Central Force Problem

Consider two bodies of masses, say earth and moon, m_{E} and m_{M} moving under the influence of mutual gravitational force of potential $\mathrm{V}(\mathrm{r})$. Now Langangian of the system is

$$
\begin{equation*}
L=\frac{1}{2} \mu\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\varphi}^{2}\right)-V(\mathbf{r}) \tag{1}
\end{equation*}
$$

where, $\mu=\frac{\mathrm{m}_{\mathrm{E}} \cdot \mathrm{m}_{\mathrm{M}}}{\mathrm{M}}$ and $\mathrm{M}=\mathrm{m}_{\mathrm{E}}+\mathrm{M}_{\mathrm{m}}$
Now, the generalized momenta are

$$
\begin{align*}
P_{r} & =\frac{\partial L}{\partial \dot{r}}=\mu \dot{r} \\
P_{\theta} & =\frac{\partial L}{\partial \dot{\theta}}=\mu r^{2} \dot{\theta} \tag{2}\\
P_{\varphi} & =\frac{\partial L}{\partial \dot{\varphi}}=\mu r^{2} \sin ^{2} \theta \dot{\varphi}
\end{align*}
$$

Select the case:

$$
\begin{align*}
& \theta(t=0)=90^{\circ} \\
& \dot{\theta}(t=0)=0 \tag{3}
\end{align*}
$$

(always possible by orientation of the x, y, z coordinate system). The Euler-Lagrange Equation for θ is

$$
\begin{gather*}
\frac{d P_{\theta}}{d t}=2 \mu r \dot{r} \dot{\theta}+\mu r^{2} \ddot{\theta}= \\
\frac{\partial L}{\partial \theta}=\mu r^{2} \sin (\theta) \cos (\theta) \dot{\phi}^{2} \tag{4}
\end{gather*}
$$

Since all other terms are zero due to our choice, it must be true that also

$$
\ddot{\theta}(t=0)=0
$$

This can be expanded for higher derivatives, ultimately showing that θ must be constant at 90 degrees. This is of course due to the fact that both the magnitude and the direction of the angular momentum vector \mathbf{L} is conserved, and the radius vector is always perpendicular to it. So if we choose the z-direction in the direction of \mathbf{L}, the equations of motion for $r(t)$ and $\varphi(t)$, are restricted to the x-y plane. We have now reduced our analysis to that of a system with 2 degrees of freedom, namely (r, φ).

From now on, we assume that the force is pointing along the direction of the relative position \mathbf{r} between the two objects. We can say that for such a central force the potential depends only on the distance $|\mathbf{r}|$ between the two objects.

$$
\begin{equation*}
V(\mathbf{r})=V(r)=-\frac{G M \mu}{r} \tag{5}
\end{equation*}
$$

Figure 1: Motion of two body system of reduced mass μ in the central force field

Then the Langrangian for this system

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \mu\left(\dot{r}^{2}+r^{2} \dot{\varphi}^{2}\right)-V(r) \tag{6}
\end{equation*}
$$

From Euler-Langrange equation (ELE)

$$
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\varphi}}\right)-\frac{\partial \mathcal{L}}{\partial \varphi}=0
$$

We get

$$
\begin{equation*}
\dot{P}_{\varphi}=0=\mu r^{2} \ddot{\varphi} \tag{7}
\end{equation*}
$$

Then, the angular momentum l is constant

$$
\begin{equation*}
P_{\varphi}=\frac{\partial \mathcal{L}}{\partial \dot{\varphi}}=\mu r^{2} \dot{\varphi}=l=\mathrm{constant} \tag{8}
\end{equation*}
$$

Similarly, from ELE for r

$$
\begin{align*}
& \frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{r}}\right)-\frac{\partial \mathcal{L}}{\partial r}=0 \\
& \mu \ddot{r}-\mu r \dot{\varphi}^{2}+\frac{\partial V(r)}{\partial r}=0 \tag{9}
\end{align*}
$$

