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Terminology

• Map: a single valued f (x) : F→ F on some set F.

• Iteration: application of a map eg f (3)(x) = f (f (f (x))).

• Orbit: S(x) = {x , x1, x2, · · · } = {x , f (x), f (f (x), · · · }.
• Fixed point: x0 =⇒ f (x0) = x0.

• Periodic orbit: an orbit with f (n)(xp) = xp for n ≥ 0.
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Definition

A map is deemed “chaotic” if it has the following properties:

• Sensitive dependence on initial conditions,

• Topological transitivity,

• Dense periodic orbits.

Similarly, a chaotic orbit is not periodic, stationary, or
divergent.

Chaos is a property of orbits typical of systems with nonlinear
dynamics.
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Sensitive Dependence
Definition

For any orbit of any map sensitive dependence on initial conditions
means that for |x1 − x2| < ε for ε as small as we like,
|f (n)(x1)− f (n)(x2)| > δ for any δ > 0 we choose.

In the words of Edward Lorenz, “Chaos: When the present
determines the future, but the approximate present does not
approximately determine the future.”



Sensitive Dependence
Example

A very simple example of a map with sensitive dependence on
initial conditions is a doubling map: f (x) = 2x .

Figure 1: Double Steps



Topological Transitivity
Definition

A map is topologically transitive if for any two nonempty sets A
and B, there is some integer n such that f (n)(A) ∩ B 6= 0.
In other words, any value plugged into a topologically transitive
map may produce any other value (at all) if the map is iterated
enough times.



Topological Transitivity
Example

The logistic map xn+1 = rxn(1− xn):

Figure 2: Logistic Map

This is a bifurcation plot. 0 < r < 4 is on the horizontal axis, and
0 < x < 1 is on the vertical axis. For 0 < r <∼ 3 there is only a
fixed point, but for ∼ 3 < r <∼ 3.5 there is a period 2 orbit.



Dense Periodic Orbits
Definition

Density of periodic orbits means that no matter what starting
value is chosen (x , for f (n)(x)), the distance between x and a
point on some periodic orbit is arbitrarily small: that is for any
ε > 0, |x − xR | < ε for some xR .



Classification
Equilibria: Stability

The stability of any orbit S of a map f is determined by the
first derivative of the map over the orbit. That is to say

• if (f (n))′(x1) < 1 then S(x1) = f (n)(x1) is an attractive orbit:

• if (f (n))′(x1) > 1 then S(x1) = f (n)(x1) is a source.
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Classification
Lorenz Attractor

Figure 3: Lorenz Attractor

The Lorenz attractor is a chaotic orbit with (f (n))′(x) < 1.



Classification
Lyapunov Numbers and Exponents

Lyapunov numbers and exponents are a measure of the stability of
an orbit. The Lyapunov exponent λ = ln L where L is the
Lyapunov number.

For any point on any orbit {x1, x2, x3, · · · }, the Lyapunov number
is given by:

L(x1) = lim
n→∞

(|f ′(x1)| · · · |f ′(xn)|)1/n.

So the Lyapunov Exponent is:

λ(x1) = lim
n→∞

1

n
ln(|f ′(x1)| · · · |f ′(xn)|)
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