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Recall the energy equation from the last lecture:
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Also recall that we designated
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Now we’ll bring in the concept of gravitational attraction:

For brevity’s sake let k = GM p.

We’ll assume all motion is in the x-y plane. Rearranging r:
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Now make the variable transformation
1 P,
u=— = =24
r K
Now rewriting (1):
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Rearranging:
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Now substituting this expression into the integral from the previous lecture:
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Note that £ — oo as r — 0. Also note we are assuming Py # 0. The maximum value of u

occurs where v/ = 0. Designate this value u,,. With v’ = 0 our energy expression becomes:
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Completing the polynomial square:
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Solving for uy,:
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Where the max occurs with the + sign active in the expression. We’ll set u(¢g) = u,, and
0 =0, s0 u(0) = up,.

Now returning to the integral. Define v = u — }‘,—]Z. Rewriting the integral:
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Now define w = 2uE+u2k2 And again rewriting the integral:
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Reversing the limits of integration:
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Now define ¢ = “—’Z and e 1 + ~—2 . making the expression now:
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Recall ©u = %:
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Now we’ll explore the impact manipulating the variable e has on the shape of the function
r(¢). Note they are all conic sections.
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Note r(¢) is a constant, and since ¢ = o
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And since e = {/1 + R €= 0= FE= PQ, the minimum energy the system can
have without a complex solution.
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Case 3
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More to follow on the hyperbola in the next lecture.
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Solving for the semi-major axis, a:
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Semi-minor axis, b:



