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1 Relativity in the Context of Classical Mechanics

Here we start with the usual idea of two coordinate frames, S and S′, with S′ moving with constant velocity
v with respect to S. Under this assumption, these frames are considered inertial. We will also limit ourselves
to two spacetime dimensions, one spatial dimension (so we’ll say along x) and one time dimension. We can
come up with our first transformation rule regarding the spatial coordinate:

x′ = x− vt (1)

We can now predict the spatial coordinate of an object (or event) in the S′ frame by measuring both time
and space coordinates in S. The second transformation rule is even more simple, and would have been
considered trivial before Einstein; the transformation for time:

t′ = t (2)

Observers in each frame, S′ and S, will experience the same passage of time - they will always agree on the
time intervals between events.

Since we are now beginning to deal with spacetime coordinates, it will prove convenient to portray our
time dimension in the same units as our spatial dimension. We can do this by multiplying our time coordi-
nate, t, by some value: t→ ct. This constant c can be any value that all observers can agree upon, and thus
the constant value of the speed of light in a vacuum is traditionally chosen (in m/s if t has units of seconds)1.

We can show this (linear) transformation in matrix form:(
ct′

x′

)
=

(
1 0
−v

c 1

)(
ct
x

)
(3)

allowing us to transform one inertial coordinate system to another moving at constant velocity relative to
the first.

1This is a useful trick in doing SR problems that deal with different units of time and/or distance. For example, you can
change the units of c here to be meters/year and the time unit to be years, etc., which usually results in solutions without
numerical calculations
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1.1 Invariance in Galilean Relativity

When we speak of ”Galilean Relativity”, we mean that the laws of nature are invariant under this type of
transformation. Lets consider a (3D) Hamiltonian for a system of particles:

H =
∑
i

~p2i
2mi

+
∑
i<j

V (~ri − ~rj) (4)

We are interested in how H changes in going from S to S′ - which is actually a canonical transformation.
How do we know? We can write the generator (which is of type 2):

F2 =
∑
i

~ri ~Pi + ~v · (
∑
i

mi~ri −
∑
i

~Pit) (5)

Where we’ve used a general notation. Does it work? We can see that we get our known transformations
back:

~Pi =
∂F2

∂~ri
= ~Pi + ~vmi

~Ri =
∂F2

∂ ~Pi

= ~ri − ~vt
(6)

So yes, we have shown that this transformation in going from S to S′ is canonical.

What happens to the actual Hamiltonian - what is the kamiltonian? By replacing the old variables with
the new and not forgetting to add the explicit time dependence ∂F2

∂t = −
∑

i ~v · ~Pi (which ends up canceling
out with the mixed term in the square), we find that:

K =
∑
i

~P 2
i

2mi
+
∑
i<j

V (~Ri − ~Rj) +
∑
i

mi

2
~v2 (7)

We can see that this has the same form as the old Hamiltonian, except we now have some constant term.
However, we know that the Hamiltonian represents energy, and energy already has some form of offset.
Thus, when we go to calculate the Hamiltonian equations of motion, this term is ignored and the resulting
equations are the same except that they are represented in the new coordinates - the transformation leaves
the equations of motion invariant.

An additional point one can make is that in the limit of very small ~v, the canonical transformation
above becomes an ICT, with the generator given by ~G = (

∑
imi~ri −

∑
i
~Pit). (This is really a short-

hand for 3 separate generators, each in one of the 3 cartesian directions). In this case, the term with
the square velocity becomes higher order in an infinitesimally small parameter and can be ignored, but
the linear term −

∑
i ~v · ~Pi does not get canceled, so that δH = {H, ~G} = −

∑
i
~Pi. It follows that

d~G/dt = {~G,H}+ ∂ ~G/∂t =
∑

i
~P −

∑
i
~P = 0, i.e. ~G is conserved. This makes sense if we rewrite

~G = (
∑
i

mi~ri −
∑
i

~Pit) = M ~RCM −M ~̇RCM t (8)

where M is the total mass of the system. Clearly, since ~RCM (t) = ~RCM (t = 0) + ~̇RCM t in the absence of
external forces, G just stands for the initial position of the center-of-mass.

2 Dynamical Equations from the Hamiltonian Approach

2.1 The Relativistic Hamiltonian

Unlike the usual way of starting with Einsteins postulate (that the speed of light is the same to all observers
moving in inertial frames) in order to derive the dynamical equations of special relativity, we will begin with
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Einsteins famous equation

m =
E

c2
(9)

which tells us that inertia depends on the total energy. We will use a primary feature of inertia; Newtons
second law (for clarity, we will stick to 1 dimension).