Then

$$
\begin{align*}
\dot{P}_{r} & =\frac{\partial \mathcal{L}}{\partial r} \\
\mu \ddot{r} & =\mu r \dot{\varphi}^{2}-\frac{G M \mu}{r^{2}} \\
\mu \ddot{r} & =-\frac{\partial V(r)}{\partial r}+\frac{P_{\varphi}}{\mu r^{3}} \tag{10}
\end{align*}
$$

let a function h given by

$$
\begin{align*}
h & =\frac{\mu}{2}\left(\dot{r}^{2}+r^{2} \dot{\varphi}^{2}\right)+V(r) \\
h & =\frac{\mu}{2} \dot{r}^{2}+\frac{P_{\varphi}^{2}}{2 \mu r^{2}}+V(r)=E \tag{11}\\
h & =\frac{\mu}{2} \dot{r}^{2}+\frac{l^{2}}{2 \mu r^{2}}+V(r)=E \\
\therefore h & =\frac{\mu}{2} \dot{r}^{2}+" V(r) "=E \tag{12}
\end{align*}
$$

where " $V(r)$ " $=\frac{l^{2}}{2 \mu r^{2}}+V(r)$ is pseudo-potential and E is the total energy. From Eq. (10),

$$
\dot{r}= \pm \sqrt{\frac{2}{\mu}} \sqrt{E-\frac{P_{\varphi}^{2}}{2 \mu r^{2}}-V(r)}
$$

where the sign \pm depends on $r(t)$ is increasing or decreasing at time t . It doesn't alter the trajectory.Taking '+' sign, we get

$$
\begin{equation*}
\int_{r_{1}}^{r_{2}} \frac{d r}{\sqrt{\frac{2}{\mu}} \sqrt{E-\frac{P_{\varphi}^{2}}{2 \mu r^{2}}-V(r)}}=\int_{t_{1}}^{t_{2}} d t=t_{2}-t_{1} \tag{13}
\end{equation*}
$$

Kepler's Second Law

From Eq. (7)

$$
\dot{\varphi}=\frac{d \varphi}{d t}=\frac{l}{\mu r^{2}}
$$

The differential area swept out in time $d t$ is

Figure 2: Area swept out by the radius vector \mathbf{r} in time $d t$

$$
\begin{align*}
d A & =\frac{1}{2} r(r d \varphi)=\frac{1}{2} r^{2} \dot{\varphi} d t \\
\therefore \dot{A} & =\frac{d A}{d t}=\frac{1}{2} r^{2} \dot{\varphi}=\frac{l}{2 \mu}=\mathrm{constant} \tag{14}
\end{align*}
$$

Thus, the particle sweeps away equal area in equal interval of time, which is Kepler's second law. Again

$$
\begin{equation*}
\int_{\varphi_{1}}^{\varphi_{2}} d \varphi=\varphi_{2}-\varphi_{1}=\frac{l}{\mu r^{2}} \int_{t_{1}}^{t_{2}} d t=\frac{l}{\mu r^{2}}\left(t_{2}-t_{1}\right) \tag{15}
\end{equation*}
$$

from Eq. (12) and Eq. (14), we get

$$
\begin{align*}
\varphi_{2}-\varphi_{1} & =\frac{l}{\mu} \int_{r_{1}}^{r_{2}} \frac{d r}{\sqrt{\frac{2}{\mu}} r^{2} \sqrt{E-\frac{P_{\varphi}^{2}}{2 \mu r^{2}}-V(r)}} \\
\varphi_{2}-\varphi_{1} & =\frac{l}{\sqrt{2 \mu}} \int_{r_{1}}^{r_{2}} \frac{d r / r^{2}}{\sqrt{E-\frac{P_{\varphi}^{2}}{2 \mu r^{2}}-V(r)}} \tag{16}
\end{align*}
$$

