ t2

t1

dt
[
L̃(x̄i + δxi, ¯̇xi + δẋi, λ̄j + δλj)− L̃(x̄i, ¯̇xi, λ̄j)

]
=

∫ t2

t1

dt

{
∂L

∂xi

∣∣∣
xi=x̄i

δxi(t) +
∂L̃

∂ẋi

∣∣∣
xi=x̄i

δẋ(t) +
k∑
j=1

∂L̃

∂λj
δλj

}
(3.126)

Integrating by parts the second term and using δxi(t1) = δxi(t2) = 0 we get

δS̃ ≡ I(ȳ + δy, ȳ′ + δy′, x)− I(y, y′, x) =

∫ t2

t1

dt
[
L̃(x̄i + δxi, ¯̇xi + δẋi, λ̄j + δλj)− L̃(x̄i, ¯̇xi, λ̄j)

]
=

∫ t2

t1

dt

{
δxi(t)

( ∂L̃
∂xi

∣∣∣
xi=x̄i

− d

dt

∂L̃

∂ẋi

∣∣∣
xi=x̄i

)
+

k∑
j=1

∂L̃

∂λj
δλj

}
(3.127)
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Thus, Hamilton principle δS̃ = 0 gives

∂L̃

∂xi

∣∣∣
xi=x̄i

=
d

dt

∂L̃

∂ẋi

∣∣∣
xi=x̄i

∂L̃

∂λj
= 0 (3.128)

Since ∂L̃
∂xi

∣∣∣
xi=x̄i

= ∂L
∂xi

∣∣∣
xi=x̄i

+
∑k

j=1 λj
∂f
∂xi

, ∂L̃
∂ẋi

∣∣∣
xi=x̄i

= ∂L
∂ẋi

∣∣∣
xi=x̄i

, and ∂L̃
∂λj

= fj(xi, t) we

get 6

d

dt

∂L

∂ẋi

∣∣∣
xi=x̄i

− ∂L

∂xi

∣∣∣
xi=x̄i

=
k∑
j=1

λj
∂fj
∂xi

∣∣∣
xi=x̄i

(3.129)

fj(x̄1, ..., x̄3N ; t) = 0, j = 1, 2, ...k (3.130)

Since L = T (xi, ẋi)− V (xi) we can rewrite Eq.(3.128) as

d

dt

∂T

∂ẋi

∣∣∣
xi=x̄i

− ∂T

∂xi

∣∣∣
xi=x̄i

= − ∂V

∂xi

∣∣∣
xi=x̄i

+
k∑
j=1

λj
∂fj
∂xi

∣∣∣
xi=x̄i

= Fi({x̄(t)}) +Ri({x̄(t)}, t)

(3.131)
where Fi are forces due to potential V (x1, ..x3N ) and

Rj ≡
k∑
j=1

λj
∂fj
∂xi

∣∣∣
xi=x̄i

(3.132)

are the forces exerted by the constraints. For example, if the kinetic term is T =
∑ mi

2 ẋ
2
i ,

the equation (3.131) reads

m¨̄xi = − ∂V

∂x̄i
+Ri (3.133)

from which it is clear that Ri are additional forces exerted by constraints. Note that in
order to find these forces one must solve the equations (3.129), but it is not necessary to
solve constraint equations (3.130).

3.8.1 Example

Consider block on the recline.
Constraint: z = x tanα

The Lagrangian (with multipliers) has the form

L̃ =
m

2
(ẋ2 + ż2)−mgz + λ(z − x tanα) (3.134)

6Note that we need to allow time dependence of Lagrange multipliers λj = λj(t), otherwise in Eq.
(3.128) we will have

∫ t2
t1
dt
∑k
j=1

∂L̃
∂λj

dλj = 0 with time-independent dλi and the only constraint that we will

be able to provide with consntant λ’s is
∑k
j=1 dλj

∫ t2
t1
dt ∂L̃
∂λj

= 0⇒
∫ t2
t1
dt ∂L̃
∂λj

=
∫ t2
t1
dtfj(x̄1, ..., x̄3N ; t) = 0

instead of fj(x̄1, ..., x̄3N ; t) = 0 at any time t.
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R

l

z

mg x

Figure 50. Block on the recline

∂L̃

∂x
= − λ tanα,

∂L̃

∂z
= −mg + λ,

∂L̃

∂λ
= z − x tanα

∂L̃

∂ẋ
= mẋ,

∂L̃

∂ż
= mż (3.135)

The Euler-Lagrange equations (3.129) take the form

mẍ = − λ tanα ⇒ Rx = − λ tanα

mz̈ = −mg + λ ⇒ Rz = λ

z = x tanα (3.136)

These are 3 equations for 3 unknowns x, z, and λ. Eliminating λ with the help of

λ = mz̈ +mg = mẍ tanα+mg = −λ tan2 α+mg

we get
λ = mg cos2 α (3.137)

Now let us check constraint forces

Rx = −mg sinα cosα

Rz = mg cos2 α (3.138)

in accordance with Fig. 50. Now let us find the solutions of equations of motion

ẍ = − g sinα cosα ⇒ x = x0 −
g

2
t2 sinα cosα

z̈ = − g + g cos2 α = g sin2 α ⇒ z = z0 −
g

2
t2 sin2 α (3.139)

Note that work done by the reaction force vanishes

dW = ~R · d~l = Rxdx+Rzdz = −mg sinα cosαdx+mg cos2 αdx = 0 (3.140)

Alternatively, we could have introduced the generalized coordinate l so the Lagrangian
would be

L =
m

2
(ẋ2 + ż2)−mgz =

m

2
l̇2 −mgl sinα (3.141)
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The Euler-Lagrange equation is

d

dt

∂L

∂l̇
=

∂L

∂l
⇔ ml̈ = −mg sinα (3.142)

and the solution is
l = l0 −

1

2
gt2 sinα (3.143)

which is the same as Eq. (3.139) since√
(x− x0)2 + (z − z0)2 =

1

2
gt2 sinα = |l − l0| (3.144)
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Part XI

4 Small oscillations

4.0.2 Lagrangian for small oscillations: a set of coupled oscillators

In this section we consider the motion of the system undergoing small displacements from
a stable equilibrium position. Consider a system of n degrees of freedom described by the
generalized coordinates q1, q2, ....qn:

x1 = x1(q1, q2, ....qn)

x2 = x2(q1, q2, ....qn)

.

.

.

x3N = x3N (q1, q2, ....qn)

n ≤ 3N, no time dependence (4.1)

where xi are Cartesian coordinates.The Lagrangian in Cartesian coordinates is

L =
3N∑
i=1

mi

2
ẋ2
i − V (x1, ...x3N ) (4.2)

In terms of generalized coordinates ẋi =
∑n

λ=1
∂xi
∂qλ

q̇λ so

L =

3N∑
i=1

mi

2

n∑
λ=1

∂xi
∂qλ

q̇λ

n∑
σ=1

∂xi
∂qσ

q̇σ − V (q1, ...qn)

=

n∑
λ,σ=1

mλσ

2
q̇λq̇σ − V (q1, ...qn) (4.3)

where

mλσ = mλσ(q1, ...qn) =

3N∑
i=1

mi
∂xi
∂qλ

∂xi
∂qσ

(4.4)

At any equilibrium {q0
σ} (stable or unstable) the generalized force vanishes

Qσ = − ∂V

∂qσ

∣∣∣
qσ=q0

σ

= 0 (4.5)

For a system with just one degree of freedom, the condition of a stable equilibrium requires
∂2V (q)
∂q2

∣∣∣
q=q0

> 0, see Fig. 51

unstablestable unstable

Figure 51. Stable vs unstable equilibria
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Suppose q0
σ, σ = 1, 2, ..n is a stable equilibrium. We would like to study small displace-

ments around {q0
σ}. To this end, we introduce new generalized coordinates ησ

qσ = q0
σ + ησ (4.6)

and assume that |ησ| are small. If |ησ| are small, we can expand the potential in Taylor
series

V (q1, ...qn) = V (q0
1, ...q

0
n) +

1

2

∑
λ,σ

vλ,σηλησ + O(η3), vλσ ≡
( ∂2V

∂qλ∂qσ

)∣∣∣
q=q0

(4.7)

Similarly

T =

n∑
λ,σ=1

mλσ

2
q̇λq̇σ =

n∑
λ,σ=1

mλσ

2
η̇λη̇σ + O(η3) (4.8)

and the Lagrangian takes the form

L = T − V = V (q0
1, ...q

0
n) +

n∑
λ,σ=1

mλσ

2
η̇λη̇σ −

1

2

∑
λ,σ

vλσηλησ + O(η3) (4.9)

(the overall additive constant V (q0
1, ...q

0
n) can be omitted).

Note that the coefficients vλσ and mλσ are real and symmetric in λ↔ σ. We can define
real symmetric matrices

m =



m11 m12 ... m1n

m21 m22 ... m2n

.

.

.

mn1 mn2 ... mnn


and v =



v11 v12 ... v1n

v21 v22 ... v2n

.

.

.

vn1 vn2 ... vnn


(4.10)

In the matrix form the Lagrangian (4.9) reads

L =
1

2
η̇Tmη̇ − 1

2
ηTvη (4.11)

where η

η =



η1

η2

.

.

.

ηn


and η̇ =



η̇1

η̇2

.

.

.

η̇n


(4.12)

The Euler-Lagrange equations are

d

dt

∂L

∂η̇λ
=

∂L

∂ηλ
⇒

n∑
σ=1

mλση̈σ = −
n∑
σ=1

vλσησ (4.13)

This is a set of coupled second-order differential equations. The solution is specified by
initial conditions ησ(t = 0) and η̇σ(t = 0), σ = 1, 2, ...n.
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4.0.3 Eigenvalues and eigenvectors

For one degree of freedom the set (4.13) reduces to one harmonic-oscillator equation

η̈ = − vη (4.14)

with the solution

η(t) = ρ cos(ωt+ φ), ω =

√
v

m
(4.15)

with ρ and φ fixed by the initial conditions.
Let us try similar ansatz

ην(t) = ρν cos(ωt+ φ), ν = 1, 2, ...n (4.16)

for n degrees of freedom. Substituting this ansatz into Eq. (4.13) we get∑
σ

mλσω
2ρσ cos(ωt+ φ) =

∑
σ

vλσρσ cos(ωt+ φ) (4.17)

⇒ ∑
σ

(vλσ −mλσω
2)ρσ = 0, λ = 1, 2, ...n (4.18)

or, in matrix notations,

(v − ω2m)ρ = 0 ⇔ (m−1v − ω2)ρ = 0 (4.19)

This is an eigenvalue problem which has solution only if

det |m−1v − ω2| = 0 ⇔ det |v − ω2m| = 0 (4.20)

The determinant in the r.h.s. of Eq. (4.20) is a polynomial in ω2 of order n. Any such
polynomial has n roots ω2

s , s = 1, ..., n (some of the roots may coincide). Let us prove
that since matrices m and v are symmetric and real, all roots ω2

s are real.
Proof: take

η†(v − ω2m)η = 0 ⇔ ω2 =
η†vη

η†mη
(4.21)

where η† ≡ ηT∗. The eigenvectors η may be imaginary, but η†vη is real:

(η†vη)∗ =
(
ηT∗vη

)∗
=
∑
λ,σ

(η∗λvλσησ)∗ =
∑
λ,σ

ηλvλση
∗
σ =

∑
λ,σ

η∗σvσληλ = ηT∗vη = η†vη

(4.22)
Similarly, m is symmetric and real, therefore ηT∗mη is also real and so is ω2

s given by the
ratio (4.21). We will consider the case when all ω2

s are positive 7.
For next step we will need a formula

(χ†Aξ)∗ =
(∑
λ,σ

χ∗λAλσξσ
)∗

=
∑
λ,σ

χλA
∗
λσξ
∗
σ =

∑
λ,σ

ξ∗σA
†
σλχλ = ξ†A†χ (4.23)

7 If some ω2
s are positive and some negative, we have an unstable equilibrium of the saddle-point type
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where A†σλ ≡ A
∗
λσ. Note that for the symmetric real matrix A† = A.

Let us prove now that the eigenvectors corresponding to different eigenvalues are or-
thogonal with weightm. Consider two eigenvectors ηs and ηt corresponding to two different
eigenvalues ω2

s and ω2
t

(v − ω2
sm)η(s) = 0, (v − ω2

tm)η(t) = 0, (4.24)

Let us multiply the first equation by η(t)† and second equation by η(s)†

η(t)†(v − ω2
sm)η(s) = 0, η(s)†(v − ω2

tm)η(t) = 0, (4.25)

The complex conjugate of the first equation is

(η(t)†(v − ω2
sm)η(s)

)∗
= η(s)†(v − ω2

sm)η(t)

(see Eq. (4.23). Now, subtracting this equation from the second equation in (4.25) we get

η(t)†(ω2
t − ω2

s)mη
(s) = 0 (4.26)

and therefore
η(t)†mη(s) = 0 if ω2

s 6= ω2
t (4.27)

Suppose now that all the eigenvalues are different 8. The corresponding eigenvectors are
orthogonal. Moreover, they can be normalized by the condition

η(t)†mη(s) = δst (4.28)

Indeed, since the homogeneous linear system (4.18) has zero determinant, only n− 1 equa-
tions are linearly independent. For example, we can choose first (n-1) equations

(v11 − ω2
sm11)ρs1 + ... + (v1,n−1 − ω2

sm1,n−1)ρsn−1 + (v1n − ω2
sm1n)ρsn = 0

(v21 − ω2
sm21)ρs1 + ... + (v2,n−1 − ω2

sm2,n−1)ρsn−1 + (v2n − ω2
sm2n)ρsn = 0

.

.

.

(vn−1,1 − ω2
smn−1,1)ρs1 + ... + (vn−1,,n−1 − ω2

smn−1,n−1)ρsn−1 + (vn−1,n − ω2
smn−1,n)ρsn = 0

(4.29)
and rewrite them as

(v11 − ω2
sm11)

ρs1
ρsn

+ ... + (v1,n−1 − ω2
sm1,n−1)

ρsn−1

ρsn
= ω2

sm1n − v1n

(v21 − ω2
sm21)

ρs1
ρsn

+ ... + (v2,n−1 − ω2
sm2,n−1)

ρsn−1

ρsn
= ω2

sm2n − v2n

.

.

.

(vn−1,1 − ω2
smn−1,1)

ρs1
ρsn

+ ... + (vn−1,,n−1 − ω2
smn−1,n−1)

ρsn−1

ρsn
= ω2

smn−1,n − vn−1,n

(4.30)
8For degenerate eigenvalues one can get a set of orthonormal eigenvectors using Gram-Schmidt procedure:

given the set of linearly independent vectors vn, choose v̂1 = v1
|v1|

, v̄2 = v2− v̂1(v̂1 ·v2) and v̂2 = v̄2
|v̄2|

,
v̄3 = v3 − v̂1(v̂1 · v3) − v̂2(v̂2 · v3) and v̂3 = v̄3

|v̄3|
, etc. In general, v̄n = vn −

∑n−1
k=1 v̂k(v̂k · vn) and

v̂n = v̄n
|v̄n| . It is easy to see now that the set v̂n is orthonormal.
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This is n− 1 equations which determine n− 1 ratios ρsk
ρsn

and therefore all ρsk are determined
only up to an overall factor. We can choose this factor in such a way that Eq. (4.28) is
satisfied. Moreover, all coefficients in the system (4.30) are real which means that the ratios
ρsk
ρsn

are real, too. The complexity can enter the solutions ηs only as an overall factor. Thus,
we can always write down the solution of the equation (v − ω2

sm)ηs = 0 in the form

ηs = Cse
iφsρs (4.31)

where ρs are real orthonormal vectors

ρ(t)†mρ(s) = δst (4.32)

4.0.4 General solution and initial conditions

To summarize, we have found a set of n independent solutions

ρ(s) cos(ωst+ φs) =



ρ
(s)
1

ρ
(s)
2

.

.

.

ρ
(s)
n


cos(ωst+ φs), s = 1, 2, ...n (4.33)

with ρ(s) normalized according to

ρ(t)†mρ(s) = δst (4.34)

The general solution of the equation (v − ω2
sm)ηs = 0 can be written as

η(t) =
n∑
s=1

Csρ
(s) cos(ωst+ φs) (4.35)

where real constants Cs are determined by the initial conditions. To find Cs and φs, consider

η(0) =

n∑
s=1

Csρ
(s) cosφs ⇒ ρ(r)†mη(0) = Cr cosφr

η̇(0) = −
n∑
s=1

Csωsρ
(s) sinφs ⇒ ρ(r)†mη̇(0) = − Crωr sinφr (4.36)

and therefore

tanφr = − 1

ωr

ρ(r)†mη̇(0)

ρ(r)†mη(0)

C2
r =

[
ρ(r)†mη(0)

]2
+

1

ω2
r

[
ρ(r)†mη̇(0)

]2 (4.37)

The formulas (4.35)-(4.37) determine the solution of Euler-Lagrange equation (4.13).
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4.1 Normal modes

4.1.1 Modal matrix

It is convenient to define the modal matrix

Aµν ≡ ρ (ν)
µ =



ρ
(1)
1 ρ

(2)
1 ... ρ

(n)
1

ρ
(2)
1 ρ

(2)
2 ... ρ

(n)
2

.

.

.

ρ
(1)
n ρ

(2)
n ... ρ

(n)
n


(4.38)

The first (row) index denotes components of the vector ρ(i) and the second (column) index
labels different eigenvectors.

