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Let consider £ be the Lagrangian of a system where £ = L(q;, ¢;,t) with 1 =1,2,... k.
We know that,

- oc
S
We defined a h function such that,
hzZmi — L(gi, i, t) (0.1)
h =h(q;, i, t) Z 7. 0L G — Llginint) (0.2)

h function may or may not represent energy.
Now,

dh = Z pidd; + Gidp;) — Z(%dqZ + g—gdq}-) — %dt
— szd% + Z Gidp; — szdqz szdql — —dt
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Where, — = = 2=
(Where, &, = @t 94,

= pi)

codh = Z qidp; — Zﬁid% — %—fdt

It is clear that variation of h depends on variation in p;, ¢; and possibly of .

The Hamiltonian H and the energy function h has the same value and H can be con-
structed in the same manner of equation 0.2.

807 H(qlvpla t) = h[QM QZ(QJapj7 t)a t]
And we can obtain the following equations,
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Now we can write,
OH ) q OH
= —D; an =
Jq b Ip;
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Which are known as Canonical equations of Hamilton.

Example: Let’s consider a simple pendulum of mass m and length L.

The Lagrangian,
| )
£(9,9) =3mL?** = mgL(1 - cos ¢)
Now, pg :g—g = mL%) (0.3)

So the h function can be written as,
h=py¢ — L

1 .
=mL*¢* — §mL2gb2 + mgL(1 — cos ¢)
1 .
=§mL2¢2 + mgL(1 — cos ¢)
2mL?
=T+V

=H(¢,pg)

+mgL(1 — cos ¢)

Now the Canonical equations of Hamilton becomes,

. oH :
Py = — s = —mgLsin ¢ (0.4)
o ~Ops " (0.5)



Using the definition of equation 0.3, 0.4 becomes,

mL*¢ = — mgLo

[Using small angle approximation]

h=-9
Le=—T10

Which gives the equation of motion of simple pendulum with angular frequency w = /4.
Let’s think about an object going upward with speed y.
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So Lagrangian, £(y,9) ==my* — mgy

2
_ _oc —
So the h function is,
h =pyy — L(y,7)
.9 1 .9
=my —§my + mgqy
1,
:§my + mgy
D2
—ﬁ +mgy = E = H(y,py, 1)
o0H
So, — =y By _
Opy m
And,
oH .
oy Py
= py=—myg
oDy = — mgt + py,
= my = — mgt + py,
Sy :—gt—l—%
m
1 p
cy(t) =yg — —gt? + 224
y(t) =yo A -



In general case we can write Lagrangian as,
1 = = = — —
L =5(@)"'(@) + (@) (@) + Lo(g, 1)

1 . )
=5 E ¢iq;11L;; + E Gia; + Lo(qi, t)
i i

Where, ¢ =
II;; and a; are function of coordinate and possibly time.
oL 1 ) 1 .
Now, p :8_q'l =5 %: Gi0j11L;; + B %: 0ug;1L;; + z; dia;

1 ) 1 .
Y} :5 Z QiHil + 5 Z QjHlj + a;
i J

:%Zq'ini, +%Zq‘jnﬂ +a =1
= Z gilly +
L0 =@ + ()" (0.6
— (@) =(p- )1
Now,
H = Zpidi —L
~(p)"(@) - £
(@)™ + (@7 — 5@ Td) - (@) (@) — Lolq.1)
=2 (@1~ Lo(7.) @7 = @) (@
=S (=) T (o~ @) — £o(g.)
=5~ @) (1) (p — @) — Lo(a.1) ey =
=H(q,p, 1)
H(q,p.t) =5(p — @) (1) (p — @) ~ Lo(a.1) 0.7

Example: Let consider a mass is attached to a spring k in one end. The other end of the
spring is attached to a mass less cart which is moving uniformly with speed vy.
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The Lagrangian,

1 1
L(x,&,t) = §mi2 — §k;(x — vgt)?

Comparing with general form of Lagrangian,

1. . .
L :éqTHq +q"a+ Lo(g,t)

1 . :
=3 E ¢:iq;11i; + Z Gia; + Lo(gq,t)

This is one dimensional case,

So,

: 1
(@) =(&),II=m and a=0, Ly= —§k($ — vgt)?

So according to equation 0.7,

1 1 1
H(m,px, t) :_pxapx + 5]@(% - UOt)2
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:% + 5]{3(1‘ — Uot)2



So canonical equations of Hamilton,

OH )
% :k($ — Uot) = — Pz
OH _pr _
op, m
and © = Pe
m

are the equation of motion. Again H is explicitly dependent on ¢, so energy is not conserved.

