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Conserved Quantities and Symmetry

The Euler- Langrange eqution of motion is :

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= 0 (1)

where qi’s are generalized co-ordinates, q̇i’s are generalized velocity. The Lan-

grangian L is defined as the kinetic energy (T ) minus potential energy (V )

L = T − V (2)

The sufficient information about the motion of a system can be gathered even with-

out the complete solution of these equations by knowing the physical nature of the

system motion. Conservation theorems for a system provide the constants of motion

which help in describing the motion of the system.

The generalized momentum or cannonical momentum can defined as:

pi =
∂L
∂q̇i

(3)

Then, the Eq.(1) can be written as:

ṗi =
∂L
∂qi

(4)

If Langrangian L does not depend explicitly on some particular generalized coordi-

nate qi, then ∂L
∂qi

= 0, and the corresponding generalized momentum pi is constant.

Such coordinates are said to be cyclic or ignorable. That means generalized mo-

menta corresponding to cyclic coordinates are constants of motion. Note that if

qi is Cartesian coordinate, pi is the linear momentum but in general, pi does not

necessarily have the dimensions of a linear momentum.

The existence of conserved quantities has an important relationship to the symmetry

of the problem. If the system is invariant under some continuous transformation,

then langrangian L ( or T and V ) are unchanged by alterations in the corresponding

generalized coordinate qj. That means, ∂L
∂qi

= 0 for this particular qi and the Eq.

(4) shows that the momemtum pi is constant of motion.
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Again let us define an energy function h

h(qi, q̇i, t) =
∑
i

∂L
∂q̇i

q̇i − L(qi, q̇i, t) =
∑
i

piq̇i − L (5)

where, pi = ∂L
∂q̇i

is the canonical momentum of the system. Now, differentiating with

respect to time, we obtain

dh

dt
=
∑
i

[
d

dt

(
∂L
∂q̇i

)
q̇i +

∂L
∂q̇i

dq̇i
dt
− ∂L
∂qi

qi
dt
− ∂L
∂q̇i

dq̇i
dt

]
− ∂L
∂t

∴
dh

dt
= −∂L

∂t
(6)

If the langrangian is not an explicit function of time, the Eq.(6) says that the value

of the function h is conserved along the trajectory of the system. The function h

may or may not be equal to the total energy of the system (it is usually equal to the

kinetic plus potential energy of the system IF the Lagrangian contains only terms

quadratic in the velocities).

Noether’s Theorem: “For each symmetry of the Lagrangian, there is a conserved

quantity”.

We shall discuss these ideas with the following examples:

a. Motion of two body system

Two masses m1 and m2 moving under their mutual gravitational attraction

in a uniform external gravitational field whose acceleration is g. Choosing

coordinates the Cartesian coordinates X, Y, Z of the center of mass vector R

(taking Z in the direction of g) and the spherical coordinates r, θ and φ that

define the relative vector r = r1 − r2 from m1 and m2.

Figure 1: Center of gravity (S) and relative coordinates of two masses m1 and m2
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The Kinetic energy K, and Potential energy V of the system are:

K =
1

2
M
(
Ẋ2 + Ẏ 2 + Ż2

)
+

1

2
µ
(
ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2

)
V = m1gz1 +m2gz2 −G

m1m2

r
= MgZ − GµM

r

(7)

where M = m1 +m2, and µ =
m1 m2

m1 +m2

is the reduced mass of the system

Now, the Langrangian of the system is:

L = T − V

L =
M

2

(
Ẋ2 + Ẏ 2 + Ż2

)
+
µ

2

(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
−MgZ +

GMµ

r
(8)

Since, the coordinates X, Y and φ are cyclic, the the system is invariant under

a shift of the coordinate axes in the XY -plane and rotation around Z-axis;

equivalently
∂L
∂X

=
∂L
∂Y

= 0;
∂L
∂φ

= 0 (9)

so that the corresponding momenta pX , pY , and pφ are constants. Using

Eq.(4), we obtain ,

pX =
∂L
∂Ẋ

= MẊ, pY =
∂L
∂Ẏ

= MẎ and pφ =
∂L
∂φ̇

= µr2sin2θ φ̇ (10)

