PHYSICS 603 - Classical Mechanics

Hamiltonian Mechanics
Md Aziz Ar Rahman

April 3, 2020

Let consider \mathcal{L} be the Lagrangian of a system where $\mathcal{L}=\mathcal{L}\left(q_{i}, \dot{q}_{i}, t\right)$ with $i=1,2, \ldots, k$. We know that,

$$
p_{i}=\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}
$$

We defined a h function such that,

$$
\begin{align*}
& h=\sum_{i} p_{i} \dot{q}_{i}-\mathcal{L}\left(q_{i}, \dot{q}_{i}, t\right) \tag{0.1}\\
& h=h\left(q_{i}, \dot{q}_{i}, t\right)=\sum_{i} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \dot{q}_{i}-\mathcal{L}\left(q_{i}, \dot{q}_{i}, t\right) \tag{0.2}
\end{align*}
$$

h function may or may not represent energy.
Now,

$$
\begin{aligned}
& \quad d h=\sum_{i}\left(p_{i} d \dot{q}_{i}+\dot{q}_{i} d p_{i}\right)-\sum_{i}\left(\frac{\partial \mathcal{L}}{\partial q_{i}} d q_{i}+\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} d \dot{q}_{i}\right)-\frac{\partial \mathcal{L}}{\partial t} d t \\
& =\sum_{i} p_{i} d \dot{q}_{i}+\sum_{i} \dot{q}_{i} d p_{i}-\sum_{i} \dot{p}_{i} d q_{i}-\sum_{i} p_{i} d \dot{q}_{i}-\frac{\partial \mathcal{L}}{\partial t} d t \\
& \quad \quad\left[\text { Where, } \frac{\partial \mathcal{L}}{\partial q_{i}}=\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}=\dot{p}_{i}\right] \\
& \therefore d h=
\end{aligned}
$$

It is clear that variation of h depends on variation in p_{i}, q_{i} and possibly of t.
The Hamiltonian H and the energy function h has the same value and H can be constructed in the same manner of equation 0.2.

So, $H\left(q_{i}, p_{i}, t\right)=h\left[q_{i}, \dot{q}_{i}\left(q_{j}, p_{j}, t\right), t\right]$
And we can obtain the following equations,

$$
\begin{aligned}
& \frac{\partial H}{\partial p_{i}}=\frac{\partial h}{\partial p_{i}}=\dot{q}_{i} \\
& \frac{\partial H}{\partial q_{i}}=\frac{\partial h}{\partial q_{i}}=-\dot{p}_{i} \\
& \frac{\partial H}{\partial t}=\frac{\partial h}{\partial t}=-\frac{\partial \mathcal{L}}{\partial t}
\end{aligned}
$$

Now we can write,

$$
\frac{\partial H}{\partial q_{i}}=-\dot{p}_{i} \quad \text { and } \quad \frac{\partial H}{\partial p_{i}}=\dot{q}_{i}
$$

Which are known as Canonical equations of Hamilton.
Example: Let's consider a simple pendulum of mass m and length L.

The Lagrangian,

$$
\begin{align*}
\mathcal{L}(\phi, \dot{\phi}) & =\frac{1}{2} m L^{2} \dot{\phi}^{2}-m g L(1-\cos \phi) \\
\text { Now, } p_{\phi} & =\frac{\partial \mathcal{L}}{\partial \dot{\phi}}=m L^{2} \dot{\phi} \tag{0.3}
\end{align*}
$$

So the h function can be written as,

$$
\begin{aligned}
h & =p_{\phi} \dot{\phi}-\mathcal{L} \\
& =m L^{2} \dot{\phi}^{2}-\frac{1}{2} m L^{2} \dot{\phi}^{2}+m g L(1-\cos \phi) \\
& =\frac{1}{2} m L^{2} \dot{\phi}^{2}+m g L(1-\cos \phi) \\
& =\frac{p_{\phi}{ }^{2}}{2 m L^{2}}+m g L(1-\cos \phi) \\
& =T+V \\
& =H\left(\phi, p_{\phi}\right)
\end{aligned}
$$