Property: A diagonalizes both m and v.
Proof:

(ATmA)µν =
∑
λρ

(AT )µλmλσAρν =
∑
λσ

AλµmλσAσν =
∑
λρ

ρ
(µ)
λ mλσρ

(ν)
σ = ρ(µ)Tmρ(ν) = δµν

(ATvA)µν =
∑
λρ

(AT )µλvλσAρν =
∑
λσ

AλµvλσAσν =
∑
λρ

ρ
(µ)
λ vλσρ

(ν)
σ = ρ(µ)Tvρ(ν) = ω2

µδµν

(4.39)

where we used Eq. (4.34) and Eq. (4.19) so that (v − ω2
sm)ρs = 0 ⇒ ρ(s)Tvρ(s) =

ω2
sρ

(µ)Tmρ(ν).
In matrix notations Eq. (4.39) reads

ATmA = 1, ATvA =



ω2
1 0 ... 0

0 ω2
2 ... 0

.

.

.

0 0 ... ω2
n


≡ ω2 (4.40)

4.1.2 Normal coordinates

Let us introduce a new set of generalized coordinates ξ(t) defined by

ξ(t) ≡ mATη(t) ⇔ η(t) = Aξ(t) (4.41)

In terms of these new coordinates the Lagrangian (4.11) reduces to the sum of uncoupled
oscillators. Indeed,

L =
1

2
η̇Tmη̇ − 1

2
ηTvη =

1

2
ξ̇TATmAξ̇ − 1

2
ξTATvAξ =

1

2
ξ̇T ξ̇ − ξT 1

2
ω2ξ =

n∑
λ=1

(
ξ̇2
λ − ω2

λξ
2
λ)

=
∑
λ

Lλ, Lλ =
1

2
ξ̇2
λ −

1

2
ω2
λξ

2
λ (4.42)
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The normal modes of Lagrangians Lσ are

ξλ = Cλ cos(ωλt+ φλ) (4.43)

and the solutions of the original Euler-Lagrange equations (4.13) are

ηµ(t) =
n∑
ν=1

Aµνξν(t) =
n∑
ν=1

ρ(ν)
µ Cν cos(ωνt+ φν) (4.44)

where the constants Cν and φν are determined by initial conditions, see Eq. (4.37). Note
that the normal coordinates (4.42) are the coefficients of expansion of solution η(t) in
eigenvectors ρ(ν)(t) in Eq. (4.44).

Part XII

4.2 Example 1: coupled pendulums

l
l

1

0

2

m

mm

y

xx x  +d0

Figure 52. Coupled pendulums

T =
m

2
l2θ̇2

1 +
m

2
l2θ̇2

2

V = −mgy1 −mgy2 +
k

2
[(x2 − x1 − d)2 + (y2 − y1)2] (4.45)

where

x1 = x0 + l sin θ1, y1 = l cos θ1

x2 = x0 + d+ l sin θ2, y2 = l cos θ2 (4.46)

For small displacements ξi = θi we get

x1 ' x0 + lθ1, y1 ' l − l

2
θ2

1

x2 ' x0 + d+ lθ2, y2 ' l − l

2
θ2

2 (4.47)
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so
V ' − 2mgl − m

2
gl(θ2

1 + θ2
2) +

k

2
l2(θ1 − θ2)2 + O(θ4) (4.48)

The Lagrangian in generalized coordinates ξi = θi takes the form

L =
m

2
l2(η̇2

1 + η̇2
2)− m

2
gl(η2

1 + η2
2)− kl2

2
(η1 − η2)2 (4.49)

where we have omitted the overall constant −2mgl. The matricesm and v are 2×2 matrices

m =

(
ml2 0

0 ml2

)
, v =

(
mgl + kl2 −kl2

−kl2 mgl + kl2

)
(4.50)

and the vectors η are two-dimensional

η =
( η1

η2

)
, η̇ =

( η̇1

η̇2

)
(4.51)

In matrix notations the Lagrangian (4.49) has the Eq. (4.11) form:

L =
1

2
η̇Tmη̇ − 1

2
ηTvη (4.52)

To get the eigenvalues we must solve the characteristic equation det |v − ω2m| = 0

det |v − ω2m| = 0 ⇔ det

∣∣∣∣∣mgl + kl2 − ω2ml2 −kl2

−kl2 mgl + kl2 − ω2ml2

∣∣∣∣∣ = 0 (4.53)

which gives

(mgl + kl2 − ω2ml2)2 − k2l4 = 0 ⇒ mgl + kl2 − ω2ml2 = ± kl2 (4.54)

Thus, the two possible eigenfrequencies are

ω2
1 =

g

l
, ω2

2 =
g

l
+

2k

m
(4.55)

let us now determine eigenvector for ω1. The equation is Eq. (4.57)

(v−ω2
1m)ρ(1) = 0 ⇔

(
mgl + kl2 − ω2ml2 −kl2

−kl2 mgl + kl2 − ω2ml2

)(
ρ

(1)
1

ρ
(1)
2

)
= 0 (4.56)

which gives

(mgl + kl2 − ω2ml2)ρ
(1)
1 − kl

2ρ
(1)
2 = 0

−kl2ρ(1)
1 + (mgl + kl2 − ω2ml2)ρ

(1)
2 = 0 (4.57)

Both equations are satisfied if ρ(1)
1 = ρ

(1)
2 so

ρ(1) = c1

( 1

1

)
(4.58)
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This is the mode when two pendulums are in phase.
Similarly, one obtains

ρ(2) = c2

( 1

−1

)
(4.59)

This is the mode when the two pendulums oscillate in opposite phase.
To find ci we use the equation (4.34) ρ(i)†mρ(i) = 1. For i = 1 one gets

c2
1(1, 1)

(
ml2 0

0 mgl2

)(
1

1

)
= 2ml2c2

1 = 1 ⇒ c1 =
1

l
√

2m
(4.60)

Similarly

c2
2 (1,−1)

(
ml2 0

0 mgl2

)(
1

−1

)
= 2ml2c2

2 = 1 ⇒ c2 =
1

l
√

2m
= c1 (4.61)

Let us find now modal matrix and normal coordinates

A =
1

l
√

2m

(
1 1

1 −1

)
(4.62)

The normal modes are

ξ(t) ≡ mATη(t) =

(
ml2 0

0 ml2

)
1

l
√

2m

(
1 1

1 −1

)(
η1

η2

)
= l

√
m/2

(
η1 + η2

η1 − η2

)
(4.63)

The Lagrangian (4.49) in terms of normal modes reads (see Eq. (4.42))

1

2
ξ̇T ξ̇ − ξT 1

2
ω2ξ =

1

2

∑
λ=1,2

(ξ̇2
λ − ω2

λξ
2
λ) =

ξ̇2
1

2
− ω2

1

2
ξ2

1 +
ξ̇2

2

2
− ω2

2

2
ξ2

2 (4.64)

Check:

ξ̇2
1

2
− ω2

1

2
ξ2

1 +
ξ̇2

2

2
− ω2

2

2
ξ2

2

=
ml2

4
(η̇1 + η̇2)2 − gml

4
(η1 + η2)2 +

ml2

4
(η̇1 − η̇2)2 −

(gml
4

+
kl2

2

)
(η1 − η2)2

=
ml2

2
(η̇2

1 + η̇2
2)− gml

2
(η2

1 + η2
2)− kl2

2
(η1 − η2)2 = Eq. (4.49) (4.65)

In terms of normal coordinates, the solutions of two uncoupled equations are

ξi(t) = Ci cos(ωit+ φi) (4.66)

and therefore
ηi(t) =

∑
j

Aijξj(t) =
∑

ρ
(j)
i Cj cos(ωjt+ φj) (4.67)

or, in explicit form,

η1(t) =
1

l
√

2m
(ξ1(t) + ξ2(t)), η2(t) =

1

l
√

2m
(ξ1(t)− ξ2(t)) (4.68)
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As we discussed above, Ci and φi are determined by the initial conditions. For example,
let us take η1(0) = α, η2(0) = η̇1(0) = η̇2(0) = 0. Using Eq. (4.64) we get

ξ1(0) = ξ2(0) = l

√
m

2
α, ξ̇1(0) = ξ̇2(0) = 0 (4.69)

and therefore

ξ1(t) = l

√
m

2
α cosω1t, ξ2(t) = l

√
m

2
α cosω2t (4.70)

From Eq. (4.68) we get

η1(t) =
α

2
(cosω1t+ cosω2t)

η1(t) =
α

2
(cosω1t− cosω2t) (4.71)

Using cos a+ cos b = 2 cos a+b
2 cos a−b2 we can rewrite this in a different way

η1(t) = α
(

cos
ω2 − ω1

2
t
)(

cos
ω2 + ω1

2
t
)

η1(t) = α
(

sin
ω2 − ω1

2
t
)(

sin
ω2 + ω1

2
t
)

(4.72)

Let us consider the case of weak coupling between the oscillators

ω2 − ω1 � ω2 + ω1 ⇔ k

m
� g

l
(4.73)

The formula (4.72) describes rapid oscillations with frequency ω2+ω1
2 and slowly fluctuating

amplitude ∼ cos ω2−ω1
2 t.

4.3 Example 2: longitudinal waves in one-dimensional crystal

a 2a Naja

j1 N

x

Figure 53. A model for one-dimensional crystal: a set of springs

a = x0
j+1 − x0

j - length of spring when unstretched, ηi ≡ xj − x0
j - displacement from

equilibrium
T =

m

2
(ẋ2

1 + ẋ2
2 + ...+ ẋ2

N ) (4.74)

V =
k

2
(x1 − a)2 +

k

2
(x2 − x1 − a)2 + ...+

k

2
(xN − xN−1 − a)2 +

k

2
(Na+ a− xN )2

=
k

2

[
η2

1 + η2
N +

N∑
i=2

(ηi − ηi−1)2
]

(4.75)
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It is convenient to define η0 ≡ 0 ≡ ηN+1, then

L = T − V =
m

2

N+1∑
i=1

η̇2
i −

k

2

N+1∑
i=1

(ηi − ηi−1)2 (4.76)

Let us find Euler-Lagrange equations

∂L

∂η̇i
= mη̇i

∂L

∂ηi
= − k(ηi − ηi−1) + k(ηi+1 − ηi) = − k(2ηi − ηi+1 − ηi−1) (4.77)

and therefore the equations of motion are

mη̈i = − k(2ηi − ηi+1 − ηi−1) (4.78)

which describes “nearest-neighbor” interaction between oscillators.
Define

η =



η1

η2

.

.

.

ηN


(4.79)

The matrix m is trivial

m = m



1 0 0 ... 0 0

0 1 0 ... 0 0

.

.

0 0 0 ... 1 0

0 0 0 ... 0 1


= m{1} (4.80)

but the matrix v is not

v = k



2 −1 0 0 0 .. 0 0

−1 2 −1 0 0 ... 0 0

0 −1 2 −1 0 ... 0 0

0 0 −1 2 −1 ... 0 0

.

.

.

0 0 0 0 0 ... 2 −1

0 0 0 0 0 ... −1 2


(4.81)

The Lagrangian in the matrix form (4.52) is

L =
1

2
η̇Tmη̇ − 1

2
ηTvη (4.82)
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Part XIII

4.3.1 Eigenvalues

To find normal coordinates we need to solve the eigenvalue equation det |v − ω2m| = 0.
It is convenient to define constant λ ≡ m

k ω
2 − 2, then

ω2m− v = k



λ 1 0 0 0 .. 0 0

1 λ 1 0 0 ... 0 0

0 1 λ 1 0 ... 0 0

0 0 1 λ 1 ... 0 0

.

.

.

0 0 0 0 0 ... λ 1

0 0 0 0 0 ... 1 λ


(4.83)

To find the determinant of this matrix (up to factor k) we define

D(N)(λ) = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 1 0 0 0 .. 0 0

1 λ 1 0 0 ... 0 0

0 1 λ 1 0 ... 0 0

0 0 1 λ 1 ... 0 0

.

.

.

0 0 0 0 0 ... λ 1

0 0 0 0 0 ... 1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



N (4.84)

and find the recursion relation between D(N)(λ) and D(N−1)(λ)

D(N)(λ) = λ det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 1 0 0 0 .. 0 0

1 λ 1 0 0 ... 0 0

0 1 λ 1 0 ... 0 0

0 0 1 λ 1 ... 0 0

.

.

.

0 0 0 0 0 ... λ 1

0 0 0 0 0 ... 1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸

−det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 .. 0 0

1 λ 1 0 0 ... 0 0

0 1 λ 1 0 ... 0 0

0 0 1 λ 1 ... 0 0

.

.

.

0 0 0 0 0 ... λ 1

0 0 0 0 0 ... 1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
N − 1 N − 1
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= λ det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 1 0 0 0 ... 0 0

1 λ 1 0 0 ... 0 0

0 1 λ 1 0 ... 0 0

0 0 1 λ 1 ... 0 0

.

.

.

0 0 0 0 0 ... λ 1

0 0 0 0 0 ... 1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸

−det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 1 0 0 ... 0 0

1 λ 1 0 ... 0 0

0 1 λ 1 ... 0 0

.

.

.

0 0 0 0 ... λ 1

0 0 0 0 ... 1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸

= λD(N−1)(λ)−D(N−2)(λ)

(4.85)
N − 1 N − 2

We get the recursion relation

D(N)(λ) = λD(N−1)(λ)−D(N−2)(λ) (4.86)

The first two terms are D(1)(λ) = λ and

D(2)(λ) = det

∣∣∣∣ λ 1

1 λ

∣∣∣∣ = λ2 − 1 (4.87)

so

D(3)(λ) = λ(λ2 − 1)− λ = λ3 − 2λ,

D(4)(λ) = λ4 − 3λ2 + 1,

D(5)(λ) = λ5 − 4λ3 + 3λ,

D(6)(λ) = ... (4.88)

Ing. guess:
D(N)(λ) = A(λ)eiNB(λ) (4.89)

With this ansatz we obtain

1 = λe−iB(λ) − e−2iB(λ) ⇔ cosB(λ) =
λ

2
(4.90)

so we must have |λ/2| ≤ 1, otherwise there will be no solution. The equation cosB = λ
2

has two solutions
B(λ) = ± ψ, ψ

def≡ arccos
λ

2
(4.91)

The solution for D(N)(λ) should be some superposition of two solutions (4.89) with B(λ)

given by Eq. (4.92):
D(N)(λ) = A+(λ)eiNψ +A−(λ)e−iNψ (4.92)

Since constants A±(λ) do not depend on N we can figure them out from the first two
determinants

D(1)(λ) = λ = 2 cosψ = A+e
iψ +A−e

−iψ

D(2)(λ) = λ2 − 1 = 4 cos2 ψ − 1 = A+e
2iψ +A−e

−2iψ (4.93)
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Solution of the system of two equations with two unknowns

A+e
iψ +A−e

−iψ = 2 cosψ

A+e
2iψ +A−e

−2iψ = 4 cos2 ψ − 1 (4.94)

gives

A+ = − i

2

eiψ

sinψ
, A− =

i

2

e−iψ

sinψ
= A∗+ (4.95)

and therefore

D(N)(λ) = − i

2

ei(N+1)ψ

sinψ
+

i

2

e−i(N+1)ψ

sinψ
=

sin(N + 1)ψ

sinψ
, ψ = arccos

λ

2
(4.96)

Next, we need to find zeros of our determinant D(N)(λ). There are N zeros:

(N + 1)ψn = πm = π(N + 1− n), m (and n) = 1, 2, ...N (4.97)

so the corresponding eigenfrequencies are
m

k
ω2
n − 2 = λn = 2 cosψn ⇒ ω2

n = 4ω2
0 cos2 ψn

2
, ω2

0 =
k

m
(4.98)

or, in the explicit form

ωn = 2ω0 sin
( πn

2(N + 1)

)
, λn = − 2 cos

πn

N + 1
(4.99)

4.3.2 Eigenvectors

The eigenvectors are the solutions of the equation (4.19)

(v − ω2m)ρ = 0 ⇔



λn 1 0 0 0 .. 0 0

1 λn 1 0 0 ... 0 0

0 1 λn 1 0 ... 0 0

0 0 1 λn 1 ... 0 0

.

.

.

0 0 0 0 0 ... λn 1

0 0 0 0 0 ... 1 λn





ρ
(n)
1

ρ
(n)
2

ρ
(n)
3

ρ
(n)
4

.

.

.

ρ
(n)
N−1

ρ
(n)
N


= 0 (4.100)

We get a set of equations

λnρ
(n)
1 + ρ

(n)
2 = 0

ρ
(n)
1 + λnρ

(n)
2 + ρ

(n)
3 = 0

ρ
(n)
2 + λnρ

(n)
3 + ρ

(n)
4 = 0

.

.

.