Lets see the figure again.
If we define position of the mass by x’ then the Lagrangian can be written as,

L=T-V
1 1
:§m(x' -+ U0)2 — §]€LUI2
1
Where, T :§m(33’ + vg)?
1
Vv :§k.’L’/2

1 1 1
So, L :§m:i:’2 + mi'vy + §mv§ - ékxa

o,
..@—p—mx + muyg
1
Here, L, zémvg — ék‘x'Q
So, following the equation 0.7
H&,p) =5 (p = mog)—(p — mu) — smed + ke
2 p) ==(p —muy)—(p — muvy) — =mug + —kx
P 2 p 0 m p 0 9 0 9
1(p—muy)? 1 1
SR L L

Here, H is independent of time. H doesn’t represent total energy F, but it is a conserved
quantity. Except for the last constant term %mvg, H represents total energy of the mass due



to its motion relative to the moving cart.

oH .
Now, 3 =ka' = —p
OH _(p—mw) _,
op m
. / p /
p=—kxr and ——vy=2
m
) k
— =L ="y
m m

which represents oscillatory motion with frequency \/% .

Lets consider a charged particle of mass m and charge e moving through an EM field.
The Lagrangian of that particle is,

L= %me — ed(T,t) + er. A(7, 1)

Where ¢(7, 1) is electric potential and A(7, ) is vector potential.

x x
Now, (r) =y |.(")={4¥
z z
(A) = Ay
A,
Now the Lagrangian can be written as,
1
L zﬁm(iz + 924 28 Fe(iA, +9A, + 2A.) — eg(T,t)
1 m 0 0 T eA,
:5(31': gy 210 m 0 gyl +(@E v 2)|eA, | —eo(r,t)
0 0 m z eA,
. 1,. . .
o LT, t) :§(f)THf + (1) (@) + Lo(7,1) (0.8)
B m 0 0
Where, (a) =e(A) =10 m 0
0 0 m



According to 0.6;

(p) =I1(7) + (a) = II(7) + eA Tt =11
In other words, p; =mr; + eA;
where, i = z,y, 2

. p =m7 + eA which is known as Canonical Momentum .

Now equation 0.7 becomes,

H(r,p,1) =5 (0 — AT (p — ) — Lofr, 1

-1

1 B m 0 0 B
:5(]5 —eA)'10 m 0 (p— eA) + ep(7,t)
0 0 m
1 o 1 00 )
:é(p —eA)T =0 1 0| (p—ed)+ep(r,t)
N0 0 1
1 Pz — eAz
=5 (px —eA, p,—eA, p.— eAZ) py — €Ay | +ep(7,1)
" P — eAz
1
=5 {(pe — A+ (y — €Ay + (e — AP+ eg(7 1)
1 _

Here H represents Total Energy but the quantity is conserved if and only if ¢ an A are time
independent.

Now the Canonical equations of Hamilton are as below,

oOH 1 0A 0A 0A 0o

)y =— — = ——[—2(p, — eA,)e—s — 2(p, — eA,)e—2L — 2(p, — eA 2] —e—=

Pe ox 2m[ (pe = eAs)e ox (py = edy)e ox (p- — eA:)e ox ) 681’
. e 0A, 0A, 0A, 0¢
.o P _m[(px_eAx) O —i—(py—@Ay) O +(pz_€Az) ax]_eaa:



Similarly,

. e 0A 0A 0A 0¢
= T Ax — A — 2 Az 2l —e—=
py m[<p e )ay +(y ey)ay+< € )ay] eay
. e 0A 0A 0A 0¢
D m[(pz eAy) G + (py — e4y) 92 + (p. — eA,) 82] 6(92
And,
jC:@H:px eA, s . = i+ eA,
Opq m
. OH p,—eA, .
= = — A
Y p, - = Py = My + eAy
Z:E?H:pz BAZ :>pzzmé’+€z4z
op. m
Using the definition of &,y and 2 we can write,
, —e[;taA‘T n L0A, +28AZ] 09
Pa = ox 4 ox ox 6833
= mi+e—" = e[i‘aAm + 94y +28AZ] - e%
dt ox Y ox ox ox
= mi + ei—— +e'% +626Ax +eaAm = ej:aAm —|—e'% +628Az —e%
oz Yoy 9 ot or Y or or ‘o
. .,0A, 0A, L 0A,  0A, oo  0A,
—mE=ej( G~ ) T G~ ) T o)
_ _ _ 0A
= mi=-e[y(Vx A), — 2V x A),| +e[-Vo — E]x
= mi = e(E), +e(F x B),
(mi), = e[E + (F x B)],
mr = e[E + (7 x B)] (0.9)

This is the equation of motion for the charged particle moving in EM field. The equation
0.9 also represents the force acting on the charged particle while moving through an EM

field.
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