Now the Canonical equations of Hamilton becomes,

$$
\begin{align*}
\dot{p_{\phi}} & =-\frac{\partial H}{\partial \phi}=-m g L \sin \phi \tag{0.4}\\
\dot{\phi} & =\frac{\partial H}{\partial p_{\phi}}=\frac{p_{\phi}}{m L^{2}} \tag{0.5}
\end{align*}
$$

Using the definition of equation $0.3,0.4$ becomes,

$$
\begin{aligned}
& m L^{2} \ddot{\phi}=-m g L \phi \\
& \quad \text { [Using small angle approximation] } \\
& \therefore \ddot{\phi}=-\frac{g}{L} \phi
\end{aligned}
$$

Which gives the equation of motion of simple pendulum with angular frequency $\omega=\sqrt{\frac{g}{L}}$. Let's think about an object going upward with speed \dot{y}.

$$
\text { So Lagrangian, } \begin{aligned}
\mathcal{L}(y, \dot{y}) & =\frac{1}{2} m \dot{y}^{2}-m g y \\
\therefore p_{y} & =\frac{\partial \mathcal{L}}{\partial \dot{y}}=m \dot{y}
\end{aligned}
$$

So the h function is,

$$
\begin{aligned}
h & =p_{y} \dot{y}-\mathcal{L}(y, \dot{y}) \\
& =m \dot{y}^{2}-\frac{1}{2} m \dot{y}^{2}+m g y \\
& =\frac{1}{2} m \dot{y}^{2}+m g y \\
& =\frac{p_{y}{ }^{2}}{2 m}+m g y=E=H\left(y, p_{y}, t\right) \\
\text { So, } \frac{\partial H}{\partial p_{y}} & =\dot{y} \Longrightarrow \frac{p_{y}}{m}=\dot{y}
\end{aligned}
$$

And,

$$
\begin{aligned}
\frac{\partial H}{\partial y} & =-\dot{p_{y}} \\
\Longrightarrow \dot{p_{y}} & =-m g \\
\therefore p_{y} & =-m g t+p_{y_{0}} \\
\Longrightarrow m \dot{y} & =-m g t+p_{y_{0}} \\
\therefore \dot{y} & =-g t+\frac{p_{y_{0}}}{m} \\
\therefore y(t) & =y_{0}-\frac{1}{2} g t^{2}+\frac{p_{y_{0}}}{m} t
\end{aligned}
$$

In general case we can write Lagrangian as,

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2}(\dot{\bar{q}})^{T} \Pi(\dot{\bar{q}})+(\dot{\bar{q}})^{T}(\bar{a})+\mathcal{L}_{0}(\bar{q}, t) \\
& =\frac{1}{2} \sum_{i j} \dot{q}_{i} \dot{q}_{j} \Pi_{i j}+\sum_{i} \dot{q}_{i} a_{i}+\mathcal{L}_{0}\left(q_{i}, t\right)
\end{aligned}
$$

$$
\text { Where, } \dot{\bar{q}}=\left(\begin{array}{c}
\dot{q}_{1} \\
\dot{q}_{2} \\
\dot{q}_{3} \\
\vdots
\end{array}\right)
$$

$\Pi_{i j}$ and a_{i} are function of coordinate and possibly time.