ρ
(n)
N−2 + λnρ

(n)
N−1 + ρ

(n)
N = 0

ρ
(n)
N−1 + λnρ

(n)
N = 0 (4.101)
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which is not easy to solve.
A trick: go back to Eq. (4.78) for η’s

η̈i = − ω2
0(2ηi − ηi+1 − ηi−1), ω2

0 =
k

m
(4.102)

and try the “traveling wave” ansatz

ηi = <
(
Aeiqx

0
i−iωt

)
(4.103)

where x0
i is the equilibrium position of it.h mass Since the equations (4.102) are linear, we

can try to find complex solution of the form

ηi = Aeiqx
0
i−iωt (4.104)

and take the real part in the end of the day.
Substituting the ansatz Eq. (4.104) to the equation of motion (4.102) we obtain

−ω2Aeiqx
0
i−iωt + ω2

0e
−iωt[2e−iqx0

i − e−iqx0
i−1 − e−iqx0

i+1
]

⇔ ω2 = ω2
0

[
2− eqi(x0

i−1−x0
i ) − eiq(x0

i+1−x0
i )
]

= 4ω2
0 sin2 qa

2
(4.105)

so we get the “dispersion relation”

ω2 = 4ω2
0 sin2 qa

2
(4.106)

Note that the dispersion relation is even in q so the solution of Eq. (4.102) will be a
superposition of left-moving and right-moving traveling waves:

ηi(t) = A+e
iqx0

i−iωt +A−e
−iqx0

i−iωt (4.107)

Next, we need to satisfy “fixed end” boundary conditions

η0(t) = A+e
−iωt +A−e

−iωt = 0 ⇒ A+ = −A− (4.108)

ηN+1(t) = A+e
iqa(N+1)−iωt +A−e

−iqa(N+1)−iωt = 2iA+e
−iωt sin qa(N + 1) = 0

which means

qa(N + 1) = πn ⇔ qn =
πn

a(N + 1)
, n = 1, 2, ...N (4.109)

which is Eq. (4.99). Next, from dispersion relation (4.106) we get

ωn = 2ω0 sin
πn

2(N + 1)
(4.110)

so Eq. (4.107) turns to

ηj(t) = 2iA+e
−iωnt sin qnx

0
j = Be−iωnt−iφ sin qnaj (4.111)

where we have redefined 2iA+ = Be−iφ (with real B and φ).
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The general solution of Eq. (4.102) is a sum of solutions (4.111) with arbitrary coeffi-
cients

ηj(t) = <
{ N∑
n=1

Bne
−iωnt−iφn sin qnaj

}
=

N∑
n=1

Bn cos(ωnt+ φn) sin qnaj (4.112)

Now we can return to the system (4.101) and check that

ρ
(n)
j = αn sin qnaj (4.113)

is a wanted solution corresponding to eigenvalue ωn. Indeed, for 1 < k < N we have

ρ
(n)
k−1 + λnρ

(n)
k + ρ

(n)
k+1 = αn

(
sin qna(k − 1) + λn sin qnak + sin qna(k + 1)

)
= αn

(
2 sin qnak cos qna− 2 cos

πn

N + 1
sin qnak

)
= 0 (4.114)

(recall that qn = πn
a(N+1)) while for the endpoints

λnρ
(n)
1 + ρ

(n)
2 = αn

(
λn sin qna+ sin 2qna

)
= αn

(
2 sin qna cos qna− 2 cos

π

N + 1
sin qnak

)
= 0

ρ
(n)
N−1 + λnρ

(n)
N = αn

(
sin 2qna(N − 1)− 2 cos

π

N + 1
sin qnaN

)
= 0 (4.115)

The constants αn can be found from the normalization condition (4.34)

ρ(n)†mρ(n) = 1 = m

N∑
j=1

α2
n sin2 qnaj ⇒ α2

n =
m−1∑N

j=1 sin2 πn
2(N+1)j

(4.116)

The sum in the denominator can be simplified as:

N∑
j=1

sin2 ψj =
1

2

N∑
j=1

(
1− cos 2ψj

)
=

1

4

N∑
j=1

(
2− e2iψj − e−2iψj

)
=

N

2
+

1

2
− 1

4

N∑
j=0

[
(e2iψ)n + (e−2iψ)n

]
=

N + 1

2
− e2iψ(N+1) − 1

4(e2iψ − 1)
− e−2iψ(N+1) − 1

4(e−2iψ − 1)
(4.117)

In our case ψ = πn
2(N+1) so e±2iψ(N+1) = 1 and therefore

N∑
j=1

sin2 πn

2(N + 1)
j =

N + 1

2
⇒ α2

n =
2

m(N + 1)
(4.118)

Thus, the orthonormal set of normal modes is given by Eq. (4.113) with normalization
(4.118)

ρ
(n)
j =

√
2

m(N + 1)
sin

πjn

(N + 1)
(4.119)

and the general solution of Eq. (4.113) can be represented as

ηj(t) =

N∑
n=1

Cn cos(ωnt+ φ)ρ
(n)
j (4.120)
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4.4 Example 2a: transverse waves

Consider N identical point masses equally spaced on a stretched massless string with uni-
form string tension τ .

We will study transverse oscillations in xy plane.

j

x j 1 x j x j+1

y j 1
y j y j+1

a

m

x

y

x

Figure 54. Transverse oscillations

Equation of motion of mass m

mÿ = τ sin θ − τ sinφ (4.121)

We assume that angles are small so sin θ ' tan θ ' yi−yi−1

xi−xi−1
and sinφ ' tanφ ' yi+1−yi

xi+1−xi
and the equation of motion (4.120) turns to

mÿj =
τ

a
(yj+1 − 2yj + yj−1), j = 1, 2, ...N, y0 = yN+1 = 0 (4.122)

This system is governed by the same equation (4.102) as the one-dimensional crystal. The
solution is still given by Eq. (4.120)but now it describes transverse oscillations:

yj(t) =

N∑
n=1

Cn cos(ωnt+ φ)ρ
(n)
j (4.123)

where eigenvalues ωn and eigenvectors ρ(n)
j are given by Eqs. (4.110) and (4.119)

ωn = 2

√
τ

ma
sin

πn

2(N + 1)
, ρ

(n)
j =

√
2

m(N + 1)
sin

πjn

(N + 1)
(4.124)

Let us introduce
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• L = (N + 1)a - length of the string

• c =
√

τa
m - characteristic speed of a string

In these terms
ωn = 2

c

a
sin

πna

2L
, (4.125)

The corresponding wavelength is

λn =
2π

kn
=

2π

πn/L
= 2

L

n
(4.126)

Low frequency modes with n� N correspond to long wavelengths ∼ L and high-frequency
modes have wavelength of the order of “lattice spacing” a.

n� N ωn = πn
c

L
⇒ ωmin =

πc

L
, λmax = 2L

n→ N ωn → ωmax = 2
c

a
, λmin = 2a (4.127)

The snapshot (form at a fixed time) of n-th mode of the string

y(n)(y, t) = Cn cos(ωnt+ φ)ρ
(n)
j ≡ α(t)ρ

(n)
j = A(t) sin

πjna

L
(4.128)

is a sinusoid with n− 1 knots.
The normal mode amplitudes are propagating wave forms generated by the envelope

of the displacements of the particles.

4.5 Continuum limit: non-relativistic string

Continuum limit: N →∞, a→ 0 such that L = NA = fixed. In this limit

yj(t) = y(ja, t) → y(x, t)

where x is the x-coordinate of the string.
The equations of motion in the discrete case are

ÿj =
τ

ma
(yj+1 + yj−1 − 2yj) (4.129)

As a→ 0

1

a

[
yj+1(t) + yj−1(t)− 2yj(t)

]
=

yj+1(t)− yj(t)
a

− yj(t)− yj−1(t)

a
(4.130)

1

a

[
yj+1(t) + yj−1(t)− 2yj(t)

]
=

yj+1(t)− yj(t)
a

− yj(t)− yj−1(t)

a

=
y(ja+ a, t)− y(ja, t)

a
− y(ja, t)− y(ja− a, t)

a

a→0→ ∂y(x, t)

∂x

∣∣∣
x=ja+a

2

− ∂y(x, t)

∂x

∣∣∣
x=ja−a

2

' a
∂2y(x, t)

∂t2

∣∣∣
x=ja

(4.131)
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and therefore the equation of motion in the continuum limit is

∂2y(x, t)

∂t2
=

τ

σ

∂2y(x, t)

∂t2
(4.132)

where σ = m
a = (constant) mass density. If one rewrites this equation as

1

c2

∂2y(x, t)

∂t2
=

∂2y(x, t)

∂t2
(4.133)

it becomes the wave equation with sound velocity c =
√

τa
m =

√
τ
σ

4.5.1 Eigenfrequencies and eigenvectors in the continuum limit

Eigenfrequencies in the continuum limit: from Eq. (4.135) we get

ω2
n =

2

a

√
τ

σ
sin

πn

2(N + 1)
=

2

a
c sin

πna

2L

a→0→ πnc

L
, n = 0, 1, 2, ...∞ (4.134)

and the eigenvectors are

ρ
(n)
j =

√
2

m(N + 1)
sin

πjn

(N + 1)

a→0⇒ ρ(n)(x) =

√
2

Lσ
sin

πxn

L
(4.135)

Orthogonality of eigenvectors: from Eq. (4.116)

δmn

N∑
j=1

mρ
(n)
i ρ

(m)
i =

N∑
j=1

a
m

a
ρ

(n)
i ρ

(m)
i

a→0⇒ σ

∫ L

0
dxρ(m)(x)ρ(n)(x) (4.136)

Next, the general solution of Eq. (4.133) has the form

y(x, t) =
∞∑
n=1

Cn cos(ωnt+ φn)ρ(n)(x) =
∞∑
n=1

Cn cos(ωnt+ φn)

√
2

Lσ
sin

πnx

L
(4.137)

with the initial conditions

y(x, t = 0) = f(x), ẏ(x, t = 0) = g(x) (4.138)

Expanding in eigenvectors, we get

f(x) =
∑

Cn cosφnρ
(n)(x), g(x) = −

∑
Cnωn cosφnρ

(n)(x) (4.139)

Multiplying both sides by ρ(m)(x) and integrating over x we get

σ

∫ L

0
dx f(x)ρ(m)(x) = Cm cosφm

σ

∫ L

0
dx g(x)ρ(m)(x) = − Cmωm cosφm (4.140)

From these equations it is easy to determine Cm and φm.
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4.5.2 Lagrangian in the continuum limit

L(t) =
N∑
j=1

mj

2
ẏ2
j −

τ

2a

N∑
j=1

(yj+1 − yj)2 = a
N∑
j=1

[σ
2
ẏ2
j −

τ

2

(yj+1 − yj
a

)2] (4.141)

In the continuum limit yj+1−yj
a → y′(x)

∣∣∣
x=ja

and a
∑N

j=1 →
∫ L

0 dx so the Lagrangian

(4.141) takes the form

L(t)
a→0
=

∫ L

0
dx
[σ

2

(∂y
∂t

)2 − τ

2

(∂y
∂x

)2]
=

1

2

∫ L

0
dx
[
σẏ2(x, t)− τy′2(x, t)

]
(4.142)

⇒ L(t) =

∫ L

0
dx L(x, t), L(x, t) = L(y(x, t), ẏ(x, t)) =

1

2

[
σẏ2(x, t)− τy′2(x, t)

]
L(x, t) is called a Lagrangian density.

The wave equation (4.133) can be obtained from Hamilton’s principle: the action with
y(x, t) fixed at t = t1 and t = t2 is minimal on classical configuration ȳ(x, t). (We assume
the boundary condition y(0, t) = y(L, t) = 0)

The action has the form

S =

∫ t2

t1

dt L(t) =

∫ t2

t1

dt

∫ L

0
dx L(x, t) (4.143)

and the requirement δS = 0 gives

0 = δS =

∫ t2

t1

dt L(t) =

∫ t2

t1

dt

∫ L

0
dx δL

(
ẏ(x, t), y′(x, t)

)
=

∫ t2

t1

dt

∫ L

0
dx
[∂L(ẏ, y′)

∂ẏ
δẏ(x, t) +

∂L
(
ẏ, y′

)
∂y′

δy′(x, t)
]

=

∫ t2

t1

dt

∫ L

0
dx
[∂L(ẏ, y′)

∂ẏ

d

dt
δy(x, t) +

∂L
(
ẏ, y′

)
∂y′

d

dx
δy(x, t)

]
=

∫ L

0
dx

∂L
(
ẏ, y′

)
∂ẏ

δy(x, t)

∣∣∣∣t2
t1

+

∫ t2

t1

dt
∂L
(
ẏ, y′

)
∂y

δy(x, t)

∣∣∣∣L
0

−
∫ t2

t1

dt

∫ L

0
dx δy(x, t)

[ d
dt

∂L
(
ẏ, y′

)
∂ẏ

+
d

dx

∂L
(
ẏ, y′

)
∂y′

]
(4.144)

The requirement of fixed initial and final y(x, t) means δy(x, t1) = δy(x, t2) = 0 and the
boundary requirement y(0, t) = y(L, t) = 0 gives δy(L, t) = δy(0, t) = 0 so we get

0 = −
∫ t2

t1

dt

∫ L

0
dx δy(x, t)

[ d
dt

∂L
(
ẏ, y′

)
∂ẏ

+
d

dx

∂L
(
ẏ, y′

)
∂y′

]
⇒ d

dt

∂L
(
ẏ, y′

)
∂ẏ

+
d

dx

∂L
(
ẏ, y′

)
∂y′

= 0 Euler− Lagrange equations (4.145)

In our case L = 1
2

[
σẏ2(x, t)− τy′2(x, t)

]
so we get wave equation (4.133)

d

dt
σẏ(x, t) +

d

dx
(−τy′(x, t)) = 0 ⇔ σÿ(x, t)− τy′′(x, t) = 0 (4.146)
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In general, the Lagrangian density may depend on ẏ, y′, and y

S =

∫ t2

t1

dt L(t) =

∫ t2

t1

dt

∫ L

0
dx L

(
y(x, t), ẏ(x, t), y′(x, t)

)
(4.147)

with y(x, t) satisfying some given boundary conditions at end points x = 0, L, typically
fixed-end conditions y(0, t) = y(L, t) = 0 or periodic conditions y(0, t) = y(L, t), y′(0, t) =

y′(L, t). In this case we get

0 = δS =

∫ t2

t1

dt L(t) =

∫ t2

t1

dt

∫ L

0
dx δL

(
y(x, t)ẏ(x, t), y′(x, t)

)
(4.148)

=

∫ t2

t1

dt

∫ L

0
dx
[∂L(y, ẏ, y′)

∂ẏ
δẏ(x, t) +

∂L
(
y, ẏ, y′

)
∂y′

δy′(x, t) +
∂L
(
y, ẏ, y′

)
∂y

δy(x, t)
]

=

∫ t2

t1

dt

∫ L

0
dx
[∂L(ẏ, y′)

∂ẏ

d

dt
δy(x, t) +

∂L
(
ẏ, y′

)
∂y′

d

dx
δy(x, t) +

∂L
(
y, ẏ, y′

)
∂y

δy(x, t)
]

=

∫ L

0
dx

∂L
(
y, ẏ, y′

)
∂ẏ

δy(x, t)

∣∣∣∣t2
t1

+

∫ t2

t1

dt
∂L
(
y, ẏ, y′

)
∂y

δy(x, t)

∣∣∣∣L
0

+

∫ t2

t1

dt

∫ L

0
dx δy(x, t)

[∂L(y, ẏ, y′)
∂y

+
d

dt

∂L
(
y, ẏ, y′

)
∂ẏ

+
d

dx

∂L
(
y, ẏ, y′

)
∂y′

]
Again, with fixed-end or periodic boundary conditions and fixed initial and final y(x, t) the
non-integral terms in the r.h.s. vanish and we get the Euler-Lagrange equations

∂L
(
y, ẏ, y′

)
∂y

=
d

dt

∂L
(
y, ẏ, y′

)
∂ẏ

+
d

dx

∂L
(
y, ẏ, y′

)
∂y′

(4.149)

Part XIV

5 Rigid body dynamics

A rigid body is a special case of a system of particles such that the relative distance
between any two particles is fixed. This is clearly an idealization, but a useful one to
discuss properties of approximately rigid bodies.

Consider a system of N particles with constraints rij = |~rij | = cij where cij are
constants. on the first glance, it looks like the system has N(N−1)

2 constraints, but not all
of them are independent. Let us count the number of degrees of freedom for N particles
starting fromN = 3. For three particles in a general non-collinear positions, we have 3×3=9
coordinates and 3 constraints (r12, r23, r13 = fixed). Thus, for 3 particles we have 6 degrees
of freedom. Next, for 4 particles we get an extra 3 degrees of freedom for particle #4 but
also three new constraints (r14, r24, r34 = fixed) so the number of degrees of freedom is still
6. If we add particle #5, we get 3 new coordinates but only 3 new constraints (r15, r25, r35

= fixed) since the constraint r45 = fixed will be satisfied automatically. Thus, for N=5 we
still have 6 degrees of freedom. One can continue adding points and for each new point
we have 3 additional coordinates ~rn and 3 new constraints (r1n, r2n, r3n = fixed). Thus,
for arbitrary number of particles with fixed interparticle distances the number of degrees

– 87 –



of freedom is 6 which can be identified with the number of translations plus number of
rotations of a rigid body.

Three coordinates are needed to specify the origin O′ of the system of coordinates
fixed at a point in the rigid body (this point is usually taken in a center of mass), and tree
additional coordinates are needed to specify the orientation of the x′, y′, z′ axes fixed in the
rigid body relative to a coordinate system with axes parallel to original ones but with the
origin at O′.

There are many ways to specify the orientation of x′, y′, z′ axes with respect to original
x, y, z axes. For example, one can choose the scalar products of unit vectors specifying the
primed and unprimed axes

êx · ê′x = cos θ11, êx · ê′y = cos θ12, êx · ê′z = cos θ13

êy · ê′x = cos θ21, êy · ê′y = cos θ22, êy · ê′z = cos θ23

êx · ê′x = cos θ31, êz · ê′y = cos θ32, êz · ê′z = cos θ33 (5.1)

Clearly, the 9 parameters cos θmn′ are not independent since

ê′x · ê′x = ê′y · ê′y = ê′z · ê′z = 1

ê′x · ê′y = ê′y · ê′z = ê′z · ê′x = 0 (5.2)

so we have 6 constraints∑3
n=1 cos2 θmn = 1, m = 1, 2, 3∑3

n=1 cos θmn cos θln = 0, m 6= l

}
⇔

3∑
n=1

cos θmn cos θln = δml (5.3)

Thus, among 9 different cos θmn we must choose 3 independent parameters which may be
functions of θ’s. The most common choice is 3 Euler angles introduced below, but first we
need to discuss properties of matrix of rotation from x, y, z frame to x′, y′, z′ frame.

