
1.	Independent	Coordinates	of	a	Rigid	Body	
Object made of 1023 atoms/molecules seems to have N=3.1023 degrees of freedom. 
However, as already discussed in 2nd lecture, there are N-6 constraints since the distance 
between any two atoms/molecules is fixed. Hence, the position of every atom/molecule 
can be given by 6 generalized variables: the position of one (arbitrary) atom/molecule (3 
d.o.f.), the relative position of a 2nd one (2 d.o.f., e..g 2 angles, since the distance to the 
first one is fixed) and the direction of a 3rd one NOT on the same straight line as the first 
two (1 d.o.f., since its distance to both initial two is fixed; this d.o.f. can be an angle 
around the axis connecting the first two). All other atoms/molecules have their position 
fixed by the requirement of a fixed distance from the 3 first ones.  
These 6 d.o.f. can be chosen in the following way: 

a) Pick one point fixed relative to the rigid body. This can be its center of mass, or 
any atom/molecule inside, or even a “virtual point” that is specified by its position 
relative to the body. This point can be described by the usual 3 Cartesian 
coordinates (x,y,z).  

b) Choose a second set of coordinates (x’,y’,z’) with origin at the point chosen under 
a) and convenient, fixed orientation relative to the rigid body. By describing the 
orientation of the primed coordinate system (which will require 3 generalized 
coordinates, see below), we can fix the orientation of the body in space. 

In the following, we ignore the coordinates of the fixed point (a), i.e. we are assuming 
that both origins of the primed and unprimed coordinate systems coincide. (See later). 
The unprimed coordinate system is defined by the unit vectors {î , ĵ, k̂} in {x,y,z} 
direction, respectively, and the primed coordinate system similarly by {î ', ĵ ', k̂ '} . One 

way to express the orientation of the rigid body is then by giving the direction cosines 
between all possible primed and unprimed axes: 

 



This is certainly overkill, since now we have 9 “coordinates” instead of just 3. We will 
see later how to express these 9 in terms of 3 judiciously chosen ones (there is more than 
one way to do that). We can organize these direction cosines into a matrix 
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We designate with rm the coordinates of a vector r  in the unprimed coordinate system , 
and with rm’ the coordinates of the same vector in the primed coordinate system. Hence,  
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The matrix R thus describes a passive rotation (where the vector remains unchanged but 
its coordinates are different in the rotated coordinate system). The same is true for the 
(components of) any vector – in fact, we define a vector as a quantity with 3 components 
that transform according to those same rules of matrix multiplication under a rotation of 
the coordinate system. 

2.	Orthogonal	Transformations	
Finally, because the unit vectors describing the axes in the primed coordinate system are 
normalized to one and are orthogonal to each other, we have 

û 'l ⋅ û 'n = Rlm
m=1
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which yields 6 independent equations (3 for equal indices and 3 for the possible 
combinations of unequal ones). This in turn explains how the 9 direction cosines must 
depend on only 3 independent parameters. We call any matrix that fulfills the above 
equation orthogonal. 
The relationship shown above can also be gotten by observing that the scalar product 
between any two vectors must be the same in the primed and unprimed coordinate system 
since the physical vectors don’t change. In matrix multiplication language, 
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u1 u2 u3( ) = (v)T (u) . Using the fact that (M V)T = (V)T(M)T  for any 

two matrices, with (M)T
lm = Mml , we can see that (v ')T (u ') = (v)T (R)T (R)(u)  for any 

arbitrary vectors v, u. Hence the matrix R must fulfill the equation (R)T(R)  = 1, i.e the 
transpose of the rotation matrix must be its inverse. 

 
Use this example to check all of the abstract relationships above. 
Note (WARNING! CONFUSING!): we can also use the same rotational matrix to 
express an active rotation where an initial vector v is turned into a vector u that is rotated 
around the z-axis by an angle –f. Since this R(–f) must be equal to R-1(f) = RT(f) we 
can see that the components of the rotated vector u must be given by (u)l = (R)T

lm(V)m = 
(R)ml(V)m (this is generally true: the matrix describing the coordinate transformation of a 
vector under an active rotation is equal to the transpose of the matrix describing the 
coordinate transformation of an unchanged vector under a passive rotation of the same 
kind. 

