
Hamilton’s Principle with (explicit) constraints 
Earlier we defined Hamilton’s principle of least action in a system where the 
constraints are implemented implicitly through the choice of a reduced set of 
independent qi  that “automatically” fulfill the constraints: 

ℒ(𝑞!
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!!
, 𝑞! , 𝑡) 𝑑𝑡 =  𝐸𝑥𝑡𝑟𝑒𝑚𝑢𝑚 

Then the Euler Lagrange equation that corresponds to the integral becomes the 
Lagrange’s equation of motion. !
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!ℒ
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−  !ℒ
!!!

= 0  ; i = 1,2,3,………… n 

To study Hamilton’s principle for systems with variables that are connected by 
equations of constraint (not independent), forces of constraints should be considered 
while deriving Lagrange’s equations. Use of the variational principle is possible for 
these systems if equations of constraints can be written as, 𝑔!(𝑞!, 𝑞!,…… . , 𝑞!) = 0 . 
Now the action equation will be in the form 

 [ℒ +  𝜆!𝑔!] 𝑑𝑡 = 𝑒𝑥𝑡𝑟𝑒𝑚𝑢𝑚
!

!!

!!
   

where 𝜆! 𝑡  are the Lagrange multipliers and 𝑔! 𝑞!  = 0 are the equations of 
constraint. So, incorporating Hamilton’s principle with constraints we can write a new 
equation, 

 !
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 !ℒ
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−  !ℒ
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+   𝜆!(𝑡)
!!! !!  
!!!! = 0                     

(01) 

Now we have N + Kc equations if we include the equations of constraint, for N 
coordinates and Kc unknown Lagrangian multipliers. These can be solved by first 
eliminating the terms containing the multipliers, then solving for the coordinates, and 
finally using those solutions to determine the forces of constraint, which are the 
expressions in the last term (the sum) of equation (01). 

• Example 01 

Consider a (point) particle of mass of m sliding on a wedge of angle ө. Find the total 
force of constraints using cartesian coordinates 
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Total kinetic energy of the particle;  𝑇 =  !
!
𝑚 𝑥! +  𝑦! −𝑚𝑔𝑦 

Equation of constraints;  𝑔! 𝑥,𝑦 = 𝑦 − x tan𝜃 

This equation of constraint satisfies the condition of gi = 0. So, the new Lagrangian is, 

ℒ =  
1
2𝑚 𝑥! +  𝑦! −𝑚𝑔𝑦 +  𝜆!𝑔! 𝑥,𝑦  

Considering equation 01 in x direction, 

𝑚𝑥 =  
𝜕ℒ
𝜕𝑥 = 0+  𝜆!

𝜕𝑔! 𝑥,𝑦
𝜕𝑥 =  𝜆! − tan𝜃  

⇒  𝑥 = −
𝜆!  tan𝜃
𝑚  

In y direction, 

𝑚𝑦 =  
𝜕ℒ
𝜕𝑦 = −𝑚𝑔 +  𝜆!

𝜕𝑔! 𝑥,𝑦
𝜕𝑦 =  −𝑚𝑔 + 𝜆! 

Equation of constraint is 𝑔! 𝑥,𝑦 = 𝑦 − x tan𝜃 = 0. Which gives 𝑦 = x tan𝜃.  

Then, 𝑦 = x tan𝜃 

Combining constraint equation and equation for x direction; 
!!
!"#!

=  − 𝜆!  tan𝜃 . then, 

𝑚𝑦 = − 𝜆! 𝑡𝑎𝑛!𝜃 

Plugging this into y equation,  − 𝜆! 𝑡𝑎𝑛!𝜃 =  −𝑚𝑔 +  𝜆! 

𝜆! 1+ 𝑡𝑎𝑛!𝜃 = 𝑚𝑔 ⇒ 𝜆! = 𝑚𝑔  𝑐𝑜𝑠!𝜃 

Therefore, 

𝑦 = −𝑔 𝑠𝑖𝑛! 𝜃   and  𝑥 = −g sin𝜃 cos𝜃 

Force of constraint in y direction;  𝑭!! =  𝜆!  !!! !,!
!"

=  𝜆! ×1 = 𝑚𝑔 𝑐𝑜𝑠! 𝜃 

Force of constraint in x direction: 

  𝑭!! =  𝜆!  !!! !,!
!"

=  −𝜆! ×𝑡𝑎𝑛 𝜃 = −𝑚𝑔 𝑐𝑜𝑠! 𝜃 = −𝑚𝑔 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 

Total force of constraint   

|𝑭!| =  𝑭!!
! + 𝑭!! ! = 𝑚𝑔 𝑐𝑜𝑠𝜃 



A more general case of a Lagrangian with a velocity-dependent potential energy is the 
particle of mass m with a charge q in an electromagnetic field. The Lagrangian of the 
system can be written as, 

ℒ =
𝑚
2 𝑟

! − 𝑞Φ 𝑟 − 𝑞 𝐴. 𝑟  

Here, Φ 𝑟  = electrostatic potential 

  𝐴     = vector potential 

 𝐵     = ∇ × 𝐴  also,  𝐸 =  −∇ Φ 𝑟 −  !!
!"

  

Now Euler Lagrange equation, 
𝑑
𝑑𝑡
𝜕ℒ
𝜕𝑟!

=  
𝜕ℒ
𝜕𝑟!

