
Central Force Problem

Consider two bodies of masses, say earth and moon, mE and mM moving under the influence of mutual

gravitational force of potential V(r). Now Langangian of the system is

L =
1

2
µ(ṙ2 + r2θ̇2 + r2sin2θϕ̇2)− V (r) (1)

where, µ = mE.mM

M and M = mE + Mm

Now, the generalized momenta are

Pr =
∂L

∂ṙ
= µṙ

Pθ =
∂L

∂θ̇
= µr2θ̇ (2)

Pϕ =
∂L

∂ϕ̇
= µr2sin2θϕ̇

Select the case:

θ(t = 0) = 90◦

θ̇(t = 0) = 0 (3)

(always possible by orientation of the x, y, z coordinate system). The Euler-Lagrange Equation for θ is

dPθ
dt

= 2µrṙθ̇ + µr2θ̈ =

∂L

∂θ
= µr2 sin(θ) cos(θ)φ̇2 (4)

Since all other terms are zero due to our choice, it must be true that also

θ̈(t = 0) = 0

This can be expanded for higher derivatives, ultimately showing that θ must be constant at 90 degrees.

This is of course due to the fact that both the magnitude and the direction of the angular momentum

vector L is conserved, and the radius vector is always perpendicular to it. So if we choose the z-direction

in the direction of L, the equations of motion for r(t) and ϕ(t), are restricted to the x-y plane. We have

now reduced our analysis to that of a system with 2 degrees of freedom, namely (r, ϕ).

From now on, we assume that the force is pointing along the direction of the relative position r

between the two objects. We can say that for such a central force the potential depends only on the

distance |r| between the two objects.

V (r) = V (r) = −GMµ

r
(5)
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Figure 1: Motion of two body system of reduced mass µ in the central force field

Then the Langrangian for this system

L =
1

2
µ(ṙ2 + r2ϕ̇2)− V (r) (6)

From Euler-Langrange equation (ELE)

d

dt

(
∂L
∂ϕ̇

)
− ∂L
∂ϕ

= 0

We get

Ṗϕ = 0 = µr2ϕ̈ (7)

Then, the angular momentum l is constant

Pϕ =
∂L
∂ϕ̇

= µr2ϕ̇ = l = constant (8)

Similarly, from ELE for r

d

dt

(
∂L
∂ṙ

)
− ∂L
∂r

= 0

µr̈ − µrϕ̇2 +
∂V (r)

∂r
= 0 (9)

Then

Ṗr =
∂L
∂r

µr̈ = µrϕ̇2 − GMµ

r2

µr̈ = −∂V (r)

∂r
+
Pϕ
µr3

(10)
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let a function h given by

h =
µ

2
(ṙ2 + r2ϕ̇2) + V (r)

h =
µ

2
ṙ2 +

Pϕ
2

2µr2
+ V (r) = E (11)

h =
µ

2
ṙ2 +

l2

2µr2
+ V (r) = E

∴ h =
µ

2
ṙ2 + ”V (r)” = E (12)

where ”V (r)” = l2

2µr2 + V (r) is pseudo-potential and E is the total energy. From Eq. (10),

ṙ = ±
√

2

µ

√
E −

P 2
ϕ

2µr2
− V (r)

where the sign ± depends on r(t) is increasing or decreasing at time t. It doesn’t alter the trajec-

tory.Taking ’+’ sign, we get ∫ r2

r1

dr√
2
µ

√
E − P 2

ϕ

2µr2 − V (r)
=

∫ t2

t1

dt = t2 − t1 (13)

Kepler’s Second Law

From Eq. (7)

ϕ̇ =
dϕ

dt
=

l

µr2

The differential area swept out in time dt is

Figure 2: Area swept out by the radius vector r in time dt
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dA =
1

2
r (r dϕ) =

1

2
r2ϕ̇ dt

∴ Ȧ =
dA

dt
=

1

2
r2ϕ̇ =

l

2µ
= constant (14)

Thus, the particle sweeps away equal area in equal interval of time, which is Kepler’s second law.

Again ∫ ϕ2

ϕ1

dϕ = ϕ2 − ϕ1 =
l

µr2

∫ t2

t1

dt =
l

µr2
(t2 − t1) (15)

from Eq. (12) and Eq. (14), we get

ϕ2 − ϕ1 =
l

µ

∫ r2

r1

dr√
2
µr

2

√
E − P 2

ϕ

2µr2 − V (r)

ϕ2 − ϕ1 =
l√
2µ

∫ r2

r1

dr/r2√
E − P 2

ϕ

2µr2 − V (r)
(16)

Again using Eq. (7), we can write

dϕ =
l

µr2
dt

d

dt
=

l

µr2
d

dϕ

ṙ =
dr

dt
=

l

µr2
dr

dϕ

r̈ =
l

µr2
dṙ

dϕ
=

l

µr2
dṙ

dϕ
=

l

µr2
d

dϕ

(
l

µr2
dr

dϕ

)
(17)

Again Let r = 1
u

dr

dϕ
=
dr

du

du

dϕ

=
−1

u2
du

dϕ

= −r2 du
dϕ

dr

r2
= −du (18)

Using Eq.(15) and Eq.(17), we get, taking + sign ,

ϕ2 − ϕ1 =
l√
2µ

∫
du√

E − l2u2

2µ − V (u)
(19)