$$
\left.\begin{array}{rl}
\text { Now, } p_{l} & =\frac{\partial \mathcal{L}}{\partial \dot{q}_{l}}=\frac{1}{2} \sum_{i j} \dot{q}_{i} \delta_{j l} \Pi_{i j}+\frac{1}{2} \sum_{i j} \delta_{i l} \dot{q}_{j} \Pi_{i j}+\sum_{i} \delta_{i l} a_{i} \\
\therefore p_{l} & =\frac{1}{2} \sum_{i} \dot{q}_{i} \Pi_{i l}+\frac{1}{2} \sum_{j} \dot{q}_{j} \Pi_{l j}+a_{l} \\
& =\frac{1}{2} \sum_{i} \dot{q}_{i} \Pi_{i l}+\frac{1}{2} \sum_{j} \dot{q}_{j} \Pi_{j l}+a_{l} \\
& =\sum_{i} \dot{q}_{i} \Pi_{i l}+a_{l} \\
\therefore(\bar{p})^{T} & =\left((\dot{\bar{q}})^{T} \Pi\right)+(\bar{a})^{T} \\
\Longrightarrow(\dot{\bar{q}})^{T} & =(\bar{p}-\bar{a})^{T} \Pi^{-1} \\
\text { Now } & \because \Pi=\Pi^{T} \\
H & =\sum_{i} p_{i} \dot{q}_{i}-\mathcal{L} \\
& =(\bar{p})^{T}(\dot{\bar{q}})-\mathcal{L} \\
& =(\dot{\bar{q}})^{T} \Pi \dot{\bar{q}}+(\bar{a})^{T} \dot{\bar{q}}-\frac{1}{2}(\dot{\bar{q}})^{T} \Pi(\dot{\bar{q}})-(\dot{\bar{q}})^{T}(\bar{a})-\mathcal{L}_{0}(\bar{q}, t) \\
& =\frac{1}{2}(\dot{\bar{q}})^{T} \Pi \dot{\bar{q}}-\mathcal{L}_{0}(\bar{q}, t) \\
& =\frac{1}{2}(\bar{p}-\bar{a})^{T} \Pi^{-1} \Pi\left(\Pi^{-1}\right)^{T}(\bar{p}-\bar{a})-\mathcal{L}_{0}(\bar{q}, t) \\
& =\frac{1}{2}(\bar{p}-\bar{a})^{T}\left(\Pi^{-1}\right)(\bar{p}-\bar{a})^{T}-\mathcal{L}_{0}(q, t) \\
& =H\left(\bar{q}=(\dot{\bar{q}})^{T}(\bar{a}), t\right) \\
\therefore H(\bar{q}, \bar{p}, t) & =\frac{1}{2}(\bar{p}-\bar{a})^{T}\left(\Pi^{-1}\right)(\bar{p}-\bar{a})-\mathcal{L}_{0}(q, t) \tag{0.7}
\end{array} \quad\left(\Pi^{-1}\right)^{T}=\Pi^{-1}\right)
$$

Example: Let consider a mass is attached to a spring k in one end. The other end of the spring is attached to a mass less cart which is moving uniformly with speed v_{0}.

The Lagrangian,

$$
\mathcal{L}(x, \dot{x}, t)=\frac{1}{2} m \dot{x}^{2}-\frac{1}{2} k\left(x-v_{0} t\right)^{2}
$$

Comparing with general form of Lagrangian,

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2} \dot{\bar{q}}^{T} \Pi \dot{\bar{q}}+\dot{\bar{q}}^{T} \bar{a}+\mathcal{L}_{0}(q, t) \\
& =\frac{1}{2} \sum_{i j} \dot{q}_{i} \dot{q}_{j} \Pi_{i j}+\sum_{i} \dot{q}_{i} a_{i}+\mathcal{L}_{0}(q, t)
\end{aligned}
$$

This is one dimensional case, So,

$$
\begin{aligned}
(\dot{\bar{q}}) & =(\dot{x}), \Pi=m \quad \text { and } \quad \bar{a}=0, \mathcal{L}_{0}=-\frac{1}{2} k\left(x-v_{0} t\right)^{2} \\
\text { Now, } p_{x} & =\frac{\partial \mathcal{L}}{\partial \dot{x}}=m \dot{x} \\
\therefore(\bar{p}) & =p_{x}=m \dot{x}
\end{aligned}
$$

So according to equation 0.7 ,

$$
\begin{aligned}
H\left(x, p_{x}, t\right) & =\frac{1}{2} p_{x} \frac{1}{m} p_{x}+\frac{1}{2} k\left(x-v_{0} t\right)^{2} \\
& =\frac{p_{x}^{2}}{2 m}+\frac{1}{2} k\left(x-v_{0} t\right)^{2}
\end{aligned}
$$

