Constraints, Generalized Coordinates and Euler Langrange's Equation

Randika Dodangodage

January 30, 2019

1 Constraints

A particle or a system of particles is described by a set of coordinates. There are various forces acting on the particles which should to be taken to account in order to understand the mechanics. In most of the cases the motion of the system is limited to some conditions which are known as constraints.

Example 1:

Consider a motion of a particle in $x-y$ plane which is tied from a string to a point.The particle will move along a circular path around the fixed point. The length of the string limits the motion which is a constraint.

1.1 Holonomic constraints

If the constraint depends only on the position at time t and can be written in the form

$$
F_{k}\left(r_{i}, t\right)=0
$$

$$
\begin{array}{r}
i=1,2, \ldots, 3 N \\
k=1,2, \ldots, m \\
N=\text { No: of particles } \\
m=\text { No: of constraints }
\end{array}
$$

then F_{k} is Holonomic.

1.2 Non Holonomic constraints

If it is in the following forms it is Non Holonomic.

$$
\begin{aligned}
& F_{k}\left(r_{i}, t\right)<0 \\
& F_{k}\left(r_{i}, t\right)>0 \\
& F_{k}\left(r_{i}, \dot{r}_{i}, \ldots\right)
\end{aligned}
$$

2 Generalized coordinates (q_{i})

When a system has constraints the coordinates are no longer independent. They depend on constraints. Therefore the concept generalized coordinates is introduced.
A system of N particles has k number of constraints $3 N$ number of coordinates and $3 N-k$ number of degrees of freedom.

Consider the example 1
Cartesian coordinates for this system are x, y. We can represent this system with generalized coordinates which includes the constraint

$$
\begin{aligned}
& q_{1}=\sqrt{x^{2}+y^{2}}=r \\
& q_{2}=\tan ^{-1}\left(\frac{y}{x}\right)=\phi \\
& x=r \cos \phi=q_{1} \cos q_{2} \\
& y=r \sin \phi=q_{1} \sin q_{2}
\end{aligned}
$$

3 Generalized Force (Q_{j})

Consider the equation of motion for a system in equilibrium.

$$
m_{i} \ddot{r}_{i}-F_{i}=0
$$

Now introduce a virtual displacement δr_{i} fulfilling the constraint.Then we can write

$$
\sum_{i}\left(m_{i} \ddot{r}_{i}-F_{i}\right) \delta r_{i}=0
$$

We can split the total force $\left(F_{i}\right)$ in to two forces as forces of constraints $\left(F_{i}^{c}\right)$ and all other forces $\left(f_{i}^{o}\right)$.

$$
\begin{gathered}
F_{i}=F_{i}^{c}+f_{i}^{o} \\
\sum_{i}\left(m_{i} \ddot{r}_{i}-F_{i}^{c}-f_{i}^{o}\right) \delta r_{i}=0
\end{gathered}
$$

F_{i}^{c} cannot do work. $\left(\sum_{i} F_{i}^{c} \delta r_{i}=0\right)$. The virtual displacement δr_{i} is connected to virtual displacement δq_{i} by

$$
\begin{gathered}
\delta r_{i}=\sum_{j} \frac{\partial r_{i}}{\partial q_{j}} \delta q_{j} \\
\sum_{i} m_{i} \frac{d \dot{r}_{i}}{d t} \delta r_{i}=\sum_{i} f_{i}^{o} \delta r_{i} \\
\sum_{i, j} m_{i} \frac{d \dot{r}_{i}}{d t} \frac{\partial r_{i}}{\partial q_{j}} \delta q_{j}=\sum_{i, j} f_{i}^{o} \frac{\partial r_{i}}{\partial q_{j}} \delta q_{j}
\end{gathered}
$$

Define Q_{j} as

$$
\begin{gather*}
Q_{j}=\sum_{i} \frac{\partial r_{i}}{\partial q_{j}} f_{i}^{o} \\
\sum_{i, j} m_{i} \frac{d \dot{r}_{i}}{d t} \frac{\partial r_{i}}{\partial q_{j}} \delta q_{j}=\sum_{j} Q_{j} \delta q_{j} \tag{1}
\end{gather*}
$$

