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Week 2: Equations of motion, Velocity-dependent potentials 

Dr. Sebastian E. Kuhn 

(Participation Project: AMSD Wijerathna) 

 

Recall the Generalized forces from the last lecture. 

Virtual work is the work done by forces acting on the system on all possible virtual 
displacements. The infinitesimal virtual work 𝛿𝑊 due to infinitesimal virtual 
displacement is, 

𝛿𝑊 =$𝐹&

'
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(1.1) 

𝑸𝒊 =$𝑭𝒍

𝒏

𝒍(𝟏

.
𝝏𝒓𝒍
𝝏𝒒𝒊

 
(1.2) 

The coefficient 𝑄. is called the ith component of the generalized force associated with 
generalized coordinate. 

 𝑑
𝑑𝑡 ;

𝜕𝑇
𝜕�̇�.

> −
𝜕𝑇
𝜕𝑞.

= 𝑄. 
(1.3) 

The Equation (1.3) is known as Lagrange’s equations of motion. Since Lagrange’s 
equations of motion are derived from the Newton’s equations of motion, they do not 
represent a new physical theorem but merely express the same laws of motion in a 
different way. In Lagrangian formulation, the equations of motion are obtained entirely 
in terms of scalar operations in the configuration space. Therefore, they have the same 
form in all coordinate systems and represent a uniform way of writing the equations of 
motion independent of coordinates used. 

Recall the Euler-Lagrange Equation of Motion from the last lecture. 

 𝑑
𝑑𝑡 ;

𝜕𝐿
𝜕�̇�A

> −
𝜕𝐿
𝜕𝑞A

= 0 

 

(1.4) 

where 𝑞A’s are generalized co-ordinates while �̇�A’s are generalized velocities. The 
Langrangian (𝐿) is a combination of potential and kinetic energies as follows.  

 𝐿 = 𝑇 − 𝑉 (1.5) 
Let’s now do an example to understand the application of Lagrange’s Equation of 
motion and the physics behind the result. 

 

 

 

 

 

 

Example: Consider a string with a mass 𝑚 on the end and the starting angle as 𝜃 
from the x direction (see Fig. 1.1). Assume that the motion takes place in a 
horizontal plane, obtain the Lagrange’s Equation of motion for 𝑟 and 𝜃. 

Solution: The position co-ordinates of mass m, 

𝑥 = cos 𝜃 and 𝑦 = sin 𝜃 

The kinetic energy has radial and tangential parts. 

 𝑇 =
1
2
𝑚	R�̇�S + 𝑟S�̇�SU (1.6) 

   

 

Figure 1. 1 
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The Generalized force in the 𝑟 direction, 

𝑄V = 	𝐹W
𝜕𝑥
𝜕𝑟
+ 𝐹X

𝜕𝑦
𝜕𝑟

= 𝐹W cos 𝜃 + 𝐹X sin 𝜃 = �⃗�	. �̂� 
(1.7) 

The Generalized force in the 𝜃 direction, 

𝑄V = 	𝐹W
𝜕𝑥
𝜕𝜃

+ 𝐹X
𝜕𝑦
𝜕𝜃

= 𝑟𝐹X cos 𝜃 − 𝑟𝐹W sin 𝜃 = −𝑦𝐹W + 𝑥𝐹X 
(1.7) 

𝑄V = 𝑟 × �⃗�	(𝑇𝑜𝑟𝑞𝑢𝑒) (1.8) 

The Lagrange’s Equation of motion in radial direction, 

𝑑
𝑑𝑡 ;

𝜕𝑇
𝜕�̇�>

−
𝜕𝑇
𝜕𝑟

= 𝑄V 𝑚�̈� −𝑚𝑟�̇�S = 𝑄V = �⃗�	. �̂�  

 𝑚�̈� = 𝑚𝑟�̇�S + �⃗�	. �̂� (1.9) 

The Lagrange’s Equation of motion in tangential direction, 

𝑑
𝑑𝑡 ;

𝜕𝑇
𝜕�̇�
> −

𝜕𝑇
𝜕𝜃

= 𝑄` 𝑑(𝑚𝑟S�̇�)
𝑑𝑡

= 𝑄V = 𝑟 × �⃗�	(𝑇𝑜𝑟𝑞𝑢𝑒) 
(2.0) 

 𝑚�̈�𝑟S + 2𝑟�̇�𝑚�̇� = 𝑇𝑜𝑟𝑞𝑢𝑒 (2.1) 

Equation (1.9) is the application of Newton’s Second Law in radial direction and 
it is complete with the centrifugal force,	𝑚𝑟�̇�S which give us to work in a rotating 
reference frame. The Equation (2.0) indicates that torque is equal to the rate of 
change of angular momentum. The Equation (2.1) deals with the tangential 
Newton’s Second Law. The term, 2𝑚𝑟�̇��̇� is the Coriolis force which we can deal 
with rotating frames. 

