Week 11 Lecture 1 Notes

Typed by: Sterling Gordon
Dr. Kuhn Classical Mechanics Course

April 3, 2018

1 Canonical Transformations and Type 1 Generating Functions

We can either express the $2 N$ new generalized coordinates and conjugate momenta in terms of old coordinates $\left(q_{i}, p_{i}\right)$ or new ones $\left(Q_{i}, P_{i}\right)$. We assume the relationships can be inverted so that we can pick any $2 N$ subset of old or new phase space coordinates and express the remaining $2 N$ ones in terms of these.

$$
\vec{\eta}=\left[\begin{array}{c}
q_{i} \tag{1}\\
\cdot \\
\cdot \\
p_{i} \\
\cdot \\
\cdot
\end{array}\right] \rightarrow \vec{\zeta}=\left[\begin{array}{c}
Q_{i} \\
\cdot \\
\cdot \\
P_{i} \\
\cdot \\
\cdot
\end{array}\right]
$$

So we can switch between the Hamiltonian into the Kameltonian

$$
\begin{gather*}
H(\vec{\eta}) \rightarrow K(\vec{\zeta}) \tag{2}\\
\dot{\vec{\eta}}=J \vec{\nabla}_{\eta} H \rightarrow \dot{\vec{\zeta}}=J \vec{\nabla}_{\zeta} K \tag{3}
\end{gather*}
$$

Harmonic Oscillator example:

$$
\begin{equation*}
H=\frac{1}{2 m}\left(p^{2}+m^{2} \omega^{2} q^{2}\right) \tag{4}
\end{equation*}
$$

where $q=x$

$$
\begin{align*}
& q=\frac{f(P)}{m \omega} \sin (Q) \tag{5}\\
& p=f(P) \cos (Q) \tag{6}
\end{align*}
$$

Then

$$
\begin{equation*}
K=\frac{1}{2 m} f(P)^{2} \tag{7}
\end{equation*}
$$

$P=$ constant since Q is (apparently) ignorable.

Now by definition

$$
\begin{gather*}
\dot{Q}=\frac{\partial K}{\partial P} \tag{8}\\
Q(t)=\frac{\partial K}{\partial P} t+\phi_{0} \tag{9}
\end{gather*}
$$

First Method:

$$
\begin{equation*}
\frac{d f}{d t}+\sum P_{i} \dot{Q}_{i}-K(Q, P, t)=\sum p_{i} \dot{q}_{i}-H(q, p, t) \tag{10}
\end{equation*}
$$

This works because both sides of the equation fulfill Hamilton Principle of Action.
We need to express

$$
\begin{equation*}
\vec{\eta}(\vec{\zeta}) \tag{11}
\end{equation*}
$$

or

$$
\begin{equation*}
\vec{\zeta}(\vec{n}) \tag{12}
\end{equation*}
$$

We need to make a function of one half of the old sets of variables and one half of the new sets of variables

Type 1 Generating Function

$$
\begin{equation*}
F_{1}(q, Q, t) \tag{13}
\end{equation*}
$$

We can see this depends on old variable q and new variable Q.
Then

$$
\begin{equation*}
\frac{\partial F_{1}}{\partial q_{i}} \dot{q}_{i}+\frac{\partial F_{1}}{\partial Q_{i}} \dot{Q}_{i}+\frac{\partial F}{\partial t}+\sum P_{i} \dot{Q}_{i}-K(Q, P, t)=\sum p_{i} \dot{q}_{i}-H(q, p, t) \tag{14}
\end{equation*}
$$

Examining the coefficients of Q_{i}

$$
\begin{gather*}
\dot{q}_{i}: \frac{\partial F_{1}}{\partial q_{i}}=p_{i} \tag{15}\\
\dot{Q}_{i}: \frac{\partial F_{1}}{\partial Q_{i}}+P_{i}=0 \tag{16}
\end{gather*}
$$

Therefore

$$
\begin{equation*}
P_{i}=-\frac{\partial F_{1}}{\partial Q_{i}} \tag{17}
\end{equation*}
$$

When we look at everything else, it is easy to see that

$$
\begin{equation*}
\frac{\partial F}{\partial t}-K=-H \tag{18}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
K=H+\frac{\partial F}{\partial t} \tag{19}
\end{equation*}
$$

If F does not depend on t the K and H are the same in value however they are still totally different functions because they depend on different variables.

Example:

$$
\begin{gather*}
F_{1}=\sum_{i} q_{i} Q_{i} \tag{20}\\
p_{i}=\frac{\partial F_{1}}{\partial q_{i}}=Q_{i} \tag{21}\\
P_{i}=-\frac{\partial F_{1}}{\partial Q_{i}}=-q_{i} \tag{22}
\end{gather*}
$$

Ex:Ex:

$$
\begin{align*}
& H=\frac{p^{2}}{2 m}+m g q \tag{23}\\
& K=\frac{Q^{2}}{2 m}-m g P \tag{24}\\
& \frac{\partial K}{\partial Q}=\frac{Q}{m}=-\dot{P} \tag{25}\\
& \frac{\partial K}{\partial P}=-m g=\dot{Q} \tag{26}
\end{align*}
$$

Which we know is the force.