Fx = ṗx = max (10)

Here, the Hamiltonian H is the total energy, so we can make the equivalence H = E. Our knowledge of
Hamilton’s equations allows us to make the following substitutions:

Fx = ṗx = −∂H
∂x

ẋ =
∂H

∂px

(11)

which results in the following form of Newtons second Law (with m(H) substituted as well):

−∂H
∂x

= ṗx = (
H

c2
)
d

dt
(
∂H

∂px
) (12)

Since the total energy (H) is conserved and c is constant, we can move them into the total time derivative
on the right hand side. Since we have a total time derivative on both sides, we have two perfect differentials
and integration is trivial:

px = (
H

c2
)
∂H

∂px
+A (13)

A (and later B) being the integration constant(s). This equation can now be integrated by separating
variables:

1

c2

∫
HdH =

∫
(px +A)dpx

H2

2c2
=
p2x
2

+Apx +B

H2 = c2p2x + 2Apxc
2 + 2Bc2

(14)

•In the case where px = 0, we must retrieve the rest energy (in terms of the rest mass m0)

E = m0c
2 (15)

We see that this must mean

2Bc2 = m2
0c

4

B =
m2

0c
2

2

(16)

•In the case where px is small (v << c where we are concerned), we must have classical correspondence, in
that

E ≈ m0c
2 +

p2x
2m0

+ ... (17)

Squaring this, we get
E2 = m2

0c
4 + p2xc

2 + ... (18)

This tells us that there should be no term linear in px in H2; A = 0. We now have an expression for the
Hamiltonian (or we can say the energy):

H2 = E2 = p2xc
2 +m2

0c
4 (19)

From here on note that we will drop the subscript x. From Hamilton’s equations we know ẋ = ∂H/∂p, so

ẋ =
∂H

∂p
=

pc2√
p2c2 +m2

0c
4

=
pc2

E
(20)
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2.2 Energy, Momentum, and Velocity Transformations

Our primary goal now will be to write momentum and energy in one frame in terms of those in another
frame moving relative to it with velocity v. We will also find our velocity addition formulas along with it. If
the object in question is positioned at the origin of the S′ frame (stationary in S′), then we know the energy
of that object measured in this frame is its rest energy, ES′ = E0 = m0c

2.

In S, S′ (and thus the object), is moving at velocity v. From the calculation above (19), we can write an
expression for its momentum in terms of this velocity:

p =
v

c

ES

c
= β

ES

c
(21)

We can then substitute this into (17):

E2
S − p2c2 = m2

0c
4

E2
S(1− β2) = m2

0c
4

ES = γm0c
2

(22)

or, ES = γES′ . Plugging this value for ES back into P, we can get the momentum in the S frame in terms
of the rest energy ES′ .

pS = γβ
ES′

c
(23)

We are looking for transformation equations that behave the same way going back and fourth between
coordinate frames. Thus, our first guess at the inverse equation pS′ would be the same as (22), but with the
velocity negated (due to frame S having apparent motion in the negative x direction in S′). However, this
would be incorrect; we are missing another term. To make it consistent, we can write:

pS′ = −γβES

c
+ γpS

= −γ2βES′

c
+ γ2β

ES′

c
= 0

(24)

Similarly for the Energy,

ES′ = γES − γcβpS
= γ2ES′ − γ2β2ES′

= ES′

(25)

These equations, (23) and (24), must be the most general set of transformations to go from the S to S′ frames.

We can now calculate vS′ in S′ if we know vS in S (now lifting the assumption that the object was
stationary in S′). From (19), we will substitute in (23) and (24):

vS′ =
pS′

ES′
c2

=
(γpS − γβES

c )

(γES − γcβpS)
c2

(26)

If we divide the numerator and denominator by ES , and noting that vS = pSc2

ES
, we can find:

vS′ =
vS − v
1− vsv

c2
(27)

This is our well-known velocity transformation equation.
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2.3 The Lorentz Transformation

Noting that vS = dx
dt and vS′ = dx′

dt′ , we can write (26) in the following form:

1

c

dx′

dt′
=

dx− vdt
cdt− βdx

(28)

which gives us the form of the transformation equations for position and time between S and S′. This
transformation is the Lorentz transformation, and in one dimension it can be written in matrix form as:(

ct′

x′

)
=

(
γ −γβ
−γβ γ

)(
ct
x

)
= L̄

(
ct
x

)
(29)

Note that this boosts us from the S frame to the S′ frame. If we then want to go BACK to the S frame, we
would simply negate the velocities in L̄ (for the same reasons outlined in the previous section). This gives
us: (

ct
x

)
=

(
γ γβ
γβ γ

)(
ct′

x′

)
= L̄−1

(
ct′

x′

)
(30)

I have jumped a step in assuming that this matrix is the inverse of L̄ in (28), but you can prove that it is
the inverse by taking the matrix product:

L̄L̄−1 = 1̄ (31)

This is expected, if we were to apply these transformations consecutively, we would hope that we should get
the original components back - which we clearly do.

The Lorentz transformation can be generalized for any velocity vector in three spatial dimensions:

L̄ =

(
γ −γ~β
−γ~β Ā

)
(32)

Where Ā is the matrix defined by

Ā = 1̄ + (γ − 1)
~βo~β

β2
(33)
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