Denote cos θmn ≡ amn and define matrix of rotation

A =

 a11, a12 a13

a21, a22 a23

a31, a32 a33

 (5.4)

The property (5.3) means that matrix A is orthogonal

3∑
l=1

AmlAnl = δmn ⇔ ATA = I (5.5)

The matrix A specifies the rotation from x, y, z frame to x′, y′, z′ frame whereas AT de-
scribes the rotation back: ê′x

ê′y
ê′z

 = A

 êx
êy
êz

 and

 êx
êy
êz

 = AT

 ê′x
ê′y
ê′z

 (5.6)
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One can relate components of any vector ~V in primed and unprimed frames by V ′1
V ′2
V ′3

 = A

 V1

V2

V3

 ~V = V1êx + V2êy + V3êz
= V ′1 ê

′
x + V ′2 ê

′
y + V ′3 ê

′
z

(5.7)

We know that rotations are described by transformations of the Eq. (5.7) type with
orthogonal matrices A. For example, (passive) rotation on an angle θ around z axis is given
by

x′1 = x1 cos θ + x2 sin θ

x′2 = x2 − x1 sin θ + cos θ

x′3 = x3

 ⇒ A =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (5.8)

Summarising, at any time the orientation of a rigid body (x′, y′, z′) relative to external
system (x, y, z) is specified by an orthogonal transformation described by an orthogonal
matrix A(t). The 9 elements of this matrix may be expressed in terms of some suitable set
of 3 parameters (e.g. Euler angles described below). In general, this orientation changes in
time so A = A(t).

Let us prove that the determinant det |A(t)| = 1. Indeed, from A(t)†A(t) = 1 we see
that det |A(t)| = ± 1. If the (x′, y′, z′) frame is chosen to coincide with (x, y, z) frame at
t = 0 the matrix A(0) = I and det |A(0)| = 1. At a later time, A(t) might be 6= I, but it
must be a continuous function of time, which means that det |A(t) cannot jump from +1
to -1 value.

5.1 Euler angles

We can perform the transformation from (x, y, z)to (x′, y′, z′) frame by a sequence of three
successive rotations. Each of this rotations is characterized by an angle. It should be noted
that the conventions of these three rotations differ in the literature. We will use conventions
from our textbook (Fetter & Walecka).
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Figure 55. Euler angles

• First rotation x, y, z → x̃, ỹ, z̃: Rotate by angle α in positive direction (anticlockwise)
about z axis bringing ỹ to the orientation denoted as the “line of nodes” (orthogonal
to both z and z′ axes). The corresponding matrix is

D =

 cosα sinα 0

− sinα cosα 0

0 0 1

 ⇒

 x̃

ỹ

z̃

 = D

 x

y

z

 (5.9)

• Second rotation x̃, ỹ, z̃ → x̃′, ỹ′, z̃′:
Rotate counterclockwise by angle β about ỹ axis thus bringing z̃ to final orientation
z′ = z̃′. The corresponding matrix is

C =

 cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ

 ⇒

 x̃′

ỹ′

z̃′

 = C

 x̃

ỹ

z̃

 (5.10)

• Third rotation x̃′, ỹ′, z̃′ → x′, y′, z′: Rotate counterclockwise by angle γ about z̃′ = z′

axis thus bringing ỹ′ to final orientation y′. The corresponding matrix is

B =

 cos γ sin γ 0

− sin γ cos γ 0

0 0 1

 ⇒

 x′

y′

z′

 = B

 x̃′

ỹ′

z̃′

 (5.11)
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After this three rotations x′

y′

z′

 = BCD

 x

y

z

 ≡ A

 x

y

z

 (5.12)

where

A =

 cos γ sin γ 0

− sin γ cos γ 0

0 0 1


 cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ


 cosα sinα 0

− sinα cosα 0

0 0 1



=

 cosα cosβ cos γ − sinα sin γ sinα cosβ cos γ + cosα sin γ − sinβ cos γ

− cosα cosβ sin γ − sinα cos γ − sinα cosβ sin γ + cosα cos γ sinβ sin γ

cosα sinβ sinα sinβ cosβ


(5.13)

Note that

• α and γ varies between 0 and 2π while β varies between 0 and π

• the line of nodes is orthogonal to the plane specified by z and z′ axes

• α and β specify the orientation of z′ axis relative to (x, y, z) frame.

5.1.1 Angular velocity in terms of Euler angles

The unit vectors in x′, y′, z′ frame are given by the same matrix ê′x
ê′y
ê′z

 = A

 êx
êy
êz

 (5.14)

(easy to see from x′ê′x + y′ê′y + z′ê′z = xêx + yêy + zêz) so the vector of angular velocity
of the moving frame defined in Eq. (2.17) can be determined from Eq. (2.16) as

dê′

dt
= ~ω × ê′ ≡ d(ê′i)k

dt
= εklm~ωl(ê

′
i)m ⇒ dAim

dt
(êm)k = εklm~ωl(Ainên)m

⇒ dAik
dt

= εklm~ωlAim ⇒ ATji
dAik
dt

= εklj~ωl ⇒ ~ωl =
1

2
εlmn

(
AT

dA

dt

)
mn

(5.15)

The matrix
(
dA
dt A

T
)
can be obtained from Eq. (5.13)

AT
dA

dt
= DTCTBT ḂCD + DTCT ĊD + DT Ḋ (5.16)

Using formula
εijkMimMjnMkl = εmnl detM (5.17)

we see that for any orthogonal matrix M with detM = 1

εijkMjmMkn = Milεmnl (5.18)
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and therefore

εijk
(dA
dt

AT
)
jk

= εimn(DT Ḋ)mn + DT
ilεlmn(CT Ċ)mn + (DTCT )ilεlmn(BT Ḃ)mn (5.19)

Thus, from Eqs. (5.15) and (5.19) we see that ~ω can be represented as

ω = ω(α) + DTω(β) + DTCTω(γ) (5.20)

where

~ω
(α)
i =

1

2
εijk(D

T Ḋ)jk =

 0

0

α̇

 , ~ω
(β)
i =

1

2
εijk(C

T Ċ)jk =

 0

β̇

0

 , ~ω
(γ)
i =

1

2
εijk(B

T Ḃ)jk =

 0

0

γ̇


(5.21)

Thus, the explicit form of the result (5.20) for vector ~ω is

~ω =

−β̇ sinα+ γ̇ cosα sinβ

β̇ cosα+ γ̇ sinα sinβ

α̇+ γ̇ cosβ

 (5.22)

5.1.2 Check of dê′

dt = ~ω × ê′

ê′ = (cosα cosβ cos γ − sinα sin γ − cosα cosβ sin γ − sinα cos γ + cosα sinβ)ê1

+ (sinα cosβ cos γ + cosα sin γ − sinα cosβ sin γ + cosα cos γ + sinα sinβ)ê2

+ (− sinβ cos γ + sinβ sin γ + cosβ)ê3 (5.23)

Explicit check of the 1st component

(~ω × ê′)1 = [(−β̇ sinα+ γ̇ cosα sinβ)ê1 + (β̇ cosα+ γ̇ sinα sinβ)ê2 + (α̇+ γ̇ cosβ)ê3]

× [(cosα cosβ cos γ − sinα sin γ − cosα cosβ sin γ − sinα cos γ + cosα sinβ)ê1

+ (sinα cosβ cos γ + cosα sin γ − sinα cosβ sin γ + cosα cos γ + sinα sinβ)ê2

+ (− sinβ cos γ + sinβ sin γ + cosβ)ê3]1

= (β̇ cosα+ γ̇ sinα sinβ)(− sinβ cos γ + sinβ sin γ + cosβ) (5.24)

− (α̇+ γ̇ cosβ)(sinα cosβ cos γ + cosα sin γ − sinα cosβ sin γ + cosα cos γ + sinα sinβ)

˙̂e′1 =
d

dt
(cosα cosβ cos γ − sinα sin γ − cosα cosβ sin γ − sinα cos γ + cosα sinβ) = r.h.s. of Eq. (5.24)

We will need also the components of angular velocity vector ~ω in the “body” (x′, y′, z′)

frame. It has the formω′1
ω′2
ω′3

 = A

ω1

ω2

ω3

 =

−α̇ sinβ cos γ + β̇ sin γ

α̇ sinβ sin γ + β̇ cos γ

α̇ cosβ + γ̇

 (5.25)

– 92 –



Part XV

5.2 Moments of inertia

We have established earlier that the motion of a rigid body with one point fixed is a pure
rotation. Denote the inertial frame with the origin somewhere in the body by (x, y, z) and
body-fixed frame with the same origin as (x′, y′, z′). these two frames are connected by the
rotation x′m = Amnxn with some orthogonal matrix Amn (for example, parametrized by
Euler angles as in Eq. (5.13). The kinetic energy for the set of particles is T =

∑
n
mn
2 v2

n

(where v’s are velocities in the inertial frame). By differentiating ~r = ri(t)ê
(0)
i = r′i(t)ê

′
i(t)

with respect to time and using Eq. (2.16) we get(d~r
dt

)
inertial

=
(d~r′
dt

)
body

+ ~ω × ~r (5.26)

(cf. Eq. (2.20)). Now, our rigid body is such system of particles that the all the distances
are fixed so

(
d~r′n
dt

)
body

= 0 and we get

T =
∑
n

mn

2

(d~rn
dt

)2

inertial
=
∑
n

mn

2

[
~ω × ~rn

]2
=
∑
n

mn

2

[
ω2r2

n − (~ω · ~rn)2
]

(5.27)

(here we used ~A · ( ~B× ~C) = ( ~A× ~B) · ~C). It is convenient to rewrite this formula in terms
of (~ω)body ≡ ~ω′. From Eqs. (5.7) and (5.25) we get

ω2 = (ATijω
′
j)(A

T
ikω
′
k) = ω′

2
, ~ω · ~r = ω′jA

T
jkAikr

′
k = ~ω′ · ~r′ (5.28)

and therefore

T =
∑
n

mn

2

[
ω′

2
r′

2
n − (~ω′ · ~r′n)2

]
=

3∑
i,j=1

ω′iω
′
j

∑
n

mn

2
[r′

2
nδij − r′nir′nj ] (5.29)

This can be rewritten as T =
∑3

i,j=1 ω
′
iω
′
jIij where

I ′ij =
∑
n

mn

2
[r′

2
nδij − r′nir′nj ] (5.30)

is called tensor of moments of inertia. Now we see why Eq. (5.29) is more convenient than
(5.27) - in the inertial frame I (defined as (5.29) but with rn’s in place of r′n’s) would depend
on time!

For the continuous distribution of particles with density ρ(r′)

T =
1

2

∫
d3r′ρ(r′)

[
ω′

2
r′

2
n − (~ω′ · ~r′n)2

]
=

1

2

∑
i,j

ω′iω
′
jI
′
ij (5.31)

where
I ′ =

∫
d3r′ρ(r′)[r′

2
δij − r′ir′j ] (5.32)

is the tensor of moments of inertia of a rigid body. It depends only on distribution of the
mass in the body (and does not depend on time).
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5.2.1 Angular momentum of a rigid body

For a set of particles

~L =
∑
n

mn(~rn × ~vn) =
∑
n

mn(~rn × (~ωn × ~rn) =
∑
n

mn[~ωr2
n − ~rn(~ω · ~rn)] (5.33)

(here we used Eq. (5.25 ~vn = ~ω × ~rn). It is convenient to rewrite this in a fixed-body
frame. Since r2 and ω · r are scalars we get

~L′i =
∑
n

mn[ω′ir
′
n

2 − (r′n)i(~ω
′ · ~r′n)] = I ′ijω

′
j (5.34)

This formula obviously holds true in the case of continuous distribution. Note also that

T =
1

2
ω′iL

′
i (5.35)

Parallel axes theorem
Consider a body-fixed frame centered at the center of mass (CM) of the rigid body. Let us
denote by I ′ij the moments of inertial with respect to (w.r.t.) CM and by Ĩij the moments of
inertial w.r.t. a body-fixed frame with axes parallel to the CM ones but located a distance
~a apart. It is easy to see that

Ĩij = I ′ =

∫
d3r′ρ(r′)[(~r′ − ~a)2δij − (r′ − a)i(r

′ − a)j ] =

∫
d3r′ρ(r′)(r′

2
δij − r′ir′j)

− 2δij~a ·
∫
d3r′ρ(r′)~r′ + 2

(
ai

∫
d3r′ρ(r′)r′j + i↔ j

)
+ (a2δij − aiaj)

∫
d3r′ρ(r′)

= I ′ij + M(a2δij − aiaj) (5.36)

because by definition of the center of mass
∫
d3r′ρ(r′)~r′ = 0 (and

∫
d3r′ρ(r′) = M).

Example: disc of radius R and thickness h with uniform mass distribution

h

I’I’

R

Figure 56. Disc

I ′33 =

∫ h/2

−h/2
dz′
∫ R

0
ds′ s′

∫ 2π

0
dφ′
( M

πR2h

)
s′

2
=

MR2

2
⇒ Ĩ ′33 = I ′33 +MR2 =

3MR2

2
(5.37)
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5.2.2 Principal axes

In general, the inertia tensor is not diagonal: I ′ij 6= 0 if i 6= j. However, because I ′ij is
a real symmetric matrix, it can be diagonalized by an orthogonal transformation. Such
transformation is of course some rotation (recall that rotations are described by orthogonal
matrices). In this new rotated (body-fixed) frame

I ′
new

=

 I ′new
1 0 0

0 I ′new
2 0

0 0 I ′new
3

 (5.38)

The axes forming this new frame are called principal axes. To determine the principal axes
ons should use the simmetry of the body (if it has one). For example, the matrix for the
disc in Fig. 62 is

I ′ =

 ? 0 0

0 ? 0

0 0 MR2

2

 (5.39)

For the angular momentum we get then

L′
new
1 = I ′

new
1 ω′

new
1 , L′

new
2 = I ′

new
2 ω′

new
2 , L′

new
3 = I ′

new
3 ω′

new
3 (5.40)

and for the kinetic energy

T =
1

2

∑
L′
new
i ω′

new
i =

1

2

∑
I ′
new
i (ω′

new
i )2 (5.41)

In what follows we will always assume that we work in the principal-axes frame and omit
the label “new”.

5.3 Euler’s equations

The motion of a rigid body is governed by equations (1.25) and (1.36)

M ~̈R =
∑
n

~F ext
n , ~̇L =

∑
n

~τ ext
n =

∑
n

~r′n × ~F ext
n ≡ ~Γext (5.42)

The acceleration of the center of mass (position denoted by R ) is due to the sum of all
external forces acting on the rigid body. The rate of change of the angular momentum~L′

relative to the CM position os due to all external torques calculated with the respect to the
origin in CM.

From Eq. (2.20) we get

(d~L
dt

)
inertial

=
(d~L
dt

)
body

+ ~ω × ~L = ~Γext (5.43)

so (d~L
dt

)
body

≡
(dL′j
dt

)
body

ê′j = ~Γext − ~ω × ~L (5.44)
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Multiplying this by ê′i we get

(d~L′i
dt

)
body

= ~Γext · ê′i − εijkω′jL′k (5.45)

Let us select the body-fixed frame made of principal axes so that L′i = I ′iω
′
i, then

I ′i
dω′i
dt

= Γext · ê′i −
3∑

j,k=1

εijkω
′
jI
′
kω
′
k (5.46)

or, in the explicit form

I ′1
dω′1
dt = Γext · ê′1 + ω′2ω

′
3(I ′2 − I ′3)

I ′2
dω′2
dt = Γext · ê′2 + ω′1ω

′
3(I ′3 − I ′1)

I ′1
dω′3
dt = Γext · ê′3 + ω′1ω

′
2(I ′1 − I ′2)

(5.47)

Euler equations are not very simple because external torques are projected on time-dependent
body-fixed principal axes. However, they are very useful for the description of torque-free
motion.

5.4 Torque-free motion

In this case Γext = 0 so in the external system ~L is constant and its components as seen by
an observer in the external system do not change with time. However, the observer in the
body-fixed frame will see the components L′i of ~L = L′iê

′
i change with time.

Euler equations for the torque-free motion

I ′x
dω′x
dt = ω′yω

′
z(I
′
y − I ′z)

I ′y
dω′y
dt = ω′xω

′
z(I
′
z − I ′x)

I ′z
dω′z
dt = ω′xω

′
y(I
′
x − I ′y)

(5.48)

Three cases

• Spherical top: I ′x = I ′y = I ′z. From Euler’s equations (5.48) we see that ω=const (for
example, rotating sphere in a free fall).

• Symmetric top: I ′x = I ′y 6= I ′z. From the third of Euler’s equations (5.48) we see that
ω′z=const.

• Completely asymmetric top: I ′x 6= I ′y 6= I ′z. Analysis is complex

5.4.1 Symmetric top

As we saw, ωz=const so the other two Euler’s equations read

dω′x
dt = −Ωω′y
dω′y
dt = Ωω′x

(5.49)

– 96 –



where Ω = ω′z
I′z−I′x
I′x

. They are easily solved by going to complex

η(t) ≡ ω′x(t) + iω′y(t) (5.50)

The equation (5.49) turns to

η̇(t) = iΩη(t) ⇒ η(t) = η(0)eiΩt =
(
ω′x(0) + iω′y(0)

)
eiΩt (5.51)

Taking real and imaginary parts we get

ω′x(t) = <η(t) = ω′x(0) cos Ωt− ω′y(0) sin Ωt

ω′y(t) = =η(t) = ω′x(0) sin Ωt+ ω′y(0) cos Ωt (5.52)

To visualize this motion, consider a particular set of initial conditions

ω′x
∣∣
t=0

= ω sinλ

ω′y
∣∣
t=0

= 0

ω′z
∣∣
t=0

= ω cosλ

 ⇒


ω′x(t) = ω sinλ cos Ωt

ω′y(t) = ω sinλ sin Ωt

ω′z = ω cosλ

(5.53)

The solution (5.53) means that ~ω (as seen in x′, y′, z′ frame) precesses around z axis with
angular velocity Ω in positive or negative direction depending on the sign of Ω, see Fig 57.

x’

y’

z’
 < 0

 > 0

Figure 57. Symmetric top

Note that |~ω| is constant.