And the relations

ṗX = ṗY = 0 and ṗφ = 0 (11)

merely express the conservation of the linear momenta pX and pY , and angular

momentum pφ.

b. Mass spring system in polar coordinates

A massless spring of force constant k and natural length l lies on a horizontal

frictionless table. The spring is attached to the table at one end (the origin

O), and can rotate freely around it. An object of mass m is attached to the

other end of the spring as shown in Fig.2.

Using the polar coordinate system (r, φ), the Lagrangian of the system is:

L =
1

2
m(ṙ2 + r2 φ̇2)− 1

2
k(r − l)2 (12)
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which is obviously invariant under a rotation of the coordinate axes about the

z-axis. Correspondingly, the variable φ is cyclic, so that pφ is a constant of

the motion.

Figure 2: A mass-spring system in xy-plane

Then, from Euler- Langrange equation for the variable φ yields:

d

dt

(
∂L
∂φ̇

)
− ∂L
∂φ

= 0

d

dt

(
∂L
∂φ̇

)
=

d

dt
(mr2φ̇) = 0

∴ pφ = mr2φ̇ = Lz = constant (13)

is just the magnitude of the angular momentum Lz, which is conserved. In

this case

φ̇ =
pφ
mr2

φ = φ0 +

∫
pφ
mr2

dt (14)

is the solution for angualr variable φ. Again, the EL equation for the radial

coordinate r yields:

d

dt

(
∂L
∂ṙ

)
− ∂L
∂r

= 0

d

dt
(mṙ)−mrφ̇2 + k(r − l) = 0

mr̈ −
p2φ
mr3

+ k(r − l) = 0 (15)
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In this particular example, the langrangian does not depend explicitly on time,

and the energy function h is equal to the total energy E of the system:

E = T + V =
m

2
ṙ2 +

m

2
r2φ̇2 +

k

2
(r − l)2

=
m

2
ṙ2 +

p2φ
2mr2

+
k

2
(r − l)2 = T + “V ”

∴ E = T + “V ” = constant, (16)

where ‘V ” =
p2φ

2mr2
+
k

2
(r − l)2 is pseudo -potential

Now, Newton’s law becomes:

mr̈ = −∂“V ”

∂r
= F (17)

At equilibrium: r = r0, and

∂“V ”

∂r
= F = 0

−
p2φ
mr3

+ k(r − l) = 0 and p2φ = mk(r4 − lr3)

−m
2r4φ̇2

mr3
+ k(r − l) = 0

−mrφ̇2 + k(r − l) = 0

(k −mφ̇2)r = kl

∴ r0 =
kl

k −mφ̇2
(18)

And the value of the corresponding pseudo-potential at equilibrium is

“V ”0 =
mk(r40 − lr30)

2mr20
+
k

2
(r0 − l)2 =

k

2
(r20 − lr0) +

k

2
(r0 − l)2 (19)

And

∂2“V ”

∂r2
|r0 =

3p2φ
mr40

+ k > 0 (20)

The potential for the small displacement around r0 is

“V ”(r) = V0 +
1

2

∂2V

∂r2
(r − r0)2 + ... (21)
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And the total energy is for r ∼ r0 is

E =
m

2
ṙ2 + V0 +

1

2

∂2V

∂r2
(r − r0)2 + ... (22)

This shows that for small oscillations around the equilibrium position, we have

an effective harmonic oscillator with frequency

ω =

√
∂2V

∂r2
/m (23)

In general, solving the radial part of the equation, in terms of “V ” , we obtain√
2

m
(E − “V ”) = ṙ

dr√
2
m

(E − “V ”)
= dt

∫ r2

r1

dr√
2
m

(E − “V ”)
=

∫ t2

t1

dt

∫ r2

r1

dr√
2
m

(E − “V ”)
= t2 − t1 (24)
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