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1 Canonical Transformations and Type 1 Generating Functions

We can either express the 2N new generalized coordinates and conjugate momenta in
terms of old coordinates (g;, p;) or new ones (Q;, P;). We assume the relationships can
be inverted so that we can pick any 2N subset of old or new phase space coordinates
and express the remaining 2/N ones in terms of these.
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So we can switch between the Hamiltonian into the Kameltonian
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H (1) = K(¢) (2)
= IV H — = JVK (3)

Harmonic Oscillator example:
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where ¢ = x
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p = f(P)cos(Q) (6)

Then



K =g f(P)? 7)

P = constant since Q is (apparently) ignorable.

Now by definition
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First Method:
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This works because both sides of the equation fulfill Hamilton Principle of Action.

We need to express

i7(¢) (11)
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We need to make a function of one half of the old sets of variables and one half of the
new sets of variables

Type 1 Generating Function

Fi(q,Q,1) (13)

We can see this depends on old variable ¢ and new variable Q.

Then
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Examining the coefficients of Q);
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Therefore
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When we look at everything else, it is easy to see that
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If F does not depend on t the K and H are the same in value however they are still
totally different functions because they depend on different variables.
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Which we know is the force.
Harmonic Oscillator
p = f(P)cos(Q) (27)

We can take the ratio of ¢ and p to get rid of f(P)
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Then
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Integrating to solve for F} we can see that
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F = %mwcot(@) +G(Q)

Then by definition
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From Eq. (5):

We can make a guess f(P) =+v2mwP ,G=0
In general :

P(q,p)
and
Q(q,p)
are canonical only if
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Plugging into Eq. (7):
K=wP

P = constant , K = constant and therefore by the above equation w = constant .

Now we may be wondering, What is this w thing?
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From our previous experience, we know that this is indeed the behavior of a harmonic
oscillator with (position) amplitude A. Therefore,
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which is indeed the energy of a harmonic oscillator.

We may be wondering how we know that a transformation from 7 to f is actually
canonical. There is a direct way to check whether the transformation is canonical using
the symplectic formulation.
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We know the value of H and K is the same but K is H with all variables replaced.

(=JVK = J=M'JM

(48)
This last equation (or its equivalent with M and M7 exchanged) is the symplectic
condition.