5.4.2 Asymmetric top

The analysis in this case is rather complex, but it is simplified by an observation that there
are two constants of motion: kinetic energy and square of angular momentum

~L2 = I ′
2
xω
′2
x + I ′

2
yω
′2
y + I ′

2
zω
′2
z

T =
1

2
(I ′xω

′2
x + I ′yω

′2
y + I ′zω

′2
z) =

1

2
~L · ~ω (5.54)
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Let us prove the first equation. From Euler’s equations (5.48) we get

1

2

d

dt
L2 =

1

2

d

dt

(
I ′

2
xω
′2
x + I ′

2
yω
′2
y + I ′

2
yω
′2
y) = I ′

2
xω̇
′
xω
′
x + I ′

2
yω̇
′
yω
′
y + I ′

2
zω̇
′
zω
′
z

= ω′yω
′
z(I
′
y − I ′z)I ′xω′x + ω′xω

′
z(I
′
z − I ′x)I ′yω

′
y + ω′xω

′
y(I
′
x − I ′y)I ′zω′z = 0 (5.55)

Similarly, we get conservation of the kinetic energy:

d

dt
T = I ′xω̇

′
xω
′
x + I ′yω̇

′
yω
′
y + I ′zω̇

′
zω
′
z

= ω′yω
′
z(I
′
y − I ′z)ω′x + ω′xω

′
z(I
′
z − I ′x)ω′y + ω′xω

′
y(I
′
x − I ′y)ω′z = 0 (5.56)

One can use Eq. (5.54) to eliminate ω′x and ω′y from Euler’s equations in favor of T ,
L2, and ω′z, then

ω′x = ω′x(ω′z, T, L
2), ω′y = ω′y(ω

′
z, T, L

2) (5.57)

From the third of equations (5.48) one obtains

t− t0 =
I ′z

I ′x − I ′y

∫
dω′z

1

ω′x(ω′z, T, L
2)ω′y(ω

′
z, T, L

2)
(5.58)

The integral can be expressed in terms of elliptic integrals (see more advanced textbooks).

Part XVI

5.4.3 Motion in external (inertial) system

Angular momentum is conserved ~L = const.
Spherical top: I ′x = I ′y = I ′z ⇒ ~L = I ′x~ω ⇒ ~ω=const. The torque free motion for a

spherical top reduces to a rotation about a fixed axis with angular velocity of magnitude
ω = L

I′x
Symmetric top ( I ′x = I ′y = I1 6= I ′z = I3):

The Lagrangian L = T is simplified to

L =
I1

2
(ω′

2
x + ω′

2
y) +

I3

2
ω′

2
z =

I1

2
(α̇2 sin2 β + β̇2) +

I3

2
(α̇ cosβ + γ̇)2 (5.59)

where we used Eq. (5.25) for ω′’s in the body-fixed frame. Note that the Lagrangian (5.66)
does not depend on α and γ so the corresponding generalized momenta are conserved

pα ≡
∂L

∂α̇
= I1α̇ sin2 β + I3(α̇ cosβ + γ̇) cosβ = const

pγ ≡
∂L

∂γ̇
= I3(α̇ cosβ + γ̇) = const (5.60)

Let us demonstrate that pα is the projection of angular momentum on e(0)
z axis in the inertial

frame and pγ on ê′z axis in the body-fixed frame. First, from Eq. (5.25) we immediately
see that

~L · ê′z ≡ L′z = I3ω
′
z = I3(α̇ cosβ + γ̇) = pγ (5.61)
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Second, from Eq. (5.34) and Eq. (5.22) we get

~L · ê(0)
z = (I1ω

′
xê
′
x + I1ω

′
y ê
′
y + I3ω

′
z ê
′
z) · ê(0)

z = I1ωz + (I3 − I1)ω′z ê
′
z · ê(0)

z

= I1(α̇+ γ̇ cosβ) + (I3 − I1)(α̇ cosβ + γ̇) cosβ = pα (5.62)

Last, the generalized momentum pβ is a projection of ~L on the line of nodes
êβ = ê

(0)
1 cosα+ ê

(0)
2 sinα = ê′1 sin γ + ê′2 cos γ

pβ =
∂L

∂β̇
= I1β̇ (5.63)

~L · êβ = (I1ω
′
xê
′
x + I1ω

′
y ê
′
y + I3ω

′
z ê
′
z) · êβ = I1~ω · êβ + (I3 − I1)ω′z ê

′
z · êβ = I1β̇

Now let us choose external (inertial) frame such that the (conserved) vector ~L points in the
z direction, than since line of nodes is always orthogonal to ê(0)

z we get pβ = ~L · êβ = 0.
Thus, we get (ω′3 = α̇ cosβ + γ̇)

pα ≡
∂L

∂α̇
= I1α̇ sin2 β + I3(α̇ cosβ + γ̇) cosβ = const

pγ ≡
∂L

∂γ̇
= I3(α̇ cosβ + γ̇) = const

pβ ≡
∂L

∂β̇
= 0 ⇒ β = const (5.64)

0 =
∂L

∂β
= I1α̇

2 sinβ cosβ − I3α̇ sinβ(α̇ cosβ + γ̇) = α̇ sinβ(I1α̇ cosβ − I3ω
′
3)

and therefore

α̇ cosβ =
I3

I1
ω′3 =

I3

I1
(α̇ cosβ + γ̇)

⇒ γ̇ =
I1 − I3

I1
ω′3 = − Ω

ω =? α̇ê
(0)
3 + γ̇ê′3 ⇒ ~ω, ~L, and ê′3 lie in one plane (5.65)

0 =
∂L

∂β
= I1α̇

2 sinβ cosβ − I3α̇ sinβ(α̇ cosβ + γ̇) = α̇ sinβ(I1α̇ cosβ − I3ω
′
3)

Motion at I3 > I1 (see Fig. 58a):

• α̇ = const, β = const ⇒ constant precession of the symmetry axis about ~L at a fixed
polar angle β.

• γ̇ = const<0 ⇒ constant rotation of the object about the symmetry axis. Inertial
observer sees a backward motion about ê(0)

3 while body-fixed observer sees a positive
precession of ~ω about the symmetry axis.

Motion at I1 > I3 (see Fig. 58b):
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Figure 58. Symmetric top

• α̇ = const, β = const ⇒ constant precession of the symmetry axis about ~L at a fixed
polar angle β.

• γ̇ = const>0 ⇒ constant rotation of the object about the symmetry axis. Inertial
observer sees a forward motion about ê(0)

3 while body-fixed observer sees a positive
precession of ~ω about the symmetry axis.
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5.5 Symmetric top with a fixed point in the gravitational field

In this case, gravity exerts a torque and changes angular momentum. From Fig. 59 we see
that the direction of the torque is along the line of nodes, i.e. orthogonal to both z and z′.

The Lagrangian is now L = T − V

L =
I1

2
(ω′

2
x + ω′

2
y) +

I3

2
ω′

2
z =

I1

2
(α̇2 sin2 β + β̇2) +

I3

2
(α̇ cosβ + γ̇)2 −Mgl cosβ (5.66)

Figure 59. Symmetric top in a gravitational field

pα ≡
∂L

∂α̇
= I1α̇ sin2 β + I3(α̇ cosβ + γ̇) cosβ = const

pγ ≡
∂L

∂γ̇
= I3(α̇ cosβ + γ̇) = const

pβ ≡
∂L

∂β̇
6= 0 ⇒ β 6= const (5.67)

I1β̈ =
∂L

∂β
= I1α̇

2 sinβ cosβ − I3α̇ sinβ(α̇ cosβ + γ̇) +Mgl sinβ

From the first two equations

α̇ =
pα − pγ cosβ

I1 sin2 β
, γ̇ = pγ

( 1

I3
+

cos2 β

I1 sin2 β

)
− pα cosβ

I1 sin2 β
(5.68)

and therefore the Euler-Lagrange equation for β turns to

I1β̈ =
∂L

∂β
⇒ I1α̇

2 sinβ cosβ − I3α̇ sinβ(α̇ cosβ + γ̇) +Mgl sinβ

⇒ I1β̈ =
cosβ

I1 sin3 β
(p2
α − 2pαpγ cosβ + p2

γ)− pαpγ
I1 sinβ

+Mgl sinβ (5.69)

If we solve this equation, we can find α and γ from Eqs. (5.68).
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5.5.1 Method of effective potential

First integral of Eq. (5.71)

I1β̇β̈ = β̇
( cosβ

I1 sin3 β
(p2
α − 2pαpγ cosβ + p2

γ)− pαpγ
I1 sinβ

+Mgl sinβ
)

⇒ d

dt

I1β̇
2

2
= − d

dt

((pα − pγ cosβ)2

2I1 sin2 β
+
p2
γ

2I3
+Mgl cosβ

)
⇒ E =

1

2
I1β̇

2 + Veff(β) = const (5.70)

⇒ we get conservation of energy

E =
1

2
I1β̇

2 + Veff(β) = const

Veff(β) =
(pα − pγ cosβ)2

2I1 sin2 β
+
p2
γ

2I3
+Mgl cosβ (5.71)

– 102 –



This is the one-dimensional problem with effective potential Veff(β) shown in Fig. 60.
Potential diverges as β → 0, π which corresponds to the “angular momentum barrier”. There

Figure 60. Effective potential

are only bounded orbits with turning points E = Veff(β±). As E = V min
eff the orbit becomes

circular.
Let us study the circular orbit. The corresponding β0 is found from the equation

∂Veff

∂β

∣∣∣
β=β0

= 0 ⇒ cosβ

I1 sin3 β
(p2
α− 2pαpγ cosβ+ p2

γ)− pαpγ
I1 sinβ

+Mgl sinβ = 0 (5.72)

Once we know β0, from Eq. (5.68) we see that

α =
pα − pγ cosβ0

I1 sin2 β0
t, γ = pγ

( 1

I3
+

cos2 β0

I1 sin2 β0

)
t− pα cosβ0

I1 sin2 β0
t (5.73)

Let us now study small oscillations about steady motion. Expanding

β(t) = β0 + η(t)

we get

Veff(β(t)) = Veff(β0) + η(t)
∂Veff(β)

∂β

∣∣∣
β=β0

+
1

2
η2(t)

∂2Veff(β)

∂2β

∣∣∣
β=β0

+ O(η3) (5.74)
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Since steady motion corresponds to β0 such that ∂Veff(β)
∂β

∣∣∣
β=β0

= 0, we get

Veff(β(t)) = Veff(β0) +
1

2
η2(t)I1Ω2 (5.75)

where

Ω2 =
1

I1

∂2Veff(β)

∂2β

∣∣∣
β=β0

=
pαpγ − I1Mgl(3− 4 sin2 β0)

I2
1 cosβ0

(5.76)

The energy (5.71) takes the form

E =
1

2
I1

(
η̇2 + Ω2η2) + Veff(β0) = const ⇒ η̇2 + Ω2η2 = const (5.77)

This is the harmonic oscillator problem with the solution

β(t) = β0 + η0 cos(Ωt+ φ0) (5.78)

which describes simple oscillations about β0. They are stable if Ω2 > 0. Looking back at
pα = ~L · ê(0)

z and pγ = ~L · ê′z we see that Ω2 > 0 requires sufficiently large angular
momentum.

In the case of “sleeping top” (= rapidly spinning top with vertical symmetry axis) we
have ⇔ cosβ0 = 1, ê(0)

3 = ê′3, pγ = pα so the stability condition Ω2 > 0 reads

p2
γ > 4I1Mgl (5.79)
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5.5.2 Precession and nutation

Small nutation around steady trajectory are described by Eqs. (5.75) and (5.73)

β(t) = β0 + η0 cos(Ωt+ φ0)

α̇(t) =
pα − pγ cosβ(t)

I1 sin2 β(t)
' α̇0 + η(t)α̇1

γ̇ = pγ

( 1

I3
+

cos2 β0

I1 sin2 β0
− pα cosβ0

I1 sin2 β0

)
' γ̇0 + η(t)γ̇1 (5.80)

Figure 61. Nutation of a symmetric top

Part XVII

6 Hamiltonian dynamics

6.1 Hamilton’s equations

In the Hamiltonian formulation, generalized coordinates and generalized momenta appear
on equal footing. We write down generalized momenta as usually

pα ≡
∂L

∂qα
(6.1)

define
H =

∑
α

pαq̇α − L({q, q̇}, t) (6.2)

and re-express all q̇α in Eq. (6.2) in terms of pα and qα and maybe t. The obtained function
is called Hamiltonian

H(pα, qα, t) =
∑
α

pαq̇α({q, p}, t)− L
(
{qα, (q̇({q, p}, t)

)
}, t
)

(6.3)
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Hereafter {q, q̇} denotes a set of qα, q̇α, {q, q̇} a set of qα, pα etc.
In this formulation, the Euler-Lagrange equations are expressed as Hamilton’s equations

dqα
dt

=
∂H({q, p}, t)

∂pα
dpα
dt

= − ∂H({q, p}, t)
∂qα

(6.4)

Let us prove that they follow from Lagrange equations

∂H({q, p}, t)
∂pα

= q̇α +
∑
α

∂q̇α({q, p}, t)
dpα

(
pα −

∂L({q, q̇}, t)
∂q̇α

)
= q̇α

∂H({q, p}, t)
∂qα

=
∑
β

∂q̇β({q, p}, t)
∂qα

pβ −
∂L({q, q̇({q, p}, t)}, t)

∂qα
(6.5)

=
∑
β

∂q̇β({q, p}, t)
∂qα

pβ −
∂L({q, q̇}, t)

∂qα

∣∣∣
q̇β=q̇β({q,p},t)

−
∑
β

∂L({q, q̇}, t)
∂q̇β

∣∣∣
q̇β=q̇β({q,p},t)

∂q̇β({q, p}, t)
∂qα

= − ∂L({q, q̇}, t)
∂qα

∣∣∣
q̇β=q̇β({q,p},t)

= − d

dt

∂L({q, q̇}, t)
∂q̇α

∣∣∣
q̇β=q̇β({q,p},t)

= − d

dt
pα

Mathematically, the Lagrange equations are n differential equations of the second order
while Hamilton equations are 2n first-order differential equations (equivalent to n second-
order equations).

Note that if the Lagrangian does not depend on time explicitly (≡ ∂L
∂t = 0), the

Hamiltonian (6.3) is a constant of motion:

dH

dt
=
∑
α

( ∂H
∂pα

dpα
dt

+
∂H

∂qα

dqα
dt

)
=
∑
α

(
− ∂H

∂pα

∂H

∂qα
+
∂H

∂qα

∂H

∂pα

)
= 0 (6.6)

Moreover, if potential energy and the (holonomic) constraints do not depend on time, the
conserved Hamiltonian is the energy, see Eq. (3.111).

Example: free particle in one dimension

L =
mẋ2

2
⇒ px =

∂L

∂ẋ
= mẋ ⇒ H = pẋ− mẋ2

2
=

p2
x

2m
(6.7)

Equations of motion (6.4):

dpx
dt

=
∂H

∂x
= 0 ⇒ p = const,

dx

dt
=

∂H

∂px
=

px
m
⇒ x = x0 +

px
m
t (6.8)

It is possible to obtain Hamilton’s equations (6.4) from variational principle

δ
(∫ t2

t1

dt
[∑

α

q̇α({q, p}, t)pα −H({q, p}, t)
])

= 0 (6.9)

with boundary conditions fixed for both q’s and p’s:

δq(t1) = δq(t2) = 0 and δp(t1) = δp(t2) = 0 (6.10)

The action integral (3.83), expressed in terms ofH, is stationary with respect to independent
variation of q’s and p’s (for proof see the textbook).
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6.2 Example: charged particle in the electromagnetic field

6.2.1 Lagrangian

The motion of charged particle in the electromagnetic field is governed by Newton’s laws
with Lorentz force

m~̈r = e
(
~E +

~̇r

c
× ~B

)
(6.11)

(we use cgs system here). Let us prove that the this equation of motion can be obtained
from the Lagrangian

L(~r, ~̇r, t) =
1

2
m~̇r2 − eΦ(~r, t) + e

~̇r

c
· ~A(~r, t) (6.12)

where Φ(~r, t) and ~A(~r, t) are scalar and vector potentials defined by

~E(~r, t) = −∇Φ(~r, t)− 1

c

∂ ~A(~r, t)

∂t
~B(~r, t) = ∇× ~A(~r, t) (6.13)

The partial derivatives of the Lagrangian (6.12) are

∂L

∂ṙi
= mṙi +

e

c
Ai(~r, t)

∂L

∂ri
= − e∂iΦ + e

ṙj
c

∂Aj(~r, t)

∂ri
(6.14)

so Euler-Lagrange equations are

d

dt

(
mṙi +

1

c
Ai(~r, t)

)
= − e∂iΦ +

1

c

∂Ai(~r, t)

∂t
+
ṙj
c

∂Aj(~r, t)

∂ri

⇒ mr̈i = − 1

c

∂Ai(~r, t)

∂rj
ṙj − e∂iΦ−

1

c

∂Ai(~r, t)

∂t
+ e

ṙj
c

∂Aj(~r, t)

∂ri
(6.15)

Let us now rewrite the Lorentz force (6.11) in terms of potentials (6.13)

mr̈i = e
(
~Ei +

1

c
εijkṙj ~Bk

)
= − e∂iΦ(~r, t)− 1

c

∂Ai(~r, t)

∂t
+
e

c
εijkεklmṙj∂lAm(r, t) (6.16)

= − e∂iΦ(~r, t)− 1

c

∂Ai(~r, t)

∂t
+
e

c

(
ṙj∂iAj(r, t)− ṙj∂jAi(r, t)

)
= r.h.s. of Eq. (6.15)

where we used εijkεlmk = δilδjm − δimδjl (summation over k is implied as usual). Thus,
the Eq. (6.12) is the correct Lagrangian for a particle in electromagnetic field.