Example (Circular Motion of a Spring): Consider a spring (spring constant is 
𝑘) with a mass 𝑚 on the end (see Figure 1.2). The equilibrium length of the spring 
is 𝑙. Let the spring have length 𝑙 + 𝑟, and its angle with 𝑥- axis be 𝜃. Assuming 
that the motion takes place in a horizontal plane, find the equation of motion for 
𝑟 and 𝜃 using Euler-Lagrange Equation. 

Solution: The kinetic energy has radial and tangential parts. 

 𝑇 =
1
2
𝑚	R�̇�S + 𝑟S�̇�SU (2.2) 

The potential energy is only the spring energy. 

𝑉(𝑟) =
1
2
𝑘(𝑟 − 𝑙)S (2.3) 

𝐿 ≡ 𝑇 − 𝑉 =
1
2
𝑚	R�̇�S + 𝑟S�̇�SU −

1
2
𝑘(𝑟 − 𝑙)S (2.4) 

The Lagrangian has two variables, 𝑟 and 𝜃. Therefore, there is two Euler-
Lagrange Equations. 

𝑑
𝑑𝑡 ;

𝜕𝐿
𝜕�̇�>

=
𝜕𝐿
𝜕𝑟

 𝑚�̈� = 𝑚𝑟�̇�S − 𝑘(𝑟 − 𝑙) (2.5) 

and, 

 
Figure 1. 2 
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1.1 Small Oscillations around Stationary Solutions 
To find the frequency of small oscillations about the circular motion, we need to 
introduce a new generalized co-ordinate. 

Let 𝑟(𝑡) = 𝑟d + 𝛿𝑟 where 𝛿𝑟 is very small (more precisely, 𝛿𝑟 ≪ 𝑟d) and assume �̇� =
𝜔d + 𝛿�̇�. 

The fact is circular motion occurs when, �̇� = �̈� = 0. Therefore, Equation (2.5) can be 
written as, 

𝑚𝛿�̈� = 𝑚(𝑟d + 𝛿𝑟)(𝜔d + 𝛿�̇�)S − 𝑘[(𝑟d + 𝛿𝑟) − 𝑙] (3.0) 
The terms not involving 𝛿 on the right-hand side cancel, due to the definition of the 
equilibrium point. 

𝑚𝑟d𝜔d = 𝑘(𝑟d − 𝑙) (3.1) 
Considering the Equation (2.6), 𝑚𝑟S�̇� is a constant. 

𝑚𝑟S�̇� = 𝑚𝑟dS𝜔d (3.2) 
𝑚(𝑟d + 𝛿𝑟)S(𝜔d + 𝛿�̇�) = 𝑚𝑟dS𝜔d (3.3) 

𝛿�̇� ≈ −
2𝜔d
𝑟d

𝛿𝑟	; (𝛿�̇�𝛿𝑟	 ≈ 0) (3.4) 

The Equations (3.0), (3.1), and (3.4) imply that, 

𝑚𝛿�̈� ≈ 𝑚𝜔dS𝛿𝑟 − 4𝑚𝜔dS𝛿𝑟 − 𝑘𝛿𝑟	; (𝛿�̇�S ≈ 0) (3.5) 

𝛿�̈� ≈ −;3𝜔dS +
𝑘
𝑚>

𝛿𝑟 
(3.6) 

This is a simple-harmonic-oscillator equation in the variable 𝛿𝑟. Therefore, the 
frequency of small oscillations about a circle is, 

𝜔 ≈ m;3𝜔dS +
𝑘
𝑚>

 
(3.7) 

 

 

 

 

𝑑
𝑑𝑡 ;

𝜕𝐿
𝜕�̇�
> =

𝜕𝐿
𝜕𝜃

 
𝑑
𝑑𝑡
R𝑚𝑟S�̇�U = 0 

 

(2.6) 

 𝑚𝑟S�̈� + 2𝑚�̇�𝑟�̇� = 0 (2.7) 

The Equation (2.6) indicates the angular momentum is conserved. 