So canonical equations of Hamilton,

$$
\begin{aligned}
& \quad \frac{\partial H}{\partial x}=k\left(x-v_{0} t\right)=-\dot{p}_{x} \\
& \frac{\partial H}{\partial p_{x}}=\frac{p_{x}}{m}=\dot{x} \\
& \therefore \dot{p}_{x}=-k\left(x-v_{0} t\right) \\
& \text { and } \dot{x}=\frac{p_{x}}{m}
\end{aligned}
$$

are the equation of motion. Again H is explicitly dependent on t, so energy is not conserved.
Lets see the figure again.
If we define position of the mass by x^{\prime} then the Lagrangian can be written as,

$$
\begin{aligned}
\mathcal{L} & =T-V \\
& =\frac{1}{2} m\left(\dot{x}^{\prime}+v_{0}\right)^{2}-\frac{1}{2} k x^{\prime 2} \\
\text { Where, } T & =\frac{1}{2} m\left(\dot{x}^{\prime}+v_{0}\right)^{2} \\
V & =\frac{1}{2} k x^{\prime 2} \\
\text { So, } \mathcal{L} & =\frac{1}{2} m \dot{x}^{\prime 2}+m \dot{x}^{\prime} v_{0}+\frac{1}{2} m v_{0}^{2}-\frac{1}{2} k x^{\prime 2} \\
\therefore \frac{\partial \mathcal{L}}{\partial \dot{x}^{\prime}} & =p=m \dot{x}^{\prime}+m v_{0} \\
\text { Here, } \mathcal{L}_{0} & =\frac{1}{2} m v_{0}^{2}-\frac{1}{2} k x^{\prime 2}
\end{aligned}
$$

So, following the equation 0.7

$$
\begin{aligned}
H\left(x^{\prime}, p\right) & =\frac{1}{2}\left(p-m v_{0}\right) \frac{1}{m}\left(p-m v_{0}\right)-\frac{1}{2} m v_{0}^{2}+\frac{1}{2} k x^{\prime 2} \\
& =\frac{1}{2} \frac{\left(p-m v_{0}\right)^{2}}{m}+\frac{1}{2} k x^{\prime 2}-\frac{1}{2} m v_{0}^{2}
\end{aligned}
$$

Here, H is independent of time. H doesn't represent total energy E, but it is a conserved quantity. Except for the last constant term $\frac{1}{2} m v_{0}^{2}, H$ represents total energy of the mass due
to its motion relative to the moving cart.

$$
\text { Now, } \begin{aligned}
\frac{\partial H}{\partial x^{\prime}} & =k x^{\prime}=-\dot{p} \\
\frac{\partial H}{\partial p} & =\frac{\left(p-m v_{0}\right)}{m}=\dot{x}^{\prime} \\
\therefore \dot{p} & =-k x^{\prime} \quad \text { and } \quad \frac{p}{m}-v_{0}=\dot{x}^{\prime} \\
\Longrightarrow \ddot{x}^{\prime} & =\frac{\dot{p}}{m}=-\frac{k}{m} x^{\prime}
\end{aligned}
$$

which represents oscillatory motion with frequency $\sqrt{\frac{k}{m}}$.

Lets consider a charged particle of mass m and charge e moving through an EM field. The Lagrangian of that particle is,

$$
\mathcal{L}=\frac{1}{2} m \dot{\bar{r}}^{2}-e \phi(\bar{r}, t)+e \dot{\bar{r}} . \bar{A}(\bar{r}, t)
$$

Where $\phi(\bar{r}, t)$ is electric potential and $\bar{A}(\bar{r}, t)$ is vector potential.

$$
\text { Now, } \begin{aligned}
(\bar{r}) & =\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right),(\dot{\bar{r}})=\left(\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right) \\
(\bar{A}) & =\left(\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right)
\end{aligned}
$$