3.	Properties	of	Matrices	
ONLY as needed: definition of matrix multiplication, associative law, vectors as column 
matrices, transpose vectors as row matrices, inverse matrix, unit matrix, transpose matrix, 
“square” = symmetric matrix, determinant and multiplication properties, determinant of 
transpose, trace, proper rotations (with det = 1), reflection, etc. (see chapter 4.3-4.4 in 
Goldstein). 



4.	Euler	Angles	
This is one standard method to define the orientation of the rigid body-fixed primed 
coordinate system relative to the (stationary) unprimed system. Basically, two of the 
Euler angles just describe the orientation of the z’ axis in the unprimed coordinate system 
using polar and azimuthal angles, q and f. The final angle, y, describes the rotation of the 
body around its own z’ axis, i.e. the orientation of x’ and y’. Since rotations generally do 
not commute, some care has to be taken to define this precisely – namely as a sequence 
of rotations: 

 



 
Note the “reversed” order in the product of the 3 rotations, since by definition the 
rightmost matrix gets applied first on any vector the product acts on, then the 2nd etc. 
More details and pictures in Goldstein. The explicit form of the matrix for a general 
rotation with 3 Euler angles is also left for the students to figure out in HW 5. 
The end effect is that the 3 angles introduced here completely describe the orientation of 
a rigid body, once a fixed point (with 3 coordinates) has been chosen. Together with 
those 3 coordinates, they form a system of 6 generalized coordinates that automatically 
fulfill all constraints. 

5.	(Skip)	

6.	Euler’s	Theorem	on	the	Motion	of	a	Rigid	Body	
Alternative way to express a rotation of the body-fixed primed coordinate system (and 
hence the body itself): Euler’s Theorem states that any rotation can be expressed as a 
single rotation around a fixed axis n̂  with finite angle f: Given an arbitrary rotational 
matrix R, find a vector n such that its components are invariant (unchanged) under the 
rotation. Thus we can describe the full rotation as a sequence of transformation where 
first we transform into a coordinate system where the z’’ axis is along the vector n, then 
rotate around n (rotation around the z’’’ axis analog to the Example in 2.) and then 
transform back into the original coordinate system. Only the middle step involves an 
active rotation, and hence the full rotation is equivalent to the rotation around n. 
We are left with finding the vector n such that (n) = (R)(n) in the usual sense of matrix 
multiplication. This is a special case of the general eigenvector/eigenvalue problem  



R( )
!
A( ) = λ

!
A( )  which is familiar from Quantum Mechanics. The details are in Chapter 

4.6 in Goldstein, but here is the outline: 

 
This assumes that we can find three eigenvectors Ai for the three eigenvalues li that are 
linearly independent (which we know from QM is true)  and hence can form a matrix A 
as shown above which has an inverse.  
Here is a trick to show that at least one of the l’s must be = 1 (let’s call it l1): 

 
 
The other two l’s must multiply to 1 since the product of all three is 1. Hence we can 
write them as λ2 = λ3

* = eiϕ . Either all three of them are equal to 1 (f =0) in which case 

the whole theorem becomes trivial (R is the unit matrix and hence can be described by a 
rotation around any axis with angle 0), or the last two are both equal to -1 (f = p), which 



corresponds to a rotation around 180 degrees (leading to a simple sign change of the 
coordinates perpendicular to A1 = n) or they are genuinely complex, in which case the 
corresponding eigenvectors must be complex, as well, and hence the axis of rotation is 
uniquely determined. Furthermore, the matrix in the double-primed coordinate system 
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, so we have both n and f. We can also get f 

directly by keeping in mind that the trace = 1 + 2 cosf is unchanged going to the double-
primed coordinate system and hence we can just calculate the trace of the original matrix 
R. 