Harmonic Oscillator

$$
\begin{equation*}
p=f(P) \cos (Q) \tag{27}
\end{equation*}
$$

We can take the ratio of q and p to get rid of $f(P)$

$$
\begin{equation*}
\frac{q}{p}=\frac{f(P) \sin (Q) / m \omega}{f(P) \cos (Q)} \tag{28}
\end{equation*}
$$

Then

$$
\begin{gather*}
\frac{p}{q}=m \omega \cot (Q) \tag{29}\\
p=q m \omega \cot (Q)=\frac{\partial F_{1}}{\partial q} \tag{30}
\end{gather*}
$$

Integrating to solve for F_{1} we can see that

$$
\begin{equation*}
F_{1}=\frac{q^{2}}{2} m \omega \cot (Q)+G(Q) \tag{31}
\end{equation*}
$$

Then by definition

$$
\begin{equation*}
P=-\frac{\partial F_{1}}{\partial Q}=\frac{q^{2} m \omega}{2} \frac{1}{\sin ^{2}(Q)}+G^{\prime}(Q) \tag{32}
\end{equation*}
$$

From Eq. (5):

$$
\begin{equation*}
f(P)=\frac{m \omega q}{\sin (Q)} \tag{33}
\end{equation*}
$$

We can make a guess $f(P)=\sqrt{2 m \omega P}, G=0$
In general :

$$
\begin{equation*}
P(q, p) \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
Q(q, p) \tag{35}
\end{equation*}
$$

are canonical only if

$$
\begin{equation*}
\frac{\partial^{2} F_{1}}{\partial Q \partial q}=\frac{\partial p}{\partial q} \tag{36}
\end{equation*}
$$

Which must be equal to

$$
\begin{equation*}
\frac{\partial^{2} F_{1}}{\partial q \partial Q}=-\frac{\partial P}{\partial q} \tag{37}
\end{equation*}
$$

Plugging into Eq. (7):

$$
\begin{equation*}
K=\omega P \tag{38}
\end{equation*}
$$

$P=$ constant,$K=$ constant and therefore by the above equation $\omega=$ constant. Now we may be wondering, What is this ω thing?

$$
\begin{gather*}
\dot{Q}=\frac{\partial K}{\partial P}=\omega \tag{39}\\
q=\sqrt{\frac{2 P}{m \omega}} \sin \left(\omega t+\phi_{0}\right) \tag{40}\\
p=\sqrt{2 m \omega P} \cos \left(\omega t+\phi_{0}\right) \tag{41}
\end{gather*}
$$

From our previous experience, we know that this is indeed the behavior of a harmonic oscillator with (position) amplitude A. Therefore,

$$
\begin{equation*}
\sqrt{\frac{2 P}{m \omega}}=A \tag{42}
\end{equation*}
$$

So

$$
\begin{align*}
P & =\frac{m \omega A^{2}}{2} \tag{43}\\
K & =\frac{m \omega^{2} A^{2}}{2} \tag{44}
\end{align*}
$$

which is indeed the energy of a harmonic oscillator.
We may be wondering how we know that a transformation from $\vec{\eta}$ to $\vec{\zeta}$ is actually canonical. There is a direct way to check whether the transformation is canonical using the symplectic formulation.

$$
\begin{equation*}
\vec{\zeta}(\vec{\eta}) \rightarrow(\dot{\vec{\zeta}})_{i}=\sum_{j=1}^{2 N} \frac{\partial \zeta_{i}}{\partial \eta_{j}} \dot{\eta}_{j} \tag{45}
\end{equation*}
$$

We define

$$
\begin{equation*}
M_{i j}=\frac{\partial \zeta_{i}}{\partial \eta_{j}} \tag{46}
\end{equation*}
$$

So

$$
\begin{align*}
& (\dot{\vec{\zeta}})_{i}=M_{i j} \dot{\overrightarrow{\eta_{j}}}=M_{i j} J_{j k}\left(\vec{\nabla}_{\eta} H(\vec{\eta})\right)_{k}=M_{i j} J_{j k} \frac{\partial \zeta_{l}}{\partial \eta_{k}}\left(\vec{\nabla}_{\zeta} K(\vec{\zeta})\right)_{l} \tag{47}\\
& =M_{i j} J_{j k} M_{l k}\left(\vec{\nabla}_{\zeta} K(\vec{\zeta})\right)_{l}=M_{i j} J_{j k} M_{k l}^{T}\left(\vec{\nabla}_{\zeta} K(\vec{\zeta})\right)_{l}
\end{align*}
$$

We know the value of H and K is the same but K is H with all variables replaced.

$$
\begin{equation*}
\dot{\vec{\zeta}}=J \vec{\nabla}_{\zeta} K \rightarrow J=M^{T} J M \tag{48}
\end{equation*}
$$

This last equation (or its equivalent with M and M^{T} exchanged) is the symplectic condition.