Furthermore Explanation: What happened if the solution is stationary? 

Then, 𝑟 and �̇� are constant values (𝑟d	, 𝜔d). According to the Equation (2.5), we 
can show that, 

 𝑚𝑟d𝜔dS = 𝑘(𝑟d − 𝑙) (2.8) 

 
𝜔dS =

𝑘(𝑟d − 𝑙)
𝑚𝑟d

; 𝑟d > 𝑙 
(2.9) 

 

 

 

Example (Bead on a rotating hoop): A bead is free to slide on along a 
frictionless hoop of radius R. The hoop rotates with a constant angular speed 
𝜔 around a vertical diameter (see Figure 1.3). Find the equation of motion. 

Solution:  

 
Figure 1. 3 
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𝐿 =
1
2
𝑚R𝜔S𝑅S (sin 𝜃)S + 𝑅S�̇�SU + 𝑚𝑔𝑅 cos 𝜃 (3.8) 

The equation of motion is, 

𝑅�̈� = sin 𝜃 (𝜔S𝑅 cos 𝜃 − 𝑔) (3.9) 
Special Cases: 

(a) 𝜔d = 0 and sin 𝜃 ≈ 𝜃 

�̈� ≈ −
𝑔
𝑅
𝜃 

 

(4.0) 

According to the Equation (4.0), bead undergoes a simple harmonic 

oscillation with a frequency,rst. 

(b) In equilibrium position, 

Equilibrium occurs when �̇� = �̈� = 0. If 𝜔S ≥ s
t
, then 𝜃 = 0, 𝜃 = 𝜋 and 

cos 𝜃d 	≡	
s

wxt
 are all equilibrium points. But 𝜃 = 0, 𝜃 = 𝜋 cases are 

unstable. Therefore, cos 𝜃d 	≡	
s

wxt
 is the only stable equilibrium. 

cos 𝜃d		never becomes negative. Therefore, bead always in the lower half 
of the circle. 

(c) The frequency of small oscillations 

Let 𝜃 = 𝜃d + 𝛿𝜃 in Equation (3.9) and expand to first order in	𝛿𝜃.  Using  

cos 𝜃d 	≡	
s

wxt
 , 

𝛿�̈� + 𝜔S (sin 𝜃d)S 𝛿𝜃 = 0 
 

(4.1) 

The frequency of small oscillations is, 

𝜔 sin 𝜃d = m𝜔S −
𝑔S

𝜔S𝑅S
 

 

(4.2) 

(d) Forces of Constraint 

In here we have two force of constraints, as we have two constraints R𝑟, �̇�U. 

Finding force of constraint in radial direction 

 To find it, we need to look at what happens to 𝑟 constraint if we perturb it 
slightly from its value 𝑅. Therefore, 

𝑅: 𝑅 + 𝛿𝑟 (4.3) 
Then kinetic energy expression becomes more complicated. 

𝑇 =
𝑚
2
z𝛿�̇�S + (𝑅S + 2𝑅𝛿𝑟)[�̇�S + (sin 𝜃)S𝜔S]{ (4.4) 

The potential energy can be expressed as follows including the centripetal 
force 𝐹V. 

𝑉 = 𝑚𝑔(𝑅 + 𝛿𝑟) cos 𝜃 + 𝐹V𝛿𝑟 (4.5) 
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1.2 The Lagrangian for Electromagnetic Field 

The electromagnetic forces on a moving charge are non-conservative as these 
forces depend on the velocity. The force on a particle of charge  𝒒 moving with 
velocity 𝒗 in an electromagnetic field is given by Lorentz force. 