Now the Lagrangian can be written as,

$$
\begin{align*}
& \mathcal{L}=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)+e\left(\dot{x} A_{x}+\dot{y} A_{y}+\dot{z} A_{z}\right)-e \phi(\bar{r}, t) \\
&=\frac{1}{2}\left(\begin{array}{lll}
\dot{x} & \dot{y} & \dot{z}
\end{array}\right)\left(\begin{array}{ccc}
m & 0 & 0 \\
0 & m & 0 \\
0 & 0 & m
\end{array}\right)\left(\begin{array}{l}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right)+\left(\begin{array}{lll}
\dot{x} & \dot{y} & \dot{z}
\end{array}\right)\left(\begin{array}{l}
e A_{x} \\
e A_{y} \\
e A_{z}
\end{array}\right)-e \phi(\bar{r}, t) \\
& \therefore \mathcal{L}(\bar{r}, \dot{r}, t)=\frac{1}{2}(\dot{\bar{r}})^{T} \Pi \dot{\bar{r}}+(\dot{\bar{r}})^{T}(\bar{a})+\mathcal{L}_{0}(\bar{r}, t) \tag{0.8}\\
& \text { Where, }(\bar{a})=e(\bar{A}) \quad \Pi=\left(\begin{array}{ccc}
m & 0 & 0 \\
0 & m & 0 \\
0 & 0 & m
\end{array}\right) \\
& \mathcal{L}_{0}(\bar{r}, t)=-e \phi(\bar{r}, t)
\end{align*}
$$

According to 0.6 ;

$$
(\bar{p})=\Pi(\dot{\bar{r}})+(\bar{a})=\Pi(\dot{\bar{r}})+e \bar{A} \quad \because \Pi^{T}=\Pi
$$

In other words, $p_{i}=m \dot{r}_{i}+e A_{i}$

$$
\text { where, } i=x, y, z
$$

$\therefore \bar{p}=m \dot{\bar{r}}+e \bar{A}$ which is known as Canonical Momentum.
Now equation 0.7 becomes,

$$
\begin{aligned}
H(\bar{r}, \bar{p}, t) & =\frac{1}{2}(\bar{p}-e \bar{A})^{T} \Pi^{-1}(\bar{p}-e \bar{A})-\mathcal{L}_{0}(\bar{r}, t) \\
& =\frac{1}{2}(\bar{p}-e \bar{A})^{T}\left(\begin{array}{ccc}
m & 0 & 0 \\
0 & m & 0 \\
0 & 0 & m
\end{array}\right)-1 \\
& =\frac{1}{2}(\bar{p}-e \bar{A} \bar{A})^{T} \frac{1}{m}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)(\bar{p}-e \bar{A})+e \phi(\bar{r}, t) \\
& =\frac{1}{2 m}\left(p_{x}-e A_{x} \quad p_{y}-e A_{y} \quad p_{z}-e A_{z}\right)\left(\begin{array}{c}
p_{x}-e A_{x} \\
p_{y}-e A_{y} \\
p_{z}-e A_{z}
\end{array}\right)+e \phi(\bar{r}, t) \\
& =\frac{1}{2 m}\left[\left(p_{x}-e A_{x}\right)^{2}+\left(p_{y}-e A_{y}\right)^{2}+\left(p_{z}-e A_{z}\right)^{2}\right]+e \phi(\bar{r}, t) \\
& =\frac{1}{2 m}(\bar{p}-e \bar{A})^{2}+e \phi=T+V
\end{aligned}
$$

Here H represents Total Energy but the quantity is conserved if and only if ϕ an \bar{A} are time independent.