Again using Eq. (7), we can write

$$
\begin{align*}
d \varphi & =\frac{l}{\mu r^{2}} d t \\
\frac{d}{d t} & =\frac{l}{\mu r^{2}} \frac{d}{d \varphi} \\
\dot{r}=\frac{d r}{d t} & =\frac{l}{\mu r^{2}} \frac{d r}{d \varphi} \\
\ddot{r}=\frac{l}{\mu r^{2}} \frac{d \dot{r}}{d \varphi} & =\frac{l}{\mu r^{2}} \frac{d \dot{r}}{d \varphi}=\frac{l}{\mu r^{2}} \frac{d}{d \varphi}\left(\frac{l}{\mu r^{2}} \frac{d r}{d \varphi}\right) \tag{17}
\end{align*}
$$

Again Let $r=\frac{1}{u}$

$$
\begin{align*}
\frac{d r}{d \varphi} & =\frac{d r}{d u} \frac{d u}{d \varphi} \\
& =\frac{-1}{u^{2}} \frac{d u}{d \varphi} \\
& =-r^{2} \frac{d u}{d \varphi} \\
\frac{d r}{r^{2}} & =-d u \tag{18}
\end{align*}
$$

Using Eq.(15) and Eq.(17), we get, taking + sign ,

$$
\begin{equation*}
\varphi_{2}-\varphi_{1}=\frac{l}{\sqrt{2 \mu}} \int \frac{d u}{\sqrt{E-\frac{l^{2} u^{2}}{2 \mu}-V(u)}} \tag{19}
\end{equation*}
$$

Using Eq.(16) in Eq.(9),

$$
\begin{gather*}
\frac{-l^{2} u^{2}}{\mu}\left(\frac{d^{2} u}{d \phi^{2}}-\frac{l^{2} u^{3}}{\mu}+u^{2} \frac{d V}{d u}\right)=0 \\
\frac{d^{2} u}{d \phi^{2}}=-u+\frac{\mu}{l^{2}} \frac{d V}{\partial u} \tag{20}
\end{gather*}
$$

Considering the power law function of r for the potential such that

$$
\begin{align*}
V(r) & =k r^{n+1} \tag{21}\\
V(u) & =k u^{-(n+1)} \tag{22}
\end{align*}
$$

Eq. (18) becomes

$$
\begin{equation*}
d \varphi=\int \frac{d u}{\sqrt{\frac{2 \mu E}{l^{2}}-\frac{2 \mu k}{l^{2}} u^{-(n+1)}-u^{2}}} \tag{23}
\end{equation*}
$$

Again,

$$
E=\frac{\mu}{2} \dot{r}^{2}+\frac{l^{2}}{2 \mu r^{2}}+V(r)=\frac{\mu}{2} \dot{r}^{2}+" V(r) "
$$

At $r=r_{\text {min }}, r=r_{\text {max }}$, and $r=r_{0}$, equilibrium position $\dot{r}=0$
For equilibrium position $r=r_{0}$,

$$
\begin{equation*}
\frac{\partial " V(r) "}{\partial r}=0 \quad \text { and } \quad E=E_{0} \tag{24}
\end{equation*}
$$

For a mass μ on a spring with spring constant $k_{s}, V=\frac{k_{s}}{2} r^{2}$, so $k=k_{s} / 2$ and $n=1$. For Kepler's problem , $n=-2, k=G M \mu$, and $V(u)=-k u$:

$$
\begin{gather*}
\frac{-l^{2}}{2 \mu r_{0}^{3}}+\frac{k}{r_{0}^{2}}=0 \\
r_{0}=\frac{l^{2}}{\mu k} \tag{25}
\end{gather*}
$$

and

$$
\begin{align*}
E_{0} & =\frac{l^{2}}{2 \mu}\left(\frac{\mu k}{l^{2}}\right)^{2}-k \frac{\mu k}{l^{2}} \\
E_{0} & =\frac{-\mu k^{2}}{2 l^{2}}=V / 2=-T \tag{26}
\end{align*}
$$