�⃗� = 𝑞(𝐸~⃗ + 𝑉~⃗ × 𝐵~⃗ ) (5.5) 

Electric field can be represented in scalar potential ∅ and vector potential 𝐴 as, 

𝐸~⃗ = −∇~~⃗ ∅ −
𝜕𝐴
𝜕𝑡

 
(5.6) 

𝑑
𝑑𝑡 ;

𝜕𝐿
𝜕(𝛿�̇�)>

= 𝑚𝛿�̈� (4.6) 

𝜕𝐿
𝜕(𝛿𝑟)

= 𝑚𝑅��̇�S + (sin 𝜃)S𝜔S� − 𝑚𝑔 cos 𝜃 − 𝐹V (4.7) 

The Equation (4.6) must be zero as force of constraint prevent any motion 
in the radial direction. Therefore, �̇� = �̈� = 0. It implies that centripetal 
force of constraint is, 

𝐹V = 𝑚𝑅��̇�S + (sin 𝜃)S𝜔S� − 𝑚𝑔 cos 𝜃 (4.8) 

Here 𝑚𝑅�̇�S is a centripetal force. If �̇� = 0, then 𝑚𝑅 sin 𝜃𝜔S × sin 𝜃 is 
also centripetal force (see Figure 1.4).	−𝑚𝑔 cos 𝜃	is due to the gravity 
towards radial direction. 

Finding force of constraint in 𝜑 direction 

Considering  𝜔:𝜔 + 𝛿�̇�, 

𝑇 =
𝑚
2
z𝑅S�̇�S + 𝑅S(sin 𝜃)S(𝜔 + 𝛿�̇�)S{ (4.9) 

 
The potential energy can be expressed as follows including a torque term. 

 
𝑉 = 𝑚𝑔 cos 𝜃 + (𝑇𝑜𝑟𝑞𝑢𝑒)𝛿𝜑 

 
 

𝑉 = 𝑚𝑔 cos 𝜃 + 𝑅 sin 𝜃𝐹� 𝛿𝜑  
 

(5.0) 
 
 

(5.1) 
𝑑
𝑑𝑡 ;

𝜕𝐿
𝜕(𝛿�̇�)>

= 𝑚𝑅S(sin 𝜃)S𝛿�̈� + 2𝑚𝑅S sin 𝜃 cos 𝜃(𝜔 + 𝛿�̇�) �̇� 
(5.2) 

𝜕𝐿
𝜕(𝛿𝜃)

= −𝑅 sin 𝜃𝐹  (5.3) 

𝛿�̈� = 𝛿�̇� = 0 , because 𝜑 is the constraint. 

𝐹� = −2𝑚𝑅 cos 𝜃 �̇�𝜔 (5.4) 

Equation (5.4) represents the Coriolis Force corresponding to the rotation 
of frames. 

 

Figure 1. 4 
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Potential energy depends upon co-ordinates. Therefore, Lagrangian can be expressed 
as follows.  

𝐿 =
𝑚
2
$�̇��
�

− 𝑞∅(�⃗�, 𝑡) + 𝑞$𝐴��̇��
�

 (5.7) 

𝑑
𝑑𝑡 ;

𝜕𝐿
𝜕�̇�.
> =

𝑑
𝑑𝑡
(𝑚�̇�. + 𝑞𝐴.) 

(5.8) 

𝑑
𝑑𝑡 ;

𝜕𝐿
𝜕�̇�.
> = 𝑚�̈�. + 𝑞

𝜕𝐴.
𝜕𝑡

+ 𝑞$
𝜕𝐴.
𝜕𝑟��

�̇�� 
(5.9) 

𝜕𝐿
𝜕𝑟.

= −𝑞
𝜕∅
𝜕𝑟.

+ 𝑞$
𝜕𝐴�
𝜕𝑟.�

�̇�� 
(6.0) 

We know that, 𝐵~⃗ = ∇~~⃗ × 𝐴(𝑟, 𝑡). Therefore, 𝑞R�⃗� × 𝐵~⃗ U = �⃗̇� × R∇~~⃗ × 𝑞𝐴U.  

A long and tedious calculation shows that 

��⃗̇� × R∇~~⃗ × 𝑞𝐴U�. = 𝑞$
𝜕𝐴�
𝜕𝑟.�

�̇�� − 𝑞$
𝜕𝐴.
𝜕𝑟��

�̇�� 
(6.2) 

We know that,		 �
��
���
�V̇�
� = ��

�V�
. Therefore, considering the Equations (5.6), (5.8), (5.9), 

and (6.2) we can conclude that, 

𝑭𝑳𝒐𝒓𝒆𝒏𝒕𝒛 = 𝒎�̈�𝒊 = R𝒒𝑬~~⃗ U𝒊 + 𝒒R𝒗~~⃗ × 𝑩
~~⃗ U𝒊 

(6.3) 

 

 

 