Now the Canonical equations of Hamilton are as below,

$$
\begin{aligned}
\dot{p}_{x} & =-\frac{\partial H}{\partial x}=-\frac{1}{2 m}\left[-2\left(p_{x}-e A_{x}\right) e \frac{\partial A_{x}}{\partial x}-2\left(p_{y}-e A_{y}\right) e \frac{\partial A_{y}}{\partial x}-2\left(p_{z}-e A_{z}\right) e \frac{\partial A_{z}}{\partial x}\right]-e \frac{\partial \phi}{\partial x} \\
\therefore \dot{p}_{x} & =\frac{e}{m}\left[\left(p_{x}-e A_{x}\right) \frac{\partial A_{x}}{\partial x}+\left(p_{y}-e A_{y}\right) \frac{\partial A_{y}}{\partial x}+\left(p_{z}-e A_{z}\right) \frac{\partial A_{z}}{\partial x}\right]-e \frac{\partial \phi}{\partial x}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \dot{p}_{y}=\frac{e}{m}\left[\left(p_{x}-e A_{x}\right) \frac{\partial A_{x}}{\partial y}+\left(p_{y}-e A_{y}\right) \frac{\partial A_{y}}{\partial y}+\left(p_{z}-e A_{z}\right) \frac{\partial A_{z}}{\partial y}\right]-e \frac{\partial \phi}{\partial y} \\
& \dot{p}_{z}=\frac{e}{m}\left[\left(p_{x}-e A_{x}\right) \frac{\partial A_{x}}{\partial z}+\left(p_{y}-e A_{y}\right) \frac{\partial A_{y}}{\partial z}+\left(p_{z}-e A_{z}\right) \frac{\partial A_{z}}{\partial z}\right]-e \frac{\partial \phi}{\partial z}
\end{aligned}
$$

And,

$$
\begin{aligned}
& \dot{x}=\frac{\partial H}{\partial p_{x}}=\frac{p_{x}-e A_{x}}{m} \Longrightarrow p_{x}=m \dot{x}+e A_{x} \\
& \dot{y}=\frac{\partial H}{\partial p_{y}}=\frac{p_{y}-e A_{y}}{m} \Longrightarrow p_{y}=m \dot{y}+e A_{y} \\
& \dot{z}=\frac{\partial H}{\partial p_{z}}=\frac{p_{z}-e A_{z}}{m} \Longrightarrow p_{z}=m \dot{z}+e A_{z}
\end{aligned}
$$

Using the definition of \dot{x}, \dot{y} and \dot{z} we can write,

$$
\begin{align*}
& \dot{p}_{x}=e\left[\dot{x} \frac{\partial A_{x}}{\partial x}+\dot{y} \frac{\partial A_{y}}{\partial x}+\dot{z} \frac{\partial A_{z}}{\partial x}\right]-e \frac{\partial \phi}{\partial x} \\
& \Longrightarrow m \ddot{x}+e \frac{d A_{x}}{d t}=e\left[\dot{x} \frac{\partial A_{x}}{\partial x}+\dot{y} \frac{\partial A_{y}}{\partial x}+\dot{z} \frac{\partial A_{z}}{\partial x}\right]-e \frac{\partial \phi}{\partial x} \\
& \Longrightarrow m \ddot{x}+e \dot{x} \frac{\partial A_{x}}{\partial x}+e \dot{y} \frac{\partial A_{x}}{\partial y}+e \dot{z} \frac{\partial A_{x}}{\partial z}+e \frac{\partial A_{x}}{\partial t}=e \dot{x} \frac{\partial A_{x}}{\partial x}+e \dot{y} \frac{\partial A_{y}}{\partial x}+e \dot{z} \frac{\partial A_{z}}{\partial x}-e \frac{\partial \phi}{\partial x} \\
& \Longrightarrow m \ddot{x}=e \dot{y}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right)+e \dot{z}\left(\frac{\partial A_{z}}{\partial x}-\frac{\partial A_{x}}{\partial z}\right)+e\left(-\frac{\partial \phi}{\partial x}-\frac{\partial A_{x}}{\partial t}\right) \\
& \Longrightarrow m \ddot{x}=e\left[\dot{y}(\bar{\nabla} \times \bar{A})_{z}-\dot{z}(\bar{\nabla} \times \bar{A})_{y}\right]+e\left[-\bar{\nabla} \phi-\frac{\partial \bar{A}}{\partial t}\right]_{x} \\
& \Longrightarrow m \ddot{x}=e(\bar{E})_{x}+e(\dot{\bar{r}} \times \bar{B})_{x} \\
& \therefore(m \ddot{\vec{r}})_{x}=e[\bar{E}+(\dot{\bar{r}} \times \bar{B})]_{x}
\end{align*}
$$

This is the equation of motion for the charged particle moving in $E M$ field. The equation 0.9 also represents the force acting on the charged particle while moving through an EM field.