Using Eq.(16) in Eq.(9),

−l2u2

µ

(
d2u

dφ2
− l2u3

µ
+ u2

dV

du

)
= 0

d2u

dφ2
= −u+

µ

l2
dV

∂u
(20)
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Considering the power law function of r for the potential such that

V (r) = k rn+1 (21)

V (u) = k u−(n+1) (22)

Eq. (18) becomes

dϕ =

∫
du√

2µE
l2 −

2µk
l2 u

−(n+1) − u2
(23)

Again,

E =
µ

2
ṙ2 +

l2

2µr2
+ V (r) =

µ

2
ṙ2 + ”V (r)”

At r = rmin, r = rmax, and r = r0, equilibrium position ṙ = 0

For equilibrium position r = r0,

∂”V (r)”

∂r
= 0 and E =E0 (24)

For a mass µ on a spring with spring constant ks, V = ks
2 r

2, so k = ks/2 and n = 1. For Kepler’s

problem , n = −2, k = GMµ, and V (u) = −ku:

−l2

2µr30
+

k

r20
= 0

r0 =
l2

µk
(25)

and

E0 =
l2

2µ

(
µk

l2

)2

− kµk
l2

E0 =
−µk2

2l2
= V/2 = −T (26)

[Note: Alternative way to find maximum and minimum values of r ( From Goldstein Text)

For maximum and minimum values of r ,

E =
l2

2µr2
− k

r

Er2 + kr − l2

2µ
= 0

This equation is quadratic in r, so we will have two roots given by:

r =
−k ±

√
k2 + 2El2

µ

2E

=
−k
2E

(
1±

√
1 +

2El2

µk2

)
= a(1± e)
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with,

a =
−k
2E

and e =

√
1 +

2El2

µk2
]

We get From Eq. (19)

u′′ + u =
µk

l2

u(ϕ) =
1

r
= Acos(ϕ− ϕ0) +

µk

l2

r =
1

Acos(ϕ− ϕ0) + µk
l2

=
1

Acos(ϕ− ϕ0) + C

therefore, r =
1

C(1 + e cos(ϕ− ϕ0))

(27)

Without loss of generality, let us assume that ϕ0 = 0 at t = 0, so the above Eq. (30) becomes

r =
1

C(1 + e cosϕ)
(28)

where C = µk
l2 and e = A

C is the eccentricity of the orbit of the particle.

Now, for r = rmin

E =
l2

2µr2min
− k

rmin

=
l2

2µ
C2(1 + e)2 − kC(1 + e)

E =
µk2

2l2
(1− e2)

e =

√
1 +

2El2

µk2
(29)

At equilibrium

E0 =
−µk2

2l2

The nature of the orbit depends upon the magnitude of e according to the following scheme:

e = 0, E = −µk
2

2l2
: circle

e = 1, E = 0 : parabola

e > 1, E > 0 : hyperbola

e < 1, E < 0 : ellipse
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Figure 3: Trajectory of the body with varying eccentricity in the central force field

For e < 1 , case of ellipse,

rmin =
1

C(1 + e)

rmax =
1

C(1− e)

The major half axis, a is defined by the relation

2a = r + r′

2a = rmin + rmax

a =
1

2C

(
1

1 + e
+

1

1− e

)
a =

1

C(1− e2)

= − k

2E
=

1

1− e2
l2

µk
(30)
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So, Choose ϕ0 such that r(ϕ0) = rmin

r =
1

C(1 + e cosϕ)
=

a(1− e2)

(1 + e cosϕ)
(31)

From Fig.(3),

r(ϕb)(−cosϕb) = a e

or, − a(1− e2)cosϕb
1 + ecosϕb

= ae

or, − (e+ e2cosϕb) = (1− e2)cosϕb

or, cosϕb = −e
∴ rb(ϕb)(−cosϕb) = rbe = ae⇒ rb = a (32)

Then, we get,

b =
√
r2b − a2e2 = a

√
1− e2 =

1√
1− e2

l2

µk
=
√
a

√
l2

µk
(33)

The equation

r =
1

C(1 + e cosϕ)
(34)

is actually an equation of an ellipse with shifted co-ordinates x′ and y′ (or x and y, original co-ordinate

system)

x′2

a2
+
y′2

b2
= 1 (35)

(x+ x0)2

a2
+
y2

b2
= 1 (36)

with,

xo = ae, a =
1

C(1− e2)
, b =

1

C
√

1− e2
(37)

This can be proven by using y′ = y = r(ϕ) sin(ϕ) and x′ = ae+ r(ϕ) cos(ϕ) and plugging in.

Kepler’s Third Law

Now area of ellipse A = πab

The period of elliptical motion T is the ratio of the total area of the ellipse (A) to the areal velocity (Ȧ)

and is given as :

T =
πab

l/2µ
=

2πµab

l

T = 2πa3/2
√
µ

k
= 2πa3/2

√
1

GM

T 2 = 4π2a3
µ

k
(38)

Because

b2 = a2
√

1− e2 =

(
−k
2E

)2

.
−2El2

µk2
=
−k
2E

.
l2

µk

b = a1/2

√
l2

µk
(39)
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The Eq.(38) shows that the square of the periods of the object in central force is proportional to the cube

of the major half axis i. e T 2 ∝ a3, which is Kepler’s third law.

[Note: If a planetory object of mass m is in the motion under the potential of central force, we should

replace the reduced mass µ by mass m of the planet]
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