Physics 603 Classical Mechanics - Spring 2020 Minkowski space and relativistic dynamics I

M.A. Carrillo-Bernal
ODU Department of Physics

1 3+1 Minkowski space

Vectors in Minkowski space have four components, which are indicated by a greek superscript v^{μ} with $\mu=0,1,2,3$. A latin index is often used to distinguish the spatial part of the vector v^{k} with $k=1,2,3$. The four-vector

$$
\begin{equation*}
x^{\mu}=(c t, \mathbf{x}) \tag{1.1}
\end{equation*}
$$

represents an event which specifies the position where something happens and the time when it happens. Another example is the energy-momentum four-vector

$$
\begin{equation*}
p^{\mu}=(E / c, \mathbf{p})=m_{0} c(\gamma, \gamma \beta) \tag{1.2}
\end{equation*}
$$

In general, four-vectors in Minkowski space must transform properly under Lorentz Transformations (boosts and rotations).

1.1 Scalar product

The inner product g of any four-vectors is an invariant

$$
\begin{equation*}
g\left(v^{\mu}, u^{\nu}\right)=g\left(v^{\prime \mu}, u^{\prime \nu}\right)=s \tag{1.3}
\end{equation*}
$$

For two events x^{μ}, y^{μ} the scalar product is given by

$$
\begin{equation*}
g\left(x^{\mu}, y^{\mu}\right)=\left(c t_{x}\right)\left(c t_{y}\right)-\mathbf{x} \cdot \mathbf{y}=x^{0} y^{0}-x^{k} y^{k} \tag{1.4}
\end{equation*}
$$

where the sum over $k=1,2,3$ is implied. For the four-momentum we notice that the inner product with itself is proportional to the squared rest mass

$$
\begin{equation*}
g\left(p^{\mu}, p^{\mu}\right)=\frac{E^{2}}{c^{2}}-\mathbf{p}^{2}=m_{0}^{2} c^{2} \tag{1.5}
\end{equation*}
$$

The scalar product of the difference between two events $d x$ with itself returns the invariant distance

$$
\begin{equation*}
g\left(d x^{\mu}, d x^{\mu}\right)=d s^{2}=d(c t)^{2}-d \mathbf{r}^{2} \tag{1.6}
\end{equation*}
$$

Two events can be classified according to their invariant distance as

1. Light-like: $d s^{2}=0$
2. Space-like: $d s^{2}<0$
3. Time-like: $d s^{2}>0$

The eigentime, or proper time, for a time-like separation (distance) is defined as

$$
\begin{equation*}
d \tau=\sqrt{d s^{2}} / c=\gamma^{-1} d t \tag{1.7}
\end{equation*}
$$

1.2 Four-forms

A four-form (or covariant vector) is a functional U that maps a Minkowski four-vector (or contravariant vector) into scalars

$$
\begin{equation*}
U\left(x^{\mu}\right)=s . \tag{1.8}
\end{equation*}
$$

Like vectors, forms have four components indicated by a lower index u_{μ} such that

$$
\begin{equation*}
U\left(v^{\mu}\right)=u_{\mu} v^{\mu} . \tag{1.9}
\end{equation*}
$$

1.3 Tensors

Tensors are objects with more than one upper or lower index

$$
\begin{equation*}
T_{\alpha \beta \ldots}^{\mu \nu \ldots} \tag{1.10}
\end{equation*}
$$

these can be constructed out of vectors and forms. The Lorentz matrix itself represents a tensor which takes a vector in a frame S and returns a vector in a different frame S^{\prime}, thus

$$
\begin{equation*}
S^{\prime}: \quad x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu} \tag{1.11}
\end{equation*}
$$

For example, a boost in the z direction is given by

$$
\Lambda_{\nu}^{\mu}=\left(\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \tag{1.12}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right) .
$$

The metric tensor g

$$
g_{\mu \nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{1.13}\\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

allows us to write the scalar product of two vectors as

$$
\begin{equation*}
g\left(x^{\mu}, y^{\nu}\right)=g_{\mu \nu} x^{\mu} y^{\nu} . \tag{1.14}
\end{equation*}
$$

On the other hand, the action of the metric tensor on a vector returns a form, thus lowers its index

$$
\begin{equation*}
g_{\mu \nu} x^{\nu}=x_{\mu}=(c t,-\mathbf{x}) \tag{1.15}
\end{equation*}
$$

2 Relativistic formulation

Upon having defined the proper objects of the Minkowski (scalars, vectors, forms, and tensors) now it is possible to rewrite the laws of physics in a relativistic formulation. The non-relativistic coordinates are replaced by events x^{μ}, with the four-velocity given by the derivative with respect to the eigentime

$$
\begin{equation*}
\frac{d x^{\mu}}{d \tau}=\gamma \frac{d x^{\mu}}{d t}=(\gamma c, \mathbf{u}) \tag{2.1}
\end{equation*}
$$

such that

$$
\begin{equation*}
m_{0} u^{\mu}=\left(\gamma m_{0} c, \gamma m_{0} \mathbf{u}\right)=(E / c, \mathbf{p})=p^{\mu} \tag{2.2}
\end{equation*}
$$

Second Newton's law can then be written in the relativistic formulation as

$$
\begin{equation*}
K^{\mu}=\frac{d p^{\mu}}{d \tau}=\gamma \frac{d p^{\mu}}{d t} \tag{2.3}
\end{equation*}
$$

where K^{μ} represents the four-force. This becomes even more evident by defining the pseudo-force $F^{\mu}=K^{\mu} / \gamma$

$$
\begin{equation*}
F^{\mu}=\frac{d p^{\mu}}{d t}=\left(\frac{d p^{0}}{d t}, \mathbf{F}\right)=\left(\frac{1}{c} \frac{d E}{d t}, \mathbf{F}\right) \tag{2.4}
\end{equation*}
$$

where we can identify the power of the system in the zero component of the pseudo-force. In fact, the scalar product between the pseudo-force and the four-velocity returns the expression for the power in terms of the spatial velocity

$$
\begin{equation*}
\frac{d p^{\mu}}{d t} u_{\mu}=\gamma\left(\frac{d E}{d t}-\mathbf{F} \cdot \mathbf{u}\right)=\frac{m_{0}}{2} \frac{d}{d t} u^{\mu} u_{\mu}=\frac{m_{0}}{2} \frac{d}{d t} c^{2}=0 \quad \Rightarrow \quad \frac{d E}{d t}=\mathbf{F} \cdot \mathbf{u} . \tag{2.5}
\end{equation*}
$$