[Note: Alternative way to find maximum and minimum values of r (From Goldstein Text) For maximum and minimum values of r,

$$
\begin{gathered}
E=\frac{l^{2}}{2 \mu r^{2}}-\frac{k}{r} \\
E r^{2}+k r-\frac{l^{2}}{2 \mu}=0
\end{gathered}
$$

This equation is quadratic in r, so we will have two roots given by:

$$
\begin{aligned}
r & =\frac{-k \pm \sqrt{k^{2}+\frac{2 E l^{2}}{\mu}}}{2 E} \\
& =\frac{-k}{2 E}\left(1 \pm \sqrt{1+\frac{2 E l^{2}}{\mu k^{2}}}\right) \\
& =a(1 \pm e)
\end{aligned}
$$

with,

$$
\left.a=\frac{-k}{2 E} \quad \text { and } \quad e=\sqrt{1+\frac{2 E l^{2}}{\mu k^{2}}} \quad\right]
$$

We get From Eq. (19)

$$
\begin{align*}
u^{\prime \prime}+u & =\frac{\mu k}{l^{2}} \\
u(\varphi)=\frac{1}{r} & =A \cos \left(\varphi-\varphi_{0}\right)+\frac{\mu k}{l^{2}} \\
r & =\frac{1}{A \cos \left(\varphi-\varphi_{0}\right)+\frac{\mu k}{l^{2}}} \\
& =\frac{1}{A \cos \left(\varphi-\varphi_{0}\right)+C} \\
\text { therefore, } \quad r & =\frac{1}{C\left(1+e \cos \left(\varphi-\varphi_{0}\right)\right)} \tag{27}
\end{align*}
$$

Without loss of generality, let us assume that $\varphi_{0}=0$ at $t=0$, so the above Eq. (30) becomes

$$
\begin{equation*}
r=\frac{1}{C(1+e \cos \varphi)} \tag{28}
\end{equation*}
$$

where $C=\frac{\mu k}{l^{2}}$ and $e=\frac{A}{C}$ is the eccentricity of the orbit of the particle.
Now, for $r=r_{\text {min }}$

$$
\begin{align*}
E & =\frac{l^{2}}{2 \mu r_{\text {min }}^{2}}-\frac{k}{r_{\text {min }}} \\
& =\frac{l^{2}}{2 \mu} C^{2}(1+e)^{2}-k C(1+e) \\
E & =\frac{\mu k^{2}}{2 l^{2}}\left(1-e^{2}\right) \\
e & =\sqrt{1+\frac{2 E l^{2}}{\mu k^{2}}} \tag{29}
\end{align*}
$$

At equilibrium

$$
E_{0}=\frac{-\mu k^{2}}{2 l^{2}}
$$

The nature of the orbit depends upon the magnitude of e according to the following scheme:

$$
\begin{array}{lll}
e=0, & E=-\frac{\mu k^{2}}{2 l^{2}}: & \text { circle } \\
e=1, & E=0: & \text { parabola } \\
e>1, & E>0: & \text { hyperbola } \\
e<1, & E<0: & \text { ellipse }
\end{array}
$$

Figure 3: Trajectory of the body with varying eccentricity in the central force field
For $e<1$, case of ellipse,

$$
\begin{aligned}
& r_{\text {min }}=\frac{1}{C(1+e)} \\
& r_{\text {max }}=\frac{1}{C(1-e)}
\end{aligned}
$$

The major half axis, a is defined by the relation

$$
\begin{align*}
2 a & =r+r^{\prime} \\
2 a & =r_{\text {min }}+r_{\text {max }} \\
a & =\frac{1}{2 C}\left(\frac{1}{1+e}+\frac{1}{1-e}\right) \\
a & =\frac{1}{C\left(1-e^{2}\right)} \\
& =-\frac{k}{2 E}=\frac{1}{1-e^{2}} \frac{l^{2}}{\mu k} \tag{30}
\end{align*}
$$