 

𝑑
𝑑𝑡
𝜕ℒ
𝜕𝑟!

= 𝑚𝑟! +  
𝑑
𝑑𝑡 𝑞𝐴! =  𝑚𝑟! + 𝑞

𝜕𝐴!
𝜕𝑡 + 𝑞

𝜕𝐴!
𝜕𝑟!

𝑟!
!

 

!ℒ
!!!

=  −𝑞(!! !
!!!

− !!!
!!!

 𝑟!! ) 

𝑚𝑟! + 𝑞
!!!
!"
+ 𝑞 !!!

!!!
𝑟!! =  −𝑞(!! !

!!!
− !!!

!!!
 𝑟!! ) 

 

Force component in i-direction, 

𝐹! = −𝑞(!! !
!!!

+ !!!
!"
)− 𝑞 (!!!

!!!
𝑟!! +  !!!

!!!
 𝑟!) = 𝑞𝐸! + 𝑞  !!!

!!!
−  !!!

!!!
𝑟! 

     = 𝑞𝐸! + 𝑟 ×(∇×𝐴) =  𝑟 ×𝐵 

 

• Example 02 

Consider a particle moving with a frictional force F = -ŋV.  

New lagrangean is;  ℒ 𝑞! , 𝑞! , 𝑡 −  ŋ𝑞!! 

So the Euler lagrange equation of motion is; !
!"

!ℒ
!!!

=  !ℒ
!!!

−  ŋ𝑞! 

 

 



 

• Example 03 

Consider of ring with radius R, rolling along a wedge. Take s as the distance along the 
surface and Φ be the angle of rotation of the ring. 

 

 

 

 

 

 

 

 

 

𝑠 =  𝑥! +  𝑦! 

Equation of constraints; 𝑔! = 𝑠 − 𝑅𝜙  . This is an example of a NON-holonomic 
constraint, since it is expressed in terms of velocities, not coordinates. (However, it 
would be easy to integrate this condition to make it holonomic – but we want to study 
the general mechanism here). This equation satisfies the condition 𝑔! = 0. 

Kinetic energy;  𝑇 = !
!
𝑠! +  !!

!

!
  and  potential energy; V = ℎ − 𝑠 𝑠𝑖𝑛𝜃 𝑚𝑔 

Here I is the moment of inertia of the ring; I= mR2 

Lagrange equation is; 

 

ℒ =  
𝑚
2 𝑠

! +  
𝐼𝜙!

2 − ℎ − 𝑠 𝑠𝑖𝑛𝜃 𝑚𝑔 +  𝜆!𝑔!  

Euler Lagrange equation of motion for s- constraint is now, 

𝑚𝑠 = 𝑚𝑔 𝑠𝑖𝑛𝜃 +  𝜆!
𝜕𝑔!
𝜕𝑠 = 𝑚𝑔 𝑠𝑖𝑛𝜃 +  𝜆!   

Euler Lagrange equation of motion for Φ- constraint is now, 

𝐼𝜙 =  − 𝜆!  𝑅 
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From constraint equation, 𝜙 =  !
!
 

Now we can write, !
!
=  − !! !

!
 

𝑚 −
𝜆! 𝑅
𝐼 = 𝑚𝑔 𝑠𝑖𝑛𝜃 +  𝜆!   

𝑚𝑠 = 𝑚𝑔 𝑠𝑖𝑛𝜃 +
𝑠𝐼
𝑅!  

Finally, 𝑚 + !
!!

𝑠 = 2𝑚 𝑠 = 𝑚𝑔 𝑠𝑖𝑛𝜃 

This means that the acceleration of the ring down the ramp will be only ½ that of the 
point mass, since half of the work done by gravity goes into the kinetic energy of 
rotation of the ring and only ½ into the acceleration of the center of mass. 

We can also interpret 𝜆! as the frictional force along the edge of the ring that keeps it 
from slipping. 

 

Homework: (Atwood’s machine): 

 
Equation of constraints; 𝑔! = 𝑦 + 𝑥 − 𝐿 = 0 (holonomic constraints) where L is the total 
length of the string. 

Therefore, we can write, 𝑇 =  !
!
(𝑚!𝑥! +𝑚!𝑦!) 

Potential energy 𝑈 =  −(𝑚!𝑦 +𝑚!𝑥)𝑔 

ℒ =  
1
2𝑚!𝑦! +  

1
2𝑚!𝑥! +  (𝑚!𝑦 +𝑚!𝑥)𝑔 +  𝜆𝑔! 

Using ELE in x direction, !
!"

!ℒ
!!
= !ℒ

!"
 

We get 𝑚!𝑥 = 𝑚!𝑔 +  𝜆 
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ELE in y direction, !
!"

!ℒ
!!
= !ℒ

!"
 

We get 𝑚!𝑦 = 𝑚!𝑔 +  𝜆 

But, from constraint equation, 𝑦 =  −𝑥 

Which gives  𝑥 =  (!!!!!!)!
!!!!!

 and 𝑦 =  (!!!!!)!
!!!!!

 

𝜆 =  −
2𝑚!𝑚!𝑔
(𝑚! +𝑚!)

 

 

Forces of constraints  𝐹! =   𝐹! =  𝜆 =  − !!!!!!
(!!!!!)

 

Which is equal to the tension in the string. 

 

 

 