6.2.2 Hamiltonian

Canonical momenta:

pi ≡
∂L

∂ṙi
= mṙi(t) +

e

c
Ai(~r, t) ⇔ ~p = m~̇r +

e

c
~A (6.17)

If Φ and ~A do not depend on x, the corresponding generalized momentum px is conserved
but not equal to ordinary momentum mẋ.
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The Hamiltonian is

H = piṙi − L = m~̇r ·
(
~̇r +

e

c
~A
)
− 1

2
m~̇r2 + eΦ− e~̇r

c
· ~A =

1

2
m~̇r2(t) + eΦ(~r, t) (6.18)

which is clearly the sum of kinetic and potential energy of the particle in electromagnetic
field. Note, however, that the Hamilton must be expressed in terms of pi rather than ẋi.
We get

H(~p, ~r, t) =
1

2m

[
~p− e

c
~A(~r, t)

]2
+ eΦ(~r, t) (6.19)

Let us check that corresponding Hamilton equations (6.4) reproduce Newton’s 2nd law with
Lorentz force.

dri
dt

=
∂H

∂pi
=

1

m

(
pi −

e

c
Ai(~r, t)

)
dpi
dt

= − ∂H

∂ri
= − e

mc

∂ ~A

∂ri
·
(
~p− e

c
~A(~r, t)

)
− e∂iΦ(~r, t) (6.20)

Differentiating the first equation with respect to t we get

r̈i =
1

m

(
ṗi −

e

c

∂Ai(~r, t)

∂t
− e

c

∂Ai(~r, t)

∂rj
ṙj

)
= − e

mc

∂Ai(~r, t)

∂t
− e

mc

∂Ai(~r, t)

∂rj
ṙj −

e

mc

∂ ~A

∂ri
· (m~̇r)− e∂iΦ(~r, t)

= eEi(~r, t) +
e

mc
ṙj [∂iAj(~r, t)− ∂jAi(~r, t)] = eEi(~r, t) +

e

mc
εijkṙjBk(~r, t) (6.21)

which is Eq. (6.11). (In the last line we used the formula from Eq. (6.16)).

6.3 Canonical transformations

6.3.1 Point transformations in the Lagrangian formulation

Suppose we have a Lagrangian L(qα, q̇α, t), α = 1, 2...n. Consider so-called point transfor-
mations

qα = qα(Q1, Q2, ...Qn, t), α = 1, 2...n (6.22)

which are assumed to be non-singular and invertible

Qα = Qα(q1, q2, ...qn, t), α = 1, 2...n (6.23)

Theorem:
d

dt

∂L

∂q̇α
=

∂L

∂qα
⇒ d

dt

∂L

∂Q̇α
=

∂L

∂Qα
(6.24)

Proof:
Consider

∂

∂Q̇α
L
(
qβ(Qγ , t), q̇β(Qγ , t), t

)
=

∂

∂Q̇α
L
(
qβ(Qγ , t),

d

dt
qβ(Qγ , t), t

)
=

∂

∂Q̇α
L
(
qβ(Qγ , t),

∂

∂t
qβ(Qγ , t) +

∂qβ
∂Qγ

Q̇γ , t
)

=
∂L

∂q̇β

∂qβ
∂Qα

(6.25)
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Taking now derivative with respect to t, we obtain

d

dt

∂

∂Q̇α
L
(
qβ(Qγ , t), q̇β(Qγ , t), t

)
=

d

dt

∂L

∂q̇β

∂qβ
∂Qα

=
∂qβ
∂Qα

d

dt

∂L

∂q̇β
+
∂L

∂q̇β

d

dt

∂qβ
∂Qα

=
∂L

∂qβ

∂qβ
∂Qα

+
∂L

∂q̇β

∂q̇β
∂Qα

=
∂L

∂Qα
(6.26)

where we used

∂

∂Qα

d

dt
qβ(Qγ , t) =

∂

∂Qα

( ∂
∂t
qβ(Qγ , t) +

∂qβ
∂Qγ

Q̇γ

)
=

∂

∂t

∂qβ
∂Qα

+ Q̇γ
∂2qβ

∂Qα∂Qγ

d

dt

∂

∂Qα
qβ(Qγ(t), t) =

∂2qb
∂Qα∂Qγ

Q̇γ +
∂

∂t

∂qβ
∂Qα

(6.27)

⇒ d
dt

∂qβ
∂Qα

= ∂
∂Qα

dqβ
dt (nontrivial due to d

dt rather than
∂
∂t). The proof is complete.

Example: transition to spherical coordinates (x, y, z) → (r, θ, φ) for a particle in a
central potential V (r).

• In Cartesian coordinates LC = m
2 (ẋ2 + ẏ2 + ż2−V

(√
x2 + y2 + z2)⇒ Euler-Lagrange

equations are complicated

• In spherical coordinates Lsph = m
2 (ṙ2 + r2θ̇ + r2φ̇2 sin2 θ) − V (r) ⇒ Euler-Lagrange

equations are simple

Part XVIII

6.3.2 Transformations in the Hamiltonian formulation

The coordinates and momenta enter the Hamiltonian formulation on equal footing so it is
natural to consider transformations of the type

qα = qα(Qβ, Pβ, t)

pα = pα(Qβ, Pβ, t)

}
⇔

{
Qα = Qα(qβ, pβ, t)

Pα = Pα(qβ, pβ, t)
(6.28)

which are again assumed to be invertible and non-singular. Note that this class of trans-
formations is more wide than point transformations (6.22) since, for example, the new
coordinates may depend on old velocities.

Still, the transformations (6.28) should describe the same physical problem (same Euler-
lagrange equations ↔ same Newton’s 2nd law). For a general set of transformations (6.28)
this is not always the case. For example, consider a free particle with H = p2

2m described
by Hamilton equations (6.7) and (6.8)

dp

dt
=

∂H

∂q
= 0 ⇒ p = const,

dq

dt
=

∂H

∂p
=

p

m
⇒ q = q0 +

p

m
t (6.29)

or Euler-Lagrange equations (L = mẋ2

2 )

∂L

∂q
= 0 ⇒ d

dt

∂L

∂q̇
= mq̇ ⇒ q = q0 +

p

m
t (6.30)
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Now consider a transformation

Q =
p2

m2
, P = q (6.31)

The Hamiltonian is now

H(P,Q) =
1

2
Qm ⇒ L(Q, Q̇) = − 1

2
Qm (6.32)

and the Euler-Lagrange equation reads

∂L

∂Q
= − m

2
,

∂L

∂Q̇
= 0 ⇒ m = 0 (6.33)

which is not the correct description of our problem with m 6= 0.
On the other hand, consider

Q = − p, P = q (6.34)

The Hamiltonian is now

H(P,Q) =
Q2

2m
⇒ L(Q, Q̇, t) = (A+Bt)Q̇− Q2

2m
(6.35)

and the Euler-Lagrange equation gives

∂L

∂Q
= − Q

2m
,

∂L

∂Q̇
= A+Bt ⇒ B = − Q

m
⇒ Q = −Bm = const

P =
∂L

∂Q̇
= A+Bt = P0 −

Q

m
t (6.36)

which gives Eq. (6.30) after inverse transformation p = −Q, q = P .
We see that not all of the transformations (6.28) are acceptable, only those which do

not change physics of our problem ⇔ do not change Euler-Lagrange equations ⇔ do not
change Hamilton equations. Such transformations are called canonical transformations.

Definition: the transformations

qα = qα(Qβ, Pβ, t)

pα = pα(Qβ, Pβ, t)

}
⇔

{
Qα = Qα(qβ, pβ, t)

Pα = Pα(qβ, pβ, t)
(6.37)

are called canonical if for the new Hamiltonian

H̃(Q,P, t) ≡ H
(
Q({q, p}, t), P ({q, p}, t), t

)
(6.38)

we have the Hamilton equations of the same form:

dqα
dt = ∂H({q,p},t)

∂pα
dpα
dt = − ∂H({q,p},t)

∂qα

}
⇔

{
dQα
dt = ∂H̃({Q,P},t)

∂Pα
dPα
dt = − ∂H̃({Q,P},t)

∂Qα

(6.39)

The canonical transformations may be very useful. Imagine that we have found such
transformation (q, p) → Q,P that H̃ = H̃(P ), then all momenta P are conserved so the
solution of Hamilton equations in terms of Q and P is trivial.

Thus, the task is to find a suitable canonical transformation which simplifies our prob-
lem. This sometimes can be done with the method of finding the suitable generating
function.
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6.3.3 Method of generating function

Recall that one can derive the Hamilton’s equations from a modified form of the least action
principle applied to ∫ t2

t1

(∑
i

piq̇i −H(q, p; t)
)
dt , (6.40)

with constraints that both δpi(t) and δqi(t) vanish at the endpoints t = t1 and t = t2, see
Eq. (6.9). We should have

δ

∫ t2

t1

(∑
i

piq̇i −H(q, p; t)
)
dt = 0 (6.41)

in old variables and

δ

∫ t2

t1

(∑
i

PiQ̇i − H̃(Q,P ; t)
)
dt = 0 (6.42)

in the new variables. These two relations are satisfied simultaneously if the two integrands
differ by full time derivative of some function F :∑

i

PiQ̇i − H̃(Q,P ; t) =
∑
i

piq̇i −H(q, p; t) +
dF

dt
. (6.43)

Indeed, the variation of dF/dt is

δ

∫ t2

t1

dF

dt
dt = δ(F (t1)− F (t2)) = δ(const) , (6.44)

where “const” is independent of the shape of δqi(t) and δpi(t), since δqi(t1) = δqi(t2) = 0

and δpi(t1) = δpi(t2) = 0.
Rewriting Eq. (6.43) as

dF =
∑
i

PidQi −
∑
i

pidqi + (H − H̃) dt , (6.45)

we find that
pi = −∂F

∂qi
, Pi =

∂F

∂Qi
, H̃ = H − ∂F

∂t
. (6.46)

The function F is called the generating function of the canonical transformation.
If F (q, p,Q, P ; t) does not depend on t explicitly, we can write H̃ = H and

dF

dt
=
∑
i

Pi
dQi
dt
−
∑
i

pi
dqi
dt

, (6.47)

i.e., in this case H(q, p) and H̃(Q,P ) are the same functions just written in different vari-
ables: H(p, q) = H̃(Q(q, p), P (q, p)) and

dF =
∑
i

PidQi −
∑
i

pidqi . (6.48)
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Since the differential of F is determined by changes in (differentials of) qi and Qi, Eq. (6.48)
generates F as a function of 2s variables {qi, Qi}.
NB: In general, since new and old variables are related by 2s equations

Qi = Qi(q, p, t) , Pi = Pi(q, p, t) , (6.49)

the function F ({qi, pi}, {Qj , Pj}; t) has only 2s = 4s−2s canonical variables as independent.
Thus, the possible choices are F1(q,Q; t), F2(q, P ; t), F3(p,Q; t), F4(p, P ; t). A particular
choice is determined by convenience of application to a particular problem.

Example: take F =
∑

i qiQi, then

pi = −∂F
∂qi

= −Qi , Pi =
∂F

∂Qi
= qi , (6.50)

so this transformation interchanges coordinates and momenta.
Another example:
F (q,Q) = − mω

2 q2 cotQ for harmonic oscillator with H = p2

2m + mω2

2 q2.

dF

dQ
= P =

mq2ω

2 sin2Q
⇒ 1

sinQ
=

1

q

√
2P

mω
⇔ q =

√
2P

mω
sinQ

−dF
dq

= p = mωq cotQ =
√

2Pmω cosQ (6.51)

The Hamiltonian in new coordinates takes the form

H̃(Q,P ) = H
(
q(Q,P ), p(Q,P )

)
=

p2

2m
+
mω2q2

2
= ωP (6.52)

Thus, in new variables the Hamiltonian is cyclic in Q so

∂H̃(Q,P )

∂Q
= − Ṗ = 0 ⇒ P = P0 = const

∂H̃(Q,P )

∂P
= Q̇ = ω ⇒ Q = Q0 + ωt (6.53)

and the solution in terms of the original coordinates

q =

√
2P0

mω
sin(Q0 + ωt)

p =
√

2P0mω cos(Q0 + ωt) (6.54)

takes the familiar form q = A0 cos(ωt+ φ0) with φ0 = Q0 and A0 =
√

2P0mω.
In general, switching from a generating function F (q,Q; t) that depends on the variables

q,Q to another generating function that depends, say, on P and q is accomplished by the
Legendre transformation

−dΦ ≡ d
(
F −

∑
i

PiQi
)

=
[∑

i

PidQi −
∑
i

pidqi + (H − H̃)dt
]
−
∑
i

(PidQi +QidPi)

= −
∑
i

QidPi −
∑
i

pidqi + (H − H̃)dt . (6.55)
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We see that the differential dΦ is determined by differentials dPi and dqi, i.e. Φ should
be treated as a function of P and q: Φ → Φ(q, P ) ≡ Φ({qi}, {Pj}). The coefficients in
front of dPi and dqi are the respective partial derivatives, which results in the following
transformation:

pi =
∂Φ

∂qi
, Qi =

∂Φ

∂Pi
. (6.56)

so the Legendre transform reads

Φ(qi, Pi) = − F (q,Q) +
∑
i

PiQi = − F
(
qi,

∂Φ

∂Pi

)
+
∑
i

Pi
∂Φ

∂Pi
(6.57)

Example: identity transformation qi = Qi, pi = Pi The generating function is

Φ0(q, P ) =
∑
j

qjPj ⇒ pi =
∂Φ0

∂qi
= Pi, Qi =

∂Φ0

∂Pi
= qi (6.58)

(see Eq. (6.56)).
Example: point transformation.

Take Φ =
∑

j fj(q, t)Pj , then

Qi =
∂Φ

∂Pi
= fi(q, t) , (6.59)

i.e., the new coordinates are functions of only old coordinates (but not momenta): this is a
point transformation (6.22).

From the first equation in (6.56), we obtain

pi =
∂Φ

∂qi
=
∑
j

∂fj
∂qi

Pj =
∑
j

∂Qj
∂qi

Pj ≡
∑
j

Pj aji . (6.60)

where amn ≡ ∂Qm
∂qn

. Note that since

(1)jk ≡ δjk =
∂Qj
∂Qk

=
∑
i

∂Qj
∂qi︸︷︷︸

∂qi
∂Qk︸︷︷︸ , (6.61)

aji (a−1)ik

the matrix inverse to aji ≡ ∂Qj/∂qi is given by

(a−1)ik =
∂qi
∂Qk

. (6.62)

Inverting relation between pi and Pj , we derive

Pj =
∑
i

pi(a
−1)ij =

∑
i

∂qi
∂Qj

pi . (6.63)
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which agrees with

Pj =
∂

∂Q̇j
L
(
qk(Q, t), q̇k(Q, t), t

)
=

∂

∂Q̇j
L
(
qk(Q, t),

∂

∂t
qk(Q, t) + Q̇i

∂qk
∂Qi

, t
)

=
∑
k

∂L

∂q̇k

∂qk
∂Qj

=
∑
k

pk
∂qk
∂Qj

(6.64)

(cf. Eq. (6.26). Thus, any point transformation (6.59) (plus Eq. (6.64)) is canonical.
Example of a non-canonical transformation:
Take a harmonic oscillator with H = p2

2m + mω2q2

2 , then

q̇ =
∂H

∂p
=

p

m
, ṗ = −∂H

∂q
= −mω2q . (6.65)

Consider the transformation

Q = q0 ln
q

q0
, P = p0 ln

p

p0
, (6.66)

or
q = q0e

Q/q0 , p = p0e
P/p0 . (6.67)

The Hamiltonian in the new variables is

H̃ = H̃(P,Q) =
p2

0

2m
e2P/p0 +

mω2

2
q2

0e
2Q/q0 . (6.68)

Now, using Q = q0 ln(q/q0), we can find

Q̇ = q0
1

q/q0
· q̇
q0

=
q0

q
q̇ =

q0

q

p

m
=
q0

m

p

q
=
q0

m

p0e
P/p0

q0eQ/q0
, (6.69)

or
Q̇ =

p0

m
eP/p0−Q/q0 . (6.70)

Let us check whether this coincides with ∂H̃
∂P :

∂H̃

∂P
=

p2
0

2m

2

p0
e2P/p0 =

p0

m
e2P/p0 . (6.71)

Hence, Q̇ 6= ∂H̃
∂P , i.e., the transformation is not canonical.

6.4 Poisson brackets

If f = f({qi, pi}, t) and g = g({qi, pi}, t) are two functions of dynamical variables pi and qi
the Poisson bracket [f, g]q,p is defined as

[f, g]q,p
def
=

∑
k

[ ∂f
∂qk

∂g

∂pk
− ∂f

∂pk

∂g

∂qk

]
(6.72)

The full time derivative of f = f({qi, pi}, t) can be represented as

df

dt
=
∂f

∂t
+
∑
k

(
∂f

∂qk
q̇k +

∂f

∂pk
ṗk

)
(6.73)
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Using Hamilton’s equations, we get

df

dt
=
∂f

∂t
+
∑
k

(
∂f

∂qk

∂H

∂pk
− ∂f

∂pk

∂H

∂qk

)
≡ ∂f

∂t
−
[
H, f

]
(q,p)

(6.74)

where [
H, f

]
(q,p)

=
∑
k

(
∂H

∂qk

∂f

∂pk
− ∂H

∂pk

∂f

∂qk

)
(6.75)

is the Poisson bracket for H and f .
For f to be constant in time, f must satisfy

∂f

∂t
−
[
H, f

]
(q,p)

= 0 , (6.76)

or, if f does not depend on t explicitly, it is constant when [H, f ](q,p) = 0.
Examples. Let g = qi. Then[

f, qi
]
(q,p)

=
∑
k

(
∂f

∂qk

∂qi
∂pk
− ∂f

∂pk

∂qi
∂qk

)
=
∑
k

(
∂f

∂qk
· 0− ∂f

∂pk
· δik

)
= − ∂f

∂pi
. (6.77)

Similarly,

[
f, pi

]
(q,p)

=
∑
k

(
∂f

∂qk

∂pi
∂pk
− ∂f

∂pk

∂pi
∂qk

)
=
∑
k

(
∂f

∂qk
· δik −

∂f

∂pk
· 0
)

=
∂f

∂qi
. (6.78)

and [
qk, qi

]
(q,p)

= 0 ,
[
pk, pi

]
(q,p)

= 0 ,
[
qk, pi

]
(q,p)

= δik . (6.79)

Using Poisson brackets, we can write Hamilton’s equations as

q̇i =
∂H

∂pi
= −

[
H, qi

]
(q,p)

or
[
H, qi

]
(q,p)

= −∂H
∂pi

, (6.80)

and
ṗi = −∂H

∂qi
= −

[
H, pi

]
(q,p)

or
[
H, pi

]
(q,p)

=
∂H

∂qi
, (6.81)

in the form explicitly involving only q and p variables.
Properties of Poisson brackets

[f, c] = 0 if c = const

[f1 + f2, g] = [f1, g] + [f2, g]

[f1f2, g] = [f1, g]f2 + f1[f2, g][
f, [g, h]

]
] +

[
g, [h, f ]

]
] +

[
h, [f, g]

]
] = 0 “Jacobi identity” (6.82)
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(First three properties are trivial and the proof of Jacobi identity can be found in Goldstein’s
textbook).

