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Classical Mechanics  - Lecture notes 4/23/20 

This derivation addresses several things we’ve learned over the last 2-3 weeks: Lagran-
gian formalism for continuous degrees of freedom, electromagnetic interaction in Lagran-
gian formulation, and relativity.  
Consider a system which has a pre-determined, given charge density and current density 
distribution, expressed by the 4 components of the charge current-density four-vector 

 everywhere in space and time. We consider the 4 components of 

the 4-vector electromagnetic potential  as the 4 continuous, inde-

pendent degrees of freedom, all dependent on space-time. (NOTE: In the following we 
assume the Lorentz gauge, i.e. ). 

In the following, we also use the electromagnetic field (2-)tensor 

 where  and 

 is the usual 4-dimensional gradient. In other words,  can be 

considered a function of the space-time derivatives of our continuous degrees of free-
dom. Following our formalism, we can now define a Lagrangian density 

. Here, the first part is the “potential energy” due to the 

interaction between the current and the field (analog to the term 𝑞𝑣⃗ ∙ 𝐴 − 𝑞Φ in the La-
grangian for a single charge interacting with a given electromagnetic field) and the sec-
ond part is just equal to the negative of the electromagnetic field energy density, 𝑤 =
!!
"
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First, we need to re-express the Lagrangian density in terms of only the fields  and 
their derivatives : 

. We use the 

metric tensor to raise the indices of A and lower those of  as needed: 
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.  

Straightforward multiplication of the last two brackets gives  

 

where we made use of the fact that the metric tensor is symmetric and its own inverse: 
. (The last line also uses the fact that one can rename any indices 

over which we are summing.) We are now ready to calculate the various derivatives re-
quired by Eq. (13.23) in Goldstein; to avoid any confusion, I will be using brand new in-
dices a, b:  

 and  

 

where we have again used the fact that the metric tensor is symmetric and that we can re-
name any indices over which we are summing. Now we are ready to write down the full 
equation of motion for the component :  

 

Here, we used the Lorentz-gauge condition (together with the fact that derivatives can be 
interchanged) to cancel the second term in the bottom row.  
The final result relates two 1-forms to each other; we can easily apply the inverse of  

on both sides and end up with . But this is equivalent to Maxwell’s equa-

tions for the 4-vector potential, see Eq. (7.67a) on page 297 in Goldstein! So we were 
able to derive Maxwell’s equations for the electromagnetic field from our Lagrangian 
density.  
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Here is a screenshot from today’s whiteboard: 

 