So, Choose φ_{0} such that $r\left(\varphi_{0}\right)=r_{\text {min }}$

$$
\begin{equation*}
r=\frac{1}{C(1+e \cos \varphi)}=\frac{a\left(1-e^{2}\right)}{(1+e \cos \varphi)} \tag{31}
\end{equation*}
$$

From Fig.(3),

$$
\begin{align*}
r\left(\varphi_{b}\right)\left(-\cos \varphi_{b}\right) & =a e \\
\text { or, }-\frac{a\left(1-e^{2}\right) \cos \varphi_{b}}{1+e \cos \varphi_{b}} & =a e \\
\text { or, } \quad-\left(e+e^{2} \cos \varphi_{b}\right) & =\left(1-e^{2}\right) \cos \varphi_{b} \\
\text { or, } \cos \varphi_{b} & =-e \\
\therefore \quad r_{b}\left(\varphi_{b}\right)\left(-\cos \varphi_{b}\right)=r_{b} e & =a e \Rightarrow r_{b}=a \tag{32}
\end{align*}
$$

Then, we get,

$$
\begin{equation*}
b=\sqrt{r_{b}^{2}-a^{2} e^{2}}=a \sqrt{1-e^{2}}=\frac{1}{\sqrt{1-e^{2}}} \frac{l^{2}}{\mu k}=\sqrt{a} \sqrt{\frac{l^{2}}{\mu k}} \tag{33}
\end{equation*}
$$

The equation

$$
\begin{equation*}
r=\frac{1}{C(1+e \cos \varphi)} \tag{34}
\end{equation*}
$$

is actually an equation of an ellipse with shifted co-ordinates x^{\prime} and y^{\prime} (or x and y, original co-ordinate system)

$$
\begin{align*}
\frac{x^{\prime 2}}{a^{2}}+\frac{y^{\prime 2}}{b^{2}} & =1 \tag{35}\\
\frac{\left(x+x_{0}\right)^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} & =1 \tag{36}
\end{align*}
$$

with,

$$
\begin{equation*}
x_{o}=a e, \quad a=\frac{1}{C\left(1-e^{2}\right)}, \quad b=\frac{1}{C \sqrt{1-e^{2}}} \tag{37}
\end{equation*}
$$

This can be proven by using $y^{\prime}=y=r(\varphi) \sin (\varphi)$ and $x^{\prime}=a e+r(\varphi) \cos (\varphi)$ and plugging in.

Kepler's Third Law

Now area of ellipse $A=\pi a b$
The period of elliptical motion T is the ratio of the total area of the ellipse (A) to the areal velocity (\dot{A}) and is given as :

$$
\begin{align*}
T & =\frac{\pi a b}{l / 2 \mu}=\frac{2 \pi \mu a b}{l} \\
T & =2 \pi a^{3 / 2} \sqrt{\frac{\mu}{k}}=2 \pi a^{3 / 2} \sqrt{\frac{1}{G M}} \\
T^{2} & =4 \pi^{2} a^{3} \frac{\mu}{k} \tag{38}
\end{align*}
$$

Because

$$
\begin{align*}
b^{2} & =a^{2} \sqrt{1-e^{2}}=\left(\frac{-k}{2 E}\right)^{2} \cdot \frac{-2 E l^{2}}{\mu k^{2}}=\frac{-k}{2 E} \cdot \frac{l^{2}}{\mu k} \\
b & =a^{1 / 2} \sqrt{\frac{l^{2}}{\mu k}} \tag{39}
\end{align*}
$$

The Eq.(38) shows that the square of the periods of the object in central force is proportional to the cube of the major half axis i. e $T^{2} \propto a^{3}$, which is Kepler's third law.
[Note: If a planetory object of mass m is in the motion under the potential of central force, we should replace the reduced mass μ by mass m of the planet]