A consequence of Jacobi identity: if f(q, p, t) and g(q, p, t) are constants of motion, so
is [f, g].

Proof:

d

dt
[f, g] =

∂

∂t
[f, g]−

[
H, [f, g]

]
=
[∂f
∂t
, g
]

+
[
f,
∂g

∂t

]
+
[
f, [g,H]

]
+
[
g, [H, f ]

]
=

=
[∂f
∂t
− [H, f ], g

]
+
[
f,
∂g

∂t
− [H, g]

]
= 0 (6.83)

So, one can construct new constants of motion by taking [f [f, g]], [g, [g, f ]], [f, [f, [f, g]]] etc.
Since the number of constants of motion is 2n − 1 (with n being a number of generalized
coordinates, see Sect. 3.7.4), this process will stop at some point: the new Poisson brackets
will be either an old ones or simply constants.

6.4.1 Poisson brackets and canonical transformations

Theorem: the transformation

qi → Qi(q, p), pi → Pi(q, p) (6.84)

is a canonical one if and only if

[Qi, Qj ](q,p) = [Pi, Pj ](q,p) = 0 and [Qi, Pj ](q,p) = δij (6.85)

Proof: see Goldstein’s textbook.

Example: harmonic oscillator in terms of P and Q introduced in Eq. (6.51)

q =

√
2P

mω
sinQ, p =

√
2Pmω cosQ (6.86)

The inverse formulas are

Q = arctanmω
q

p
, P =

mω

2
q2 +

p2

2mω
(6.87)

so (arctan′ x = 1
1+x2 )

[Q,P ] =
∂Q

∂q

∂P

∂p
− ∂P

∂q

∂Q

∂p
=

1

1 +m2ω2 q
2

p2

+m2ω2 q
2

p2

1

1 +m2ω2 q
2

p2

= 1 (6.88)

Theorem: Poisson brackets are canonical invariants , i.e. if

qi → Qi(q, p), pi → Pi(q, p) (6.89)

is a canonical transformation, then

[f, g](q,p) = [f, g](Q,P ) (6.90)
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Proof: if f(q, p) = f(q(Q,P ), p(Q,P )) and g(q, p) = g(q(Q,P ), p(Q,P )), by chain rule we
get a formula

[f, g]q,p =
∑
i

[ ∂f
∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

]
=
∑
i

∂f

∂qi

[ ∂g
∂Qj

∂Qj
∂pi

+
∂g

∂Pj

∂Pj
∂pi

]
−
∑
i,j

∂f

∂pi

[ ∂g
∂Qj

∂Qj
∂qi

+
∂g

∂Pj

∂Pj
∂qi

]
=
∑
j

∂g

∂Qj

[
f,Qj

]
(q,p)

+
∑
j

∂g

∂Pj

[
f, Pj

]
(q,p)

(6.91)

Next, take f(Q,P ) = Qi in the above formula:

[Qi, g](q,p) =
∑
j

∂g

∂Qj

[
Qi, Qj

]
(q,p)

+
∑
j

∂g

∂Pj

[
Qi, Pj

]
(q,p)

= 0 +
∂g

∂Pi
=

∂g

∂Pi
(6.92)

so we can use [f,Qi](q,p) = − ∂g
∂Pi

what follows.
Similarly, taking f(Q,P ) = Pi in Eq. (6.91) we get

[Pi, g]q,p =
∑
j

∂g

∂Qj

[
Pi, Qj

]
(q,p)

+
∑
j

∂g

∂Pj

[
Pi, Pj

]
(q,p)

= − ∂g

∂Qi
(6.93)

Thus, [f,Qi](q,p) = − ∂f
∂Pi

and [f, Pi]q,p = ∂f
∂Qi

which means that we can rewrite Eq.
(6.91) as

[f, g]q,p =
∑
j

∂g

∂Qj

[
f,Qj

]
(q,p)

+
∑
j

∂g

∂Pj

[
f, Pj

]
(q,p)

=
∑
j

[ ∂f
∂Qj

∂g

∂Pi
− ∂f

∂Pj

∂g

∂Qi

]
= [f, g](P,Q)

(6.94)
Thus, Poisson brackets evaluated with one set of canonical variables, have the same value
for any other choice of variables related to initial ones by a canonical transformation.

6.5 Canonical transformations and symmetry properties

Consider an infinitesimal canonical transformation

Qi = qi + δqi, Pi = pi + δpi (6.95)

In what follows we will keep only linear terms in δqi and δpi. Such transformation must
have a generating function which differs from identity generating function (6.58) only in-
finitesimally:

F (q, P ) =
∑
j

qjPj + εG(q, P ) (6.96)

where ε is a small parameter. We get then

pi =
∂F

∂qi
= Pi + ε

∂G

∂qi
⇔ δpi = Pi − pi = − ε∂G

∂qi

Qi =
∂F

∂Pi
= qi + ε

∂G

∂Pi
⇔ δqi = Qi − qi = ε

∂G

∂pi
(6.97)
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Since G(q, P ) = G(q, p) +O(ε), the above equation can be rewritten as

δqi = ε
∂G(q, p)

∂pi
, δpi = − ε∂G(q, p)

∂qi
(6.98)

so any arbitrary function G(q, p) generates some infinitesimal canonical transformation.
Example: take G(q, p) = H(q, p) and ε = dt, then

δqi = dt
∂H(q, p)

∂pi
= q̇idt, δpi = − dt∂H(q, p)

∂qi
= ṗidt (6.99)

We see that G(q, p) = H(q, p) generates the infinitesimal transformation which takes the
system at time t and evolves it to time t+ dt (because Qi = qi + δqi = qi + q̇idt = qi(t+ dt)

and similarly for Pi = pi(t+ dt)).
Now, the evolution of the system between t0 and t is generated by a sequence of

infinitesimal (canonical) transformations (6.99). The sequence of canonical transformations
is also a canonical transformation so one can view a time evolution of the system as being
generated by a canonical transformation that takes (q0, p0) at time t0 to (q, p) at time t.
This implies the existence of a generating function, and finding of such generating function
is equivalent to solving the problem of time evolution of our mechanical system.

Consider a certain function u(q, p).

• Q: what is the change of u under (qi, pi) → (qi + δqi, pi + δpi)?

• A: δu = u(qi + δqi, pi + δpi)− u(qi, pi) = ε[u,G]

Indeed,

δu = u(qi + δqi, pi + δpi)− u(qi, pi) =
∑
i

[ ∂u
∂qi

δqi +
∂u

∂pi
δpi

]
= ε

∑
i

[ ∂u
∂qi

∂G

∂pi
− ∂u

∂pi

∂G

∂qi

]
= ε[u,G] (6.100)

If we take u(q, p) = H(q, p), then δH = ε[H,G] gives the change ofH under the infinitesimal
transformation generated by G(q, p). Now, if G is a constant of motion [H,G] = 0 which
means that the canonical transformations generated by G’s which are constants of motion
leave H invariant. On the other hand, we know that symmetry properties of the system
indicate which transformations leave H invariant which means that symmetry defines the
set of canonical transformations which leave H invariant.

6.5.1 Total momentum as the generator of spatial translations

Consider an infinitesimal translation of all coordinates of N particles

~ri → ~r′i = ~ri + ~ε (same ~ε for all ~ri), i = 1, 2, ...N

~pi → ~p′i = ~pi (6.101)

Q: What is the generating function G(q, p) or this transformation?
A: ~G = P =

∑
i ~pi
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Indeed, from Eq. (6.98) we see that ∂G
∂qi
∼ δpi = 0 so G = G(pi). In addition,

(δqi)α = ~ε· ∂ ~G
∂(pi)α

= εα which is the first line in the above equation. Thus, the translations
in the α directions are induced by Pα.

Example: two interacting particles

H =
~p2

1

2m
+

~p2
2

2m
+ V (~r1 − ~r2) (6.102)

(equal masses for simplicity but no spherical symmetry).
This system is invariant if both particles are translated by ~ε (or equivalently, the frame

is translated by −~ε). From Eq. (6.100) we get

(δH)α = [H,Pα] = [H, ~p1α + ~p2α] =
[ ~p2

1

2m
+

~p2
2

2m
+ V (~r1 − ~r2), ~p1α + ~p2α

]
=

= [V (~r1 − ~r2), ~p1α + ~p2α] =
∂V (~r1 − ~r2)

∂r1α
+
∂V (~r1 − ~r2)

∂r2α
= 0 (6.103)

where we used Eq. (6.78). The meaning of this conservation law becomes evident if one
performs the (canonical) transformation to the CM position and relative separation coor-
dinates

~R =
~r1 + ~r2

2
, ~r = ~r1 − ~r2

~P = ~p1 + ~p2, , ~p =
~p1 − ~p2

2
(6.104)

In these coordinates

H =
~P2

4m
+
~p2

m
+ V (~r) (6.105)

which is cyclic in ~R ⇒ ~P = const.

6.5.2 Total angular momentum as generator of rotations

Consider a rotation of all coordinates of N particles about the n̂ axis by an infinitesimal
angle ε. From Eq. (2.14)

δ~V (~r) = ε× ~V (~r) (6.106)

for any vector V so

~ri → ~r′i = ~ri + ~ε× ~ri,
~pi → ~p′i = ~pi + ~ε× ~pi (6.107)

(again of course same ~ε for all particles). In components Eqs. (6.107) read

δriα = εεαβγn̂βriγ

δpiα = εεαβγn̂βpiγ (6.108)

The generating function for this transformation is obtained from Eqs. (6.98) so

δriα = εεαβγn̂βriγ = ε
∂G

∂piα
⇒ ∂G

∂piα
= εαβγn̂βriγ (6.109)

δpiα = εεαβγn̂βpiγ = − ε ∂G
∂riα

⇒ ∂G

∂riα
= − εαβγn̂βpiγ (6.110)
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which is solved by
G(ri, pi) =

∑
j

εµνλn̂µrjνpjλ (6.111)

Indeed,

∂G

∂riα
=
∑
j

εµνλδijδαν n̂µpjλ = εµαλn̂µpiλ = r.h.s. of Eq. (6.110)

∂G

∂piα
=
∑
j

δijδαλεµνλn̂µrjν = εµνλn̂µriν = r.h.s. of Eq. (6.109) (6.112)

Now, note that

G(ri, pi) =
∑
j

εµνλn̂µrjνpjλ = n̂µ
∑
j

εµνλrjνpjλ = n̂ · ~L (6.113)

so n̂ · ~L is a generator of rotations about n̂.
Let ~F (~r, ~p) be any vector function of ~ri and ~pi (for example ~F =

∑
j ~pj = P or

~F = ~ri× ~pi = ~Li). Under rotations on angle ε about the n̂ axis it changes according to Eq.
(6.100)

δF = ε[F, ~L · ~n] (6.114)

On the other hand, the general formula for rotation of any vector is given by Eq. (6.107):
δ ~F = εn̂× ~F which implies that

[F, ~L · ~n] = n̂× ~F (6.115)

If this formula is applied to ~F = ~L and n̂ = êz one obtains

[~L,Lz] = êz × ~L ⇔ [Lx, Lz] = − Ly, [Ly, Lz] = Lx (6.116)

Similarly, one can prove that [Lx, Ly] = Lz so we get

[Lα, Lβ] = εαβγLγ (6.117)

It follows that

• if any two components of ~L are conserved, say Lx and Ly, the remaining component
Lz = [Lx, Ly] is also conserved due to Eq. (6.83)

• [~L2, ~Lx] = [~L2, ~Ly] = [~L2, ~Lz] = 0

Indeed,

[~L2, ~Lx] = [LxLx + LyLy + LzLz, Lx] = [LyLy, Lx] + [LzLz, Lx]

= Ly[Ly, Lx] + [Ly, Lx]Ly + Lz[Lz, Lx] + [Lz, Lx]Lz

= − 2LyLz + 2LyLz = 0 (6.118)

and similarly [~L2, ~Ly] = 0 and [~L2, ~Lz] = 0.
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Part XIX

6.6 Hamilton-Jacobi theory

Canonical transformations can be used to solve the problem, at least in principle. One
way is to find a canonical transformation which makes H cyclic in all coordinates. An-
other way is to find a canonical transformation that takes q(t0), p(t0) to q(t), p(t), then the
transformation equations

q = q(q0, p0, t), p = p(q0, p0, t) (6.119)

are the solution of our mechanical problem. Such approach is called Hamilton-Jacobi theory.
Consider a generating function Φ(q, P, t) yet to be determined. This function generates

a canonical Legendre transformation according to Eq. (6.55):

pi =
∂Φ(q, P, t)

∂qi
, Qi =

∂Φ(q, P, t)

∂Pi

H̃(Q,P, t) = H(q, p, t) +
∂Φ

∂t
(6.120)

Suppose Φ is such that H̃ = 0. If this is the case, the Hamilton equations (6.4) yield

∂H̃(Q,P, t)

∂Pi
= Q̇i = 0, ⇒ Qi = const = Q0i ≡ Qi(t = 0)

∂H̃(Q,P, t)

∂Qi
= − Ṗi = 0, ⇒ Pi = const = P0i ≡ Pi(t = 0) (6.121)

This implies that Φ(q, P, t) is really a function of qi and t since Pi are constant. Define

S(q, t) = Φ(q, P0, t)

The function S is determined by differential equation (6.120) (with H̃ = 0):

H
(
q;
∂S

∂q
; t
)

+
∂S

∂t
= 0 (6.122)

or, in explicit form,

H
(
q1, ..., qn; ,

∂S

∂q1
, ...,

∂S

∂qn
; t
)

+
∂S(q1, ..., qn; t)

∂t
= 0 (6.123)

In this way we traded 2n first-order coupled differential equations (6.121) for a single partial
differential equation with n+ 1 variables (6.121). It is called Hamilton-Jacobi equation. It
has n+1 constants of integration. This is understood by integrating Eq. (6.123) one variable
at a time while keeping the next variable fixed. However, among the n + 1 integration
constants, one is additive

S(q1, ..., qn;α1, ..., αn, αn+1; t) = S(q1, ..., qn;α1, ..., αn; t) + S0 (6.124)

(where S0 is the (n+ 1)th constant) since the Eq. (6.123) involves only partial derivatives
of S so S → S + S0 does not affect the equation.
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Next, we define Hamilton’s principal function

S(q1, ..., qn;P1, ..., Pn; t) = S(q1, ..., qn;α1 → P1, ..., αn → Pn; t) (6.125)

and study the canonical transformation generated by S(q1, ..., qn;P1, ..., Pn; t).
From Eq. (6.120) we get

pi =
∂S(qj , Pj , t)

∂qi

Qi =
∂S(qj , Pj , t)

∂Pi
(6.126)

Next, from the Hamilton-Jacobi equation (6.123)

H
(
q1, ..., qn; ,

∂S

∂q1
, ...,

∂S

∂qn
; t
)

+
∂S(q1, ..., qn;α1, ...αn; t)

∂t
= 0 (6.127)

and Eqs. (6.120), (6.126) we see that

H̃
(
Q1, ..., Qn;P1, ..., Pn; t

)
= H(q1, ..., qn; p1, ..., pn; t) +

∂S(q1, ..., qn;P1, ...Pn; t)

∂t

= H
(
q1, ..., qn; ,

∂S

∂q1
, ...,

∂S

∂qn
; t
)

+
∂S(q1, ..., qn;α1, ...αn; t)

∂t
= 0 (6.128)

This, if one solves the Hamilton-Jacobi equation (6.123) one finds the canonical transfor-
mation with H̃ = 0 leading to conserved Pi and Qi (see Eq. (6.121)). We already defined
αi ≡ Pi and now we denote

Qi = const = βi

The Eq. (6.126) implies

βi =
∂S(q1, ..., qn;α1, ..., αn; t)

∂αi
(6.129)

which can be inverted to give

qi = qi(α1, ..., αn;β1, ..., βn; t) (6.130)

thus solving our problem.
In practice, to obtain Hamilton-Jacobi equation (6.123) one replaces pi → ∂S

∂qi
and then

requires that

H
(∂S
∂qi

, qi, t
)

+
∂S(qi; t)

∂t
= 0 (6.131)

When H does not depend on time explicitly one can use ansatz

S(q1, ...qn, α1, ...αn, t) = W (q1, ...qn, α1, ...αn)− α1t (6.132)

and then the constant α1 is the energy due to Eq. (6.131)

H
(∂S
∂qi

, qi

)
= − ∂S(qi; t)

∂t
= α1 (6.133)
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so in terms of W we get

H
(∂W
∂qi

, qi

)
= α1 (6.134)

which is the Hamilton-Jacobi equation for H that does not depend on time explicitly
Let us demonstrate that Hamilton’s principal function S can be interpreted as an action

along the classical path. Suppose we solved our mechanical problem, namely found qi in Eq.
(6.130) as functions of t and initial conditions. The coordinates qi define some trajectory
in the configuration space of the system. Along this trajectory

dS

dt
=
∑
i

∂S

∂qi
q̇i +

∂S

∂t
(6.135)

since α1, ..., αn are constants. Moreover, since S satisfies the Hamilton-Jacobi equation
(6.123), ∂S

∂qi
= pi and ∂S

∂t = −H, so we get

dS

dt
=
∑
i

piq̇i −H = L(q, q̇, t) (6.136)

and

S(t) = S[q1(t), ...qn(t);α1, ...αn; t] =

∫ t

t0

dt′ L(t′) + S(t0) (6.137)

which shows that S(t) is the action evaluated along the trajectory (6.130). Unfortunately,
the equation (6.137) is useless in determining S since it implies a priori knowledge of the
trajectory.

