
Small Oscillation 

 
In the following, we discuss small oscillation in the motion of a system within the 
immediate neighborhood of a configuration of stable equilibrium. However, it’s 
important to point out that the same methods also apply for larger oscillations if the 
Lagrangian can be cast in the same form as spelled out below.  

The system is said to be in equilibrium when the generalized forces (Qi) acting on 
the system vanish: 

                                                                      0=
∂
∂

−=
i

i q
VQ                                                        1 

If a small disturbance of the system from equilibrium results only in small 
oscillatory motion about the rest position, such equilibrium is classified as stable. 
In the small bound motion, if the departures from the equilibrium are small, all 
functions may be expanded in a Taylor series about the equilibrium retaining only 
the lowest-order terms. The deviation of the generalized coordinates (qi) from 
equilibrium position (qi0) is denoted by iη . 

That is,     iii qq η+= 0       2 

which implies that,    
ηi = qi − qi0

!η j =
d
dt
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Then,   
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Using Taylor series expansion: 
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By shifting the arbitrary zero of potential to coincide with the equilibrium 
potential, the first term in (3) must vanish. Using (1), the second term (linear in iη ) 
vanishes. 

 

Then, 
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 (Symmetric) 

Since the generalized coordinates do not involve the time explicitly; the kinetic 
energy is a homogenous quadratic function of the velocities and it is given by 
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Where jiijij TMT ==  (Symmetric) 

Now, the Lagrangian is given by 
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Taking iη as the generalized coordinates, the Lagrangian leads to the following n-
equations of motion: 
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Solution: 



The equations of motion (7) are linear differential equations with constant 
coefficients and its oscillatory solution is given by 

ti
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Taking only the real part,  

                               { }tijj eCa ωη −= Re         8 

Putting this equation (8) in equation (7), 

We get,  

{ } { } 0)( 2 =+− −− ti
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jij eCaVeiCaT ωωω  

Or,  02 =+− jijjij aVaTω  

Or,        ( ) 02 =− jijij aTV ω          9 

Equation (9) constitutes n-linear homogenous equations for all ja and consequently 
can have a nontrivial solution only if the determinant of the coefficients of all ja  
vanishes. 

That is,   02 =− ijij TV ω  

Expanding, we get, 
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Writing ijT as an element of the matrix T, ijV  as an element of the matrix V and ja

as an element of eigenvectora! , then the equation (9) becomes, 

        (V-𝜔2T) a! =0 

 

Or,    (V-λT) a! =0 where 𝜔2=λ  (eigenvalue) 

The characteristic equation of the n-roots is given by, 
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Where all λ are real and  > 0. 

The most general solution to equation (7) can be written as 
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With overlap of n-different frequencies which look like S. H. O. called 
fundamental modes of the system.  All of the components of the matrix ka

! should 
be real; otherwise in eigenvalue equation will not vanish. 

To show a!  and λ are real, let ka
! be a column matrix representing the kth 

eigenvector, satisfying the eigenvalue equation, 
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The adjoint equation for lλ  has the form 
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Where ( !al )
†denotes the adjoint vector-the complex conjugate row matrix and 

explicit use has been made of the fact that the V and T matrices are real and 
symmetric.  

Multiplying 13 with (
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which means that for k = l  we must have lλ  real. Furthermore, we can choose the 
first (1) component for the ka

!  arbitrarily (homogenous equation 9) but then all 
other components are related to the first one through linear equations with all-real 
coefficients, so they will be real, too. Finally, 15 also shows that for different 
eigenvalues, the eigenvectors must be orthogonal  in the sense that the product  
( !al )

†T ka
!  is zero. (This is all completely analog to quantum mechanics where the 

matrices T and V would be hermitian). 

Example:  Consider two masses m1 and m2 that are connected by three springs 
having spring constants k1, k2 and k3 respectively. Then find Kinetic energy, 
potential energy, Lagrangian, Euler-Lagrange equation of motion and Eigenvalues 
of the system.  

Solution: 

Consider two masses m1 and m2 are connected by three springs having spring 
constants k1, k2 and k3 respectively as shown in figure below: 

 

                        

Figure: Small oscillation of two masses connected in three springs. 

Let x10 and x20 are equilibrium coordinates of masses m1 and m2 respectively. So 
that the deviation from equilibrium position is given by relation, 

0iii xx −=η  

Where,  1011 xx −=η  and 2022 xx −=η   

Which implies that 
⋅⋅

= 11 xη and 
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The kinetic energy of the system is given by  
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Then the kinetic energy in the matrix form is  
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Again, the potential energy of the system is given by 
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Hence equations (1) and (3) are the required expressions for kinetic and potential 
energy of the system. 

Then the potential energy in the matrix form is given by  
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The Lagrangian is given by  

L=T-V 
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Writing the Euler-Lagrange equation with respect to 1η , 
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Again, writing the Euler-Lagrange equation with respect to 2η , 
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Hence equations (6) and (7) are the required Euler-Lagrange equations of motion 
of system. 

We can write these equations (6) and (7) more compactly as a Matrix form of 
equation as bellow: 
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Or, more compactly,  
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This is basically the usual equation for a simple harmonic oscillator in Matrix 
form. The simple structure of this equation motivates us to look for solutions in 
terms of Sine and Cosine.  

Namely, let’s try a solution where the entire vector η  oscillates at a single 
frequency 𝜔 and the general solution is given by 



{ }tieC ω−=   Re jaη   

Where,   ja  = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

1

a
a

 is a eigenvector. 

Putting this solution in equation (8),  

We get,      ( ) jj VaaT −=− 2ωi  
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From this equation, the characteristic equation is  

02 =− TV ω  

For convenience replacing 2ω by λ , we get 
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This is quadratic equation in λ. To solve this equation, let us suppose: mmm == 21

m1=m2=m and 13 kk = . 

We get,  

( ) ( ){ } ( ) 01211212112
2 =++++++− kkkkkkkkmkkmmm λλ  

Or,   ( ) ( ) 022 12
2
112

22 =+++− kkkkkmm λλ  



 Or,  ( ) 022
2

21
2
1

12
2 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
++−

m
kkkkk

m
λλ  

The solution of this quadratic equation is given by 
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Taking positive sign:   
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Taking negative sign:   
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Hence the required eigenvalues are 
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eigenmodes of the system correspond to either a high frequency where the two 
masses move back on forth in opposite direction to each other, or a low frequency 
where they move in sync and the middle spring isn’t stretched or compressed at all. 

 

 

 

 

 

 

 


