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1 Canonical Transformations and Type 1 Generating Functions

We can either express the 2N new generalized coordinates and conjugate momenta in
terms of old coordinates (qi, pi) or new ones (Qi, Pi). We assume the relationships can
be inverted so that we can pick any 2N subset of old or new phase space coordinates
and express the remaining 2N ones in terms of these.

~η =



qi
.
.
pi
.
.

→ ~ζ =



Qi
.
.
Pi
.
.

 (1)

So we can switch between the Hamiltonian into the Kameltonian

H(~η)→ K(~ζ) (2)

~̇η = J ~∇ηH → ~̇ζ = J ~∇ζK (3)

Harmonic Oscillator example:

H =
1

2m
(p2 +m2ω2q2) (4)

where q = x

q =
f(P )

mω
sin(Q) (5)

p = f(P )cos(Q) (6)

Then
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K =
1

2m
f(P )2 (7)

P = constant since Q is (apparently) ignorable.

Now by definition

Q̇ =
∂K

∂P
(8)

Q(t) =
∂K

∂P
t+ φ0 (9)

First Method:

df

dt
+
∑

PiQ̇i −K(Q,P, t) =
∑

piq̇i −H(q, p, t) (10)

This works because both sides of the equation fulfill Hamilton Principle of Action.

We need to express

~η(~ζ) (11)

or

~ζ(~η) (12)

We need to make a function of one half of the old sets of variables and one half of the
new sets of variables

Type 1 Generating Function

F1(q,Q, t) (13)

We can see this depends on old variable q and new variable Q.

Then

∂F1

∂qi
q̇i +

∂F1

∂Qi
Q̇i +

∂F

∂t
+
∑

PiQ̇i −K(Q,P, t) =
∑

piq̇i −H(q, p, t) (14)

Examining the coefficients of Qi

q̇i :
∂F1

∂qi
= pi (15)

Q̇i :
∂F1

∂Qi
+ Pi = 0 (16)
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Therefore

Pi = −∂F1

∂Qi
(17)

When we look at everything else, it is easy to see that

∂F

∂t
−K = −H (18)

Therefore

K = H +
∂F

∂t
(19)

If F does not depend on t the K and H are the same in value however they are still
totally different functions because they depend on different variables.

Example:

F1 =
∑
i

qiQi (20)

pi =
∂F1

∂qi
= Qi (21)

Pi = −∂F1

∂Qi
= −qi (22)

Ex:Ex:

H =
p2

2m
+mgq (23)

K =
Q2

2m
−mgP (24)

∂K

∂Q
=
Q

m
= −Ṗ (25)

∂K

∂P
= −mg = Q̇ (26)

Which we know is the force.

Harmonic Oscillator

p = f(P )cos(Q) (27)

We can take the ratio of q and p to get rid of f(P )
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q

p
=
f(P )sin(Q)/mω

f(P )cos(Q)
(28)

Then

p

q
= mωcot(Q) (29)

p = qmωcot(Q) =
∂F1

∂q
(30)

Integrating to solve for F1 we can see that

F1 =
q2

2
mωcot(Q) +G(Q) (31)

Then by definition

P = −∂F1

∂Q
=
q2mω

2

1

sin2(Q)
+G′(Q) (32)

From Eq. (5):

f(P ) =
mωq

sin(Q)
(33)

We can make a guess f(P ) =
√

2mωP , G = 0
In general :

P (q, p) (34)

and

Q(q, p) (35)

are canonical only if

∂2F1

∂Q∂q
=
∂p

∂q
(36)

Which must be equal to

∂2F1

∂q∂Q
= −∂P

∂q
(37)

Plugging into Eq. (7):

K = ωP (38)

P = constant , K = constant and therefore by the above equation ω = constant .
Now we may be wondering, What is this ω thing?
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Q̇ =
∂K

∂P
= ω (39)

q =

√
2P

mω
sin(ωt+ φ0) (40)

p =
√

2mωPcos(ωt+ φ0) (41)

From our previous experience, we know that this is indeed the behavior of a harmonic
oscillator with (position) amplitude A. Therefore,√

2P

mω
= A (42)

So

P =
mωA2

2
(43)

K =
mω2A2

2
(44)

which is indeed the energy of a harmonic oscillator.

We may be wondering how we know that a transformation from ~η to ~ζ is actually
canonical. There is a direct way to check whether the transformation is canonical using
the symplectic formulation.

~ζ(~η)→ (~̇ζ)i =

2N∑
j=1

∂ζi
∂ηj

η̇j (45)

We define

Mij =
∂ζi
∂ηj

(46)

So

(~̇ζ)i = Mij ~̇ηj = MijJjk(~∇ηH(~η))k = MijJjk
∂ζl
∂ηk

(~∇ζK(~ζ))l (47)

= MijJjkMlk(~∇ζK(~ζ))l = MijJjkM
T
kl(
~∇ζK(~ζ))l

We know the value of H and K is the same but K is H with all variables replaced.

~̇ζ = J ~∇ζK → J = MTJM (48)

This last equation (or its equivalent with M and MT exchanged) is the symplectic
condition.
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