6.6.1 Example 1: harmonic oscillator

Let us take

H =
p2

2m
+
mω2q2

2
(6.138)

The Eq. (6.131) takes the form

1

2m

(∂S(q, α, t)

∂q

)2
+
mω2q2

2
+
∂S(q, α, t)

∂t
= 0 (6.139)

for the harmonic oscillator. (The additive constant S0 is ignored here since it is irrelevant
for the solution). Since t does not appear in H explicitly, we can try the solution in the
form

S(q, α, t) = W (q, α)− αt (6.140)

We get
1

2m

(∂W (q, α)

∂q

)2
+
mω2q2

2
= α (6.141)

which has a solution

W (q, α) = ±
√

2m

∫ q

dq′
√
α− 1

2
mω2q′2 (6.142)
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This integral can be easily calculated, but it is of no interest, since the trajectory q(α, β, t)
is determined by Eq. (6.129)

β =
∂S

∂α
= ±

√
m

2

∫ q dq′√
α− 1

2mω
2q′2

− t

⇔ β + t = ±
√
m

2

∫ q dq′√
α− 1

2mω
2q′2

(6.143)

Let us take (−) sign, then

β + t =
1

ω
arccos

(
qω

√
m

2α

)
⇒ q =

√
2α

mω
cosω(t+ β) (6.144)

where α and β are determined now by the initial conditions. Note that the constant α is
actually the energy since from Eq. (6.131) and Eq. (6.140) we get

H = α (6.145)

As an example, let us take initial conditions q(0) = q0 and q̇(0) = 0, then α = mω2

2 q2
0 and

β = 0:

q(t) = q0 cosω(t+ β) ⇒ q̇(t) = − ωq0 sinω(t+ β) ⇒ sinωβ = 0 ⇒ β = 0

⇒ q(t) = q0 cosωt (6.146)

The function S can be found from Eq. (6.140) and (6.142)

S = −mω
∫ q

dq′
√
q2

0 − q′
2 − mω2q2

0

2
t = mω2q2

0

∫ t

dt′ sin2 ωt′ − mω2q2
0

2
t (6.147)

On the other hand, the action is given by

S =

∫ t

dt′
(m

2
q̇2(t′)− mω2

2
q2(t′)

)
=

mω2q2
0

2

∫ t

dt′(sin2 ωt′ − cos2 ωt′)

=
mω2q2

0

2

∫ t

dt′(2 sin2 ωt′ − 1) = − mω2q2
0

2
t+mω2q2

0

∫ t

dt′ sin2 ωt′ (6.148)

6.6.2 Example 2: particle in a central potential

The Hamilton-Jacobi equations are useful for the class of problems which admit separation
of variables. As an example, we will consider the motion of a particle in a plane under the
influence of a central force. The Lagrangian is

L =
m

2
(ṙ2 + r2φ̇2)− V (r) (6.149)

The canonical momenta are

pr =
∂L

∂ṙ
= mṙ, pφ =

∂L

∂φ̇
= mr2φ̇ (6.150)
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so the Hamiltonian has the form

H =
p2
r

2m
+

p2
φ

2mr2
+ V (r) (6.151)

As we discussed above, since this Hamiltonian does not depend on time explicitly we
can try the ansatz

S(q1, q2;α1, α2; t) = W (q1, q2;α1, α2; t)− α1t (6.152)

and the Hamilton-Jacobi equation (6.123) turns to

α1 = H(r, φ,
∂W

∂r
,
∂W

∂φ
, α1, α2) ⇒ 1

2m

(∂W
∂r

)2
+

1

2mr2

(∂W
∂φ

)2
+V (r) = α1 (6.153)

Let us try now ansatz with separation of variables

W (r, φ, α1, α2) = W1(r, α1, α2) +W2(φ, α1, α2) (6.154)

We get

1

2m

(∂W1

∂r

)2
+

1

2mr2

(∂W2

∂φ

)2
+ V (r) = α1

⇒
(∂W2

∂φ

)2
= r2

[
2m[α1 − V (r)]−

(∂W1

∂r

)2]
(6.155)

The l.h.s. depends only on φ while the r.h.s. only on r so both of them must be constant.
Let us choose this constant as α2

2, then
∂W2
∂φ = α2 and hence the Eq. (6.154) reads

W (r, φ, α1, α2) = W1(r, α1, α2) + α2φ (6.156)

One could have guessed this form for W by observing that H is cyclic in φ so

pφ =
∂S

∂φ
=

∂W

∂φ
= const ≡ α2 (6.157)

leading to Eq. (6.156).
Next, using Eq. (6.156) we can rewrite the Hamilton-Jacobi equation (6.155) as

1

2m

(∂W1

∂r

)2
+

α2
2

2mr2
+ V (r) = α1

⇒ ∂W1

∂r
=

√
2m[α1 − V (r)]− α2

2

r2
(6.158)

and we get

W (r, φ, α1, α2) =

∫ r

dr′

√
2m[α1 − V (r′)]− α2

2

r′2
+ α2φ (6.159)

Now, from Eq. (6.129) we can find β1 and β2

β1 =
∂S

∂α1
=

∂W

∂α1
− t

β2 =
∂S

∂α2
=

∂W

∂α2
(6.160)
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so we get

t+ β1 = m

∫ r

dr′
1√

2m[α1 − V (r′)− α2
2r
′−2

(6.161)

and
φ = β2 + α2

∫ r dr′

r′2
1√

2m[α1 − V (r′)]− α2
2r
′−2

(6.162)

which are Eqs. (1.68) and (1.70) for the trajectory in a central potential. We see now that
the constant α2 is the conserved angular momentum (and α1 is energy as we saw above).

6.7 Action-angle variables

Hamilton-Jacobi theory is very convenient for description of conservative systems whose
motion is both separable and periodic. Separability means that

W (q1, ...qn;α1, ....αn) = W1(q1;α1, ....αn) +W2(q2;α1, ....αn) + ...+Wn(qn;α1, ....αn)

(6.163)
and two types of periodic motion are libration (Fig. a) and rotation (Fig. b).

Figure 62. Libration and rotation

The example of libration is a simple pendulum with small oscillations; the example of
rotation is the pendulum with enough energy to go over the top.

The action variables are defined as

Ji =

∮
pidqi (6.164)

The integral is the area in phase space taken over one period of the motion.
From Eqs. (6.126), (6.132) and (6.163) we get

pi =
∂W

∂qi
=

∂Wi(qi;α1, ..αn)

∂qi
(6.165)

– 126 –



so the Eq. (6.164) gives Ji as functions of α’s

Ji = Ji(α1, ..αn) (6.166)

Thus, Ji are constants of motion (since αi are). We assume that Eqs. (6.166) can be
inverted

αi = αi(J1, ..Jn) (6.167)

As we saw in Eq. (6.133), the constant α1 is the energy

α1 = α1(J1, ..Jn) = H(J1, ..Jn) = E (6.168)

Now we can take Ji as new integration constants in place of αi:

W [q1, ...qn;α1(J), ...αn(J)] = W̄ [q1, ...qn; J1, ...Jn)

S[q1, ...qn;α1(J), ...αn(J); t] = S̄[q1, ...qn; J1, ...Jn; t) = W̄ − tα1(J) (6.169)

where bar is added for convenience.
Now let us study canonical transformation (6.126) generated by Hamilton’s principal

function (6.169) with the canonical momenta being Ji

S̄[q1, ...qn;P1, ...Pn; t) = S̄[q1, ...qn; J1, ...Jn; t), Pi ≡ Ji (6.170)

Rewriting Eq. (6.126) we get

pi =
∂S̄(qj , Pj , t)

∂qi

∣∣∣
αk=const

=
∂S̄(qj , Jj , t)

∂qi

∣∣∣
Jk=const

Qi =
∂S̄(qj , Pj , t)

∂Pi
=

∂S̄(qj , Jj , t)

∂Ji
(6.171)

In addition, it is easy to check that S̄[q1, ...qn; J1, ...Jn; t) satisfies the Hamilton-Jacobi
equation (6.123)

−∂S̄(q1, ..., qn; t)

∂t
= α1 = H̄(J1, ...Jn)

= H
(
q1, ..., qn; p1, ...pn) = H

(
q1, ..., qn; ,

∂S̄

∂q1
, ...,

∂S̄

∂qn

)
(6.172)

Since S̄ satisfies the Hamilton-Jacobi equation the canonical transformation (6.126) gen-
erated by S̄ leads to H̃ = 0 and conserved Pi = Ji (we already saw that) and conserved
Qi:

P̄i ≡ Ji = const

Q̄i ≡ β̄i (6.173)

Next, we define angle variables

wi(q1, ...qn; J1, ...Jn) ≡ ∂

∂Ji
W̄ (q1, ...qn; J1, ...Jn) (6.174)

– 127 –



Since β̄i = Qi =
∂S̄(qj ,Jj ,t)

∂Ji
are constants of motion, from Eq. (6.169) (S̄ = W̄ − tα1(J))

we get

β̄i(q1, ...qn; J1, ...Jn) =
∂S̄(q1, ...qn; J1, ...Jn; t)

∂Ji

=
∂W̄ (q1, ...qn; J1, ...Jn)

∂Ji
− t∂α1(q1, ...qn; J1, ...Jn)

∂Ji

= wi(q1, ...qn; J1, ...Jn)− t∂α1(q1, ...qn; J1, ...Jn)

∂Ji
= const (6.175)

and therefore
wi = νit+ β̄i (6.176)

where the “frequency” νi is defined as

νi ≡
∂

∂Ji
α1(J1, ...Jn) =

∂

∂Ji
H(J1, ...Jn) (6.177)

Note that each wi increase linearly since β̄i and νi are constants of motion.
Now consider periodic motion so the system returns to initial configuration after an

integer number of periods. Let us find change in angle variables after the system goes over
large integer number of periods. The infinitesimal change of wi is

dwi =
∑
j

∂wi
∂qj

dqj =
∂

∂Ji

∑
j

∂W

∂qj
dqj (6.178)

where we used Eq. (6.174) and the fact that J ’s are constants of motion. Next, we recall
that we assumed separability (6.163) and get

dwi =
∂

∂Ji

∑
j

∂Wj

∂qj
dqj =

∂

∂Ji

∑
j

pjdqj (6.179)

where we used Eq. (6.165).
Now let us integrate Eq. (6.179) over one period ∆t of the system during which each

degree of freedom qk undergoes integer number nk of periods τk.

∆t = nkτk, k = 1, 2, ...n (6.180)

From Eq. (6.176) we get
∆wk = νk∆t = νknkτk (6.181)

On the other hand, the total change in wk variable can be obtained by integrating Eq.
(6.179)

∆wi =
∂

∂Ji

∑
j

∫
pjdqj (6.182)

Each degree of freedom wj has executed an integer number of periods nj so∫
pjdqj = nj

∮
pjdqj = njJj (6.183)
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(recall the definition of action variables (6.164)) and we get

∆wi =
∂

∂Ji

∑
j

njJj = ni (6.184)

Comparing this equation to Eq. (6.181), we see that

νi =
1

τi
(6.185)

which justifies the name “frequency” for νi. They are called fundamental frequencies of the
system. From Eq. (6.177) we see that they are partial derivatives of the energy with respect
to action variables Ji.

6.7.1 Example: harmonic oscillator in two dimensions

Consider 2-dim harmonic oscillator with two different spring constants. The Hamiltonian
is

H =
p2

1

2m
+

p2
2

2m
+
k1

2
q2

1 +
k2

2
q2

2 = α (6.186)

(change of name α1 → α) and the Hamilton-Jacobi equation (6.134) becomes

1

2m

[(∂W
∂q1

)2
+
(∂W
∂q2

)2]
+
k1

2
q2

1 +
k2

2
q2

2 = α (6.187)

Separation of variables
W (q1, q2) = W1(q1) +W2(q2) (6.188)

leads to [ 1

2m

(∂W1

∂q1

)2
+
k1

2
q2

1

]
+
[(∂W2

∂q2

)2
+
k2

2
q2

2

]
= α (6.189)

which means that two expressions in square brackets are constants:

1

2m

(∂W1

∂q1

)2
+
k1

2
q2

1 = α1

1

2m

(∂W2

∂q2

)2
+
k2

2
q2

2 = α2

α1 + α2 = α = E (6.190)

These equatioin can be easily solved:

dW1(q1)

dq1
= p1 = ±

√
m(2α1 − k1q2

1)

dW2(q2)

dq2
= p2 = ±

√
m(2α2 − k2q2

2) (6.191)

where we used Eq. (6.171)

pi =
∂S̄(qj , Jj , t)

∂qi

∣∣∣
Jk=const

=
dWi(q1, q2)

dqi
(6.192)
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Now introduce new variables θ

q1 =

√
2α1

k1
sin θ1 ⇒ dq1 =

√
2α1

k1
cos θ1dθ1

q2 =

√
2α2

k2
sin θ2 ⇒ dq2 =

√
2α2

k2
cos θ2dθ2 (6.193)

The action variables (6.164) take the form

J1 ≡
∮
p1dq1 = 2α1

√
m

k1

∫ 2π

0
dθ1 cos2 θ1 = 2πα1

√
m

k1

J2 ≡
∮
p2dq2 = 2α2

√
m

k2

∫ 2π

0
dθ2 cos2 θ2 = 2πα2

√
m

k2
(6.194)

so

α1 =
J1

2π

√
k1

m
, α2 =

J2

2π

√
k2

m
(6.195)

and the Hamiltonian defined by Eqs. (6.186) and (??) takes the form

H(J1, J2) =
J1

2π

√
k1

m
+
J2

2π

√
k2

m
(6.196)

From this Hamiltonian we can obtain fundamental frequencies using Eq. (6.177)

ν1 =
∂H

∂J1
=

1

2π

√
k1

m

ν2 =
∂H

∂J2
=

1

2π

√
k2

m
(6.197)

which are frequencies of independent oscillations in the first and second coordinates.

– 130 –


	I 
	 Basic Principles
	Newton Laws
	Conservation Laws
	Systems of particles
	Center of mass motion
	Angular momentum



	II 
	Decomposition of  into c.m. and '
	Work and energy
	Central forces
	Conservation laws
	Description of motion
	Effective potential



	III 
	Form of the trajectory in space
	Confined motion in a gravitational field
	Open motion in the gravitational field.

	Two-body problem with central potential


	IV 
	Scattering
	Cross section
	Rutherford scattering



	V 
	Accelerated coordinate systems
	Rotating coordinate systems
	Infinitesimal rotations
	Accelerations



	VI 
	Translations and rotations
	Newton's laws in accelerated coordinate systems
	Motion on the surface of the Earth
	Falling particle
	Horizontal motion

	Foucault pendulum
	Tides


	VII 
	Lagrangian dynamics
	Generalized coordinates
	Euler-Lagrange equations
	LHS of Eq. (3.12)
	RHS of Eq. (3.12)

	Lagrange equations


	VIII 
	Examples of Lagrangians
	Example 1: double pendulum
	Example 2: pendulum with sliding pivot

	Calculus of variations
	Example 1
	Example 2
	Variational principle for a functional of many variables



	IX 
	Hamilton's principle
	Constants of motion
	Space translations
	 Invariance under rotations
	Invariance under time translations
	Number of constants of motion 
	Example: particle in the potential V(r) = -r.



	X 
	Forces of constraints
	Example


	XI 
	Small oscillations
	Lagrangian for small oscillations: a set of coupled oscillators
	Eigenvalues and eigenvectors
	General solution and initial conditions

	Normal modes
	Modal matrix
	Normal coordinates



	XII 
	Example 1: coupled pendulums
	Example 2: longitudinal waves in one-dimensional crystal


	XIII 
	Eigenvalues
	Eigenvectors
	Example 2a: transverse waves 
	Continuum limit: non-relativistic string
	Eigenfrequencies and eigenvectors in the continuum limit
	Lagrangian in the continuum limit



	XIV 
	Rigid body dynamics
	Euler angles
	Angular velocity in terms of Euler angles
	Check of d'dt = ' 



	XV 
	Moments of inertia
	Angular momentum of a rigid body
	Principal axes

	Euler's equations
	Torque-free motion
	Symmetric top
	Asymmetric top



	XVI 
	Motion in external (inertial) system
	Symmetric top with a fixed point in the gravitational field
	Method of effective potential
	Precession and nutation



	XVII 
	Hamiltonian dynamics
	Hamilton's equations
	Example: charged particle in the electromagnetic field
	Lagrangian
	Hamiltonian

	Canonical transformations
	Point transformations in the Lagrangian formulation



	XVIII 
	Transformations in the Hamiltonian formulation
	Method of generating function
	Poisson brackets
	Poisson brackets and canonical transformations

	Canonical transformations and symmetry properties
	Total momentum as the generator of spatial translations
	Total angular momentum as generator of rotations



	XIX 
	Hamilton-Jacobi theory
	Example 1: harmonic oscillator
	Example 2: particle in a central potential

	Action-angle variables
	Example: harmonic oscillator in two dimensions