7.	Finite	Rotations	
We now want to express the rotation around the axis n with an angle f independent of 
coordinate systems. This can be done by observing that not only the scalar product, but 
also the vector product between two vectors is preserved by coordinate transformations. 
In other words, the vector uxv is the same physical vector, regardless what coordinate 
system we use to describe its coordinates as well as those of u and v. (It’s tedious but 
straightforward to show this directly by calculating the coordinates in the primed 
coordinates system of Section 1 using the matrix R.) 
Going into the double-primed coordinate system where n is along the z’’ axis, we can 
look at some arbitrary vector v as having two components: One, !v|| =

!v ⋅ n̂( ) n̂  along the 

direction of the axis of rotation (z’’ direction) and remains unchanged, and the other one, 
!v
⊥
=
!v− !v||  perpendicular to it. We might as well pick our x’’ axis along the direction of 

this perpendicular component: î '' = !v
⊥

!v
⊥

, so that v has no y’’-component. This third 

axis (y’’) is then given by the direction of n̂× !v = n̂× !v
⊥

(which has obviously the same 
magnitude as !v

⊥
, as a vector product of two perpendicular vectors, one of which has unit 

length): ĵ '' = n̂× !v !v
⊥

. The rotation designated by the matrix above describes either a 

passive rotation by the angle f in counterclockwise direction or (the position taken here) 
an active rotation of the vector v in clockwise direction (both in the sense that we are 
looking down along n towards the origin), i.e. !v

⊥
 is rotated towards −n̂× !v = !v× n̂ . The 

rotated vector can thus be constructed as 
!v ' = !v|| + cosφ

!v
⊥
î ''− sinφ n̂× !v

⊥
ĵ '' = !v|| + cosφ

!v
⊥
− sinφ n̂× !v( )

=
!v ⋅ n̂( ) n̂+ cosφ !v− !v ⋅ n̂( ) n̂( )+ sinφ !v× n̂( ) = !vcosφ + !v ⋅ n̂( ) n̂(1− cosφ)+ !v× n̂( )sinφ

 



(see also the figures Goldstein for further explanation). If we want to describe an active 
rotation in counter-clockwise direction, we simply have to change the sign of f and 
therefore get !v ' = !vcosφ + !v ⋅ n̂( ) n̂(1− cosφ)+ n̂× !v( )sinφ . From now on, we will assume 

that all rotations are counter-clockwise, i.e. the axis n forms the “thumb” of a right-hand 
“screw” where the fingers indicate the direction of rotation for positive f. 

8.	Infinitesimal	Rotations	
Looking at the last equation above, we can see that it simplifies for the case of a rotation 
around some axis n by an infinitesimally small angle dW: 
d!v = !v '− !v ≈ n̂× !v( )dΩ =: d

!
Ω× !v with d

!
Ω = n̂dΩ . Here, d

!
Ω  behaves like an ordinary 

vector under coordinate transformations, but it does not change sign under space 
inversions (parity transformation). Hence, it is an axial vector. 
 In matrix formulation, we can write infinitesimal rotations as R = 1 + e where e is a 
“small” matrix close to zero. In the following, we will neglect all terms that are quadratic 
or of higher order in the e‘s. We can write a rotation d

!
Ω  around some axis n̂  by breaking 

it down to its components 
!
Ω( )i  along each of the coordinate axes. This is possible for 

infinitesimal rotations (only!) because they commute: 

 
(Use a book or some other rectangular object to demonstrate that, in general, rotations to 
not commute, see Figs.4.9-4.10 in Goldstein). 
We can introduce a “vector of matrices” in the following way: 
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. These can be called “generators of 

rotations” and are represented by the components of the angular momentum operator in 
Quantum Mechanics. They form a “Lie Algebra” for the group SO(3) of rotations with 
commutation relationship MiM j −M jMi = MiM j

⎡⎣ ⎤⎦= εijkMk
k
∑ : 

 
 

9.	Rate	of	Change	of	a	Vector	
Picking up at the beginning of 8. above, we can now describe the motion of any vector v 
with time as composed of 2 parts: (1) motion relative to the body-fixed set of coordinates 
(primed) plus (2) rotation of the whole system (body with primed coordinates). For an 
infinitesimally short time interval, these two changes commute and we can write 
d
!v( )S = d

!v( )S ' + d
!v( )rot = d

!v( )S ' + d
!
Ω× !v , where the last term contains the infinitesimal 

rotation dW of the body during the time dt. (Remember that the we separated out any 
center-of-mass motion so that any displacement of the body can be described as a rotation 
around a single specific point, around some axis going through that point). The subscript 
S indicates the change as measured in the fixed space coordinate system (unprimed), 



while the subscript S’ indicates the change relative to the body-fixed (co-rotating, 
primed) coordinate system. 