Now consider

$$
\begin{aligned}
\sum_{i} m_{i} \frac{d}{d t}\left(\dot{r}_{i} \frac{\partial r_{i}}{\partial q_{j}}\right) & =\sum_{i} m_{i} \dot{r}_{i} \frac{d}{d t}\left(\frac{\partial r_{i}}{\partial q_{j}}\right)+\sum_{i} m_{i} \frac{d \dot{r}_{i}}{d t}\left(\frac{\partial r_{i}}{\partial q_{j}}\right) \\
& =\sum_{i} m_{i} \dot{r}_{i}\left(\frac{\partial \dot{r}_{i}}{\partial q_{j}}\right)+\sum_{i} m_{i} \frac{d \dot{r}_{i}}{d t}\left(\frac{\partial r_{i}}{\partial q_{j}}\right) \\
\sum_{i} m_{i} \frac{d \dot{r}_{i}}{d t}\left(\frac{\partial r_{i}}{\partial q_{j}}\right) & =\sum_{i} m_{i} \frac{d}{d t}\left(\dot{r}_{i} \frac{\partial r_{i}}{\partial q_{j}}\right)-\sum_{i} m_{i} \dot{r}_{i}\left(\frac{\partial \dot{r}_{i}}{\partial q_{j}}\right)
\end{aligned}
$$

Note

$$
\begin{aligned}
T & =\frac{1}{2} \sum_{i} m_{i} \dot{r}_{i}^{2} \\
\frac{\partial T}{\partial q_{j}} & =\sum_{i} m_{i} \dot{r}_{i} \frac{\partial \dot{r}_{i}}{\partial q_{j}} \\
\frac{\partial T}{\partial \dot{q}_{j}} & =\sum_{i} m_{i} \dot{r}_{i} \frac{\partial \dot{r}_{i}}{\partial \dot{q}_{j}}
\end{aligned}
$$

and $\frac{\partial r_{i}}{\partial q_{j}}=\frac{\partial \dot{r}_{i}}{\partial \dot{q}_{j}}$

$$
\begin{aligned}
\sum_{i} m_{i} \frac{d \dot{r}_{i}}{d t}\left(\frac{\partial r_{i}}{\partial q_{j}}\right) & =\sum_{i} m_{i} \frac{d}{d t}\left(\dot{r}_{i} \frac{\partial \dot{r}_{i}}{\partial \dot{q}_{j}}\right)-\sum_{i} m_{i} \dot{r}_{i}\left(\frac{\partial \dot{r}_{i}}{\partial q_{j}}\right) \\
& =\frac{d}{d t} \sum_{i} m_{i}\left(\dot{r}_{i} \frac{\partial \dot{r}_{i}}{\partial \dot{q}_{j}}\right)-\sum_{i} m_{i} \dot{r}_{i}\left(\frac{\partial \dot{r}_{i}}{\partial q_{j}}\right) \\
& =\frac{d}{d t} \frac{\partial T}{\partial \dot{q}_{j}}-\frac{\partial T}{\partial q_{j}}
\end{aligned}
$$

Substituting this in to equation (1)

$$
\begin{aligned}
\sum_{j}\left(\frac{d}{d t} \frac{\partial T}{\partial \dot{q}_{j}}-\frac{\partial T}{\partial q_{j}}\right) \delta q_{j} & =\sum_{j} Q_{j} \delta q_{j} \\
\frac{d}{d t} \frac{\partial T}{\partial \dot{q}_{j}}-\frac{\partial T}{\partial q_{j}} & =Q_{j}
\end{aligned}
$$

4 Lagrange's Equation

We can derive the forces from a scalar potential (V) as follows.

$$
\begin{aligned}
& F_{i}=-\nabla V=-\frac{\partial V}{\partial r_{i}} \\
& Q_{j}=\sum_{i} \frac{\partial r_{i}}{\partial q_{j}} F_{i} \\
&=-\sum_{i} \frac{\partial r_{i}}{\partial q_{j}} \frac{\partial V}{\partial r_{i}} \\
& Q_{j}=-\frac{\partial V}{\partial q_{j}} \\
& \frac{d}{d t} \frac{\partial T}{\partial \dot{q}_{j}}-\frac{\partial T}{\partial q_{j}}=Q_{j} \\
& \frac{d}{d t} \frac{\partial T}{\partial \dot{q}_{j}}-\frac{\partial T}{\partial q_{j}}=-\frac{\partial V}{\partial q_{j}} \\
& \frac{d}{d t} \frac{\partial T}{\partial \dot{q}_{j}}-\frac{\partial}{\partial q_{j}}(T-V)=0
\end{aligned}
$$

The potential V doesn't depend on the velocities \dot{q}_{j}

$$
\frac{d}{d t} \frac{\partial(T-V)}{\partial \dot{q}_{j}}-\frac{\partial}{\partial q_{j}}(T-V)=0
$$

Define $\mathcal{L}=T-V$

$$
\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}}-\frac{\partial \mathcal{L}}{\partial q_{j}}=0
$$

