$$
\begin{aligned}
& S \rightarrow S^{\prime} v_{x} x^{\prime}=x-\frac{v t}{c}\left(t^{\prime}=c t \quad\binom{c d}{x}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{v}{\varepsilon} & 1
\end{array}\right)\binom{c^{t}}{x}\right.
\end{aligned}
$$

$$
\begin{aligned}
& F_{2}=\sum_{i} \vec{\tau}_{i} \vec{P}_{i}+\vec{V}\left(\sum_{i} m_{i} \vec{r}_{i}-\sum_{i} \vec{P}_{i} t\right) \\
& \vec{p}_{i}=\frac{\partial F_{2}}{\partial \vec{r}_{i}}=\vec{p}_{i}+\vec{V} m_{i} \Rightarrow \vec{P}_{i}=\vec{p}_{i}-m_{i} \vec{V}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i} \frac{\vec{p}_{i}^{2}}{2 m_{i}}+\sum_{i<j} V\left(\vec{R}-\overrightarrow{Q_{i}}\right)+\sum_{i} \frac{m_{i}}{2} \vec{V}^{2} \\
& \mid \angle T ; F_{2}=\Sigma \stackrel{\rightharpoonup}{\sigma_{1}}+\delta \vec{v} \vec{G} \vec{G}=\sum m_{i} \vec{r}_{1}-\Sigma p_{i} t
\end{aligned}
$$

GENERATOR CONSERVED for ICT (note: in that case, $\frac{\partial F_{2}}{\partial t}$ is not subtracted):
$\delta H=\{H, \vec{G}\} \delta \vec{v}=-\delta \vec{v} \sum_{i} \vec{p}_{i}+O\left(\delta \vec{v}^{2}\right)$ (c.f. to the Kamiltonian above).
So $\frac{d G}{d t}=\{\vec{G}, H\}+\frac{\partial \vec{G}}{\partial t}=+\sum_{i} \vec{p}_{i}-\sum_{i} \vec{p}_{i}=0$, i.e. the Generator is a conserved quantity.
We can rewrite it as $\vec{G}=M \vec{R}-\vec{P} t$ where \vec{R} is the center-of-mass, M is the total mass, and $\vec{P}=M \vec{V}$ is the total momentum of the system. Of course, it is obvious why the generator is conserved (in the absence of external forces) - it is identical to M times the center of mass at $t=0$ (the center of mass moves according to $\vec{R}(t)=\vec{R}_{0}+\vec{V} t$.

Deriving the equations of special relativity from Einstein's most famous Equation:

$$
\begin{aligned}
& E=m c^{2} \rightarrow m=\frac{F}{c^{2}}, \vec{F}=m \vec{a} \rightarrow-\frac{\partial H}{\partial x}=\frac{H}{c^{2}} \frac{d}{d t} \frac{\partial H}{\partial \rho} \rightarrow \\
& \dot{p}=\frac{\partial}{\partial^{t}} \frac{H}{c^{2}} \frac{\partial H}{\partial p} \rightarrow \frac{1}{c^{2}} \frac{1}{2} \frac{\partial H^{2}}{\partial p}=p+A \rightarrow \frac{1}{c^{2}} \frac{1}{2} H^{2}=\frac{1}{2} p^{2}+A p+B \\
& H^{2}=P^{2} c^{2}+2 A p c^{2}+2 B c^{2} \quad \text { i) } p=0 \rightarrow E_{0}=m_{0} c^{2} \text { restmass } \\
& m_{0}^{2} c^{4} \text { 2) } p \text { small } \rightarrow\left(E \simeq m_{0} c^{2}+\frac{p_{2}}{2 m_{0}}+\cdots\right)^{2} \\
& \begin{array}{l}
H^{2}=E_{E}^{2} p^{2} c^{2}+m_{0}^{2} c^{4} \\
H=\sqrt{p^{2} c^{2}+m_{0}^{2} 4^{4}} \quad \dot{x}=\frac{\partial H}{\partial p} \leqslant \frac{E^{2}=m_{0}^{2} c^{4}+p^{2} c^{2}+\cdots}{\frac{1}{E} 2 p c^{2}=\frac{p c}{E} c}
\end{array} \\
& S^{\prime}: E=F_{0}=m_{0} c^{2} \\
& S: P=\frac{V}{c} \frac{E}{c} \quad E^{2}-p^{2} c^{2}=m_{0}^{2} c^{y}
\end{aligned}
$$

The last line is the well-known rule for velocity addition. The last equality shows how $d x^{\prime}$ and $d t^{\prime}$ must translate from $d x$ and $d t$ (together with the requirement that the transformation is described by a matrix which becomes its own inverse simply by changing the sign of v) => Lorentz Transformation:

$$
\left.\begin{array}{rl}
\Rightarrow\binom{c^{\prime}}{x^{\prime}} & =\left(\begin{array}{cc}
\gamma & -\gamma \beta \\
-\gamma \beta & \gamma
\end{array}\right)\binom{c t}{x} \quad\left(\begin{array}{cc}
\gamma-\gamma \beta \\
\gamma \beta & \gamma
\end{array}\right)\left(\begin{array}{cc}
\gamma & \gamma \beta \\
\gamma \beta & \gamma
\end{array}\right) L T \\
L & =\left(\begin{array}{c}
\gamma \\
-\vec{\beta} \\
-\vec{\beta}
\end{array}\right)=\mathbb{1}+(\gamma-1) \frac{\vec{\beta} \circ \vec{\beta}}{\beta^{2}}
\end{array}\right)
$$

$\left(\Delta s^{2}\right)={ }_{D C} C^{2} t^{2}-H r^{2} \quad$ Lovent 2 inveriant
$\Delta s^{2}>0 \rightarrow$ tume bile distance $\Delta t=\frac{\sqrt{\Delta s^{2}}}{c}$
$\Delta S^{2}=0 \quad \rightarrow$ ligtet-like distance
$\Delta s^{2} \in 0 \rightarrow$ space-like seforation $(c t, \vec{r})$
$30 \rightarrow 4 D$ 4vectorn (4 -forms, 4 furmon $\cdots) \quad\left(E, \overrightarrow{p_{c}}\right)$