We can divide by the time dt elapsed and get d
!v
dt
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The vector w is the angular velocity vector that defines both the speed of rotation and the 
axis around which the rotation occurs. It is of course independent of any coordinate 
system, but its components depend on the coordinate system. In the future, it will be 
most convenient to write down the components of w in the primed (body-fixed) 
coordinate system. We can express them in terms of the Euler angles in the following 
way. Recall that the Euler angles are applied in the following order: First a rotation by f 
around the z-axis, then a rotation by q around the x’ axis, then a rotation by y around the 
z’ axis. Hence, 

1) A change in y has only a z’ component, by definition 
2) A change in q affects both the x’ and y’ components, depending on their 

orientation. If y=0, a change in q equals a rotation around x’, but in general there 
are components in both x’ (proportional to cosy) and in y’ (proportional to -siny) 
directions. 

3) Finally, a change in f affects all three components. If y=0, there is no component 
along the x’ axis, and all we have is the projection on the z’ axis (proportional to 
cosq) and on the y’ axis (proportional to sinq). For arbitrary y, the second 
component gets further split up in y’-direction (proportional to cosy) and x’-
direction (proportional to siny). 

You can use your right hand to try and convince yourself of these relationships, but I am 
not liable for any injuries you might sustain! Collecting all terms for each axis, we find 
!
ω( )z ' = "ψ + "φ cosθ ,

!
ω( )x ' = "θ cosψ + "φ sinθ sinψ ,

!
ω( ) y ' = "θ (−sinψ)+ "φ sinθ cosψ .  

You could also find this by first expressing the vector w in the unprimed system (which is 
not that much simpler) and then applying the transformation matrix from the unprimed to 
the primed coordinate system (see HW. 5). 

10.	Coriolis	Effect	
As time permits… If we use w to describe Earth’s rotation around its axis, we can use the 
equation in 9. to write the motion of an object relative to “absolute space” (S) and relative 

to the coordinate system fixed on Earth (S’):  d
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The second derivative gives 
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From the point of the Earth-fixed (primed) coordinate system, it thus looks as if there are 
two extra (pseudo-)forces acting on any moving object: 
!
FS ' =
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FS − 2m

!
ω ×

d!r
dt
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The second term is the so-called Coriolis force and the last term is the (generalized) 
“centrifugal force”. The latter leads to a radially outward pointing force (counteracting 
gravity) plus a force towards the equatorial plane for any position at higher (positive or 
negative) latitudes. Of course, at the poles these two forces cancel which is not surprising, 
as the rotation does not actually contribute to any motion there. The Coriolis force gives a 
push “sideways” to an object moving in any direction other than Earth’s axis. In 
particular, an object moving on Earth’s surface at any point other than the Equator will 
have a component of its velocity perpendicular to w and thus be pushed East if it moves 
North on the Northern Hemisphere, North if it moves West etc. This means that missiles 
will be missing the mark they are aimed at, and a stream of fluid (air, ocean water, etc.) 
will be bend into a circular pattern (counterclockwise around a low pressure system1 in 
the Northern Hemisphere, clockwise in the southern one). Hence the regular patterns of 
hurricanes, ocean currents etc. 

                                                
1 Imagine a region of low pressure in a middle latitude (45 degrees North). Air will be 
rushing towards this from the South – getting diverted into an easterly direction, and from 
the North – getting diverted into a westerly direction etc. The net effect is a counter-
clockwise motion around that center of low pressure – a hurricane. 


