
Time Independent Perturbation Theory Contd.

Keep in mind that if you can come up with arguments that make the matrix element
is zero, it will make the calculation easier as we had in the HO example.
If for some obsevable Ω we have [Ω, H0] = [Ω, Hp] = 0 we can find simultaneous
eigenstates for H0 and Hp such that

|φn〉 = |n, ωi〉

0 = 〈n′, ωj|[Ω, Hp]|n, ωi〉

0 = ωj〈n′ωj|Hp|n, ωi〉 − ωi〈n′ωj|Hp|n, ωi〉

which implies that the matrix elements are zero if ωj 6= ωi

EX1: Let Hp = x2. Parity commutes with x2 and with the Hamiltonian of the
HO. We conclude that x2 can’t have any non-zero matrix elements between two HO
eigenstates |φn〉, |φm〉 unless the difference n−m is even number (same parity).
EX2: Let Hp = x. In this case, it doesn’t commute with the parity operator and in
fact changes sign under parity. This means that 〈φm|Hp|φn〉 can be non-zero only if
|φn〉 and |φm〉 have different parity, i.e. if the difference m− n is odd.
EX3: Assume H0 is rotationally symmetric, so its eigenstates can be chosen as
eigenstates to L2 and Lz: |α, `,m〉. Now if Hp ∝ T q

k (some tensor operator of rank
k) then we know that

〈α′, `′,m′|Hp|α, `,m〉 = 0

unless m′ = q+m and |`−k| ≤ `′ ≤ |`+k|. This can be used to reduce the number
of matrix elements one has to calculate.

0.1 Example 2: The Stark Effect

The unperturbed hamiltonian of the hydrogen atom is given by H0 = p2

2m
− e2

r
. the

eigenfunctions are |n, `,m〉 and the energies are En`m = En = −Ry
1
n2 . Introducing

the perturbation by putting the Hydrogen atom in an electric field that is much
smaller than the field of the nucleus. Let the electric field be homogeneous and in
the z-direction, ~ε = εẑ (assume the atom is between the two plates of a capacitor).
The potential energy due to the perturbation is Hp = eεz. Now, what is |ψ′

100〉? and
E ′

100? The first order correction to the energy is given by:

E ′
100 = E100 + 〈100|eεz|100〉
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z has odd parity and the wave function is even under parity so

〈100|eεz|100〉 = 0

There is no change in the energy of the H atom to the first order approximation.
There is no dipole moment to the first order approximation because the ground state
is spherically symmetric, so Edip = −~P · ~ε = 0.

The spherical tensor corresponding to z is T 0
1 . To figure out the first order

change in the wave function we have to evaluate matrix elements like

〈n′`′m′|eεz|100〉

m′ has to be zero and since 〈n′`′0|z|nl0〉 6= 0 only if `′ = `± 1, so `′ = 1 and

|δψ⊥〉 =
∑
n′>1

〈n′10|eεz|100〉
−Ry(1− 1

n2 )
|n′10〉

which is our modified state. The denomenator is negative indicating that the expec-
tation value for the position of the electron is negative, which means the electron
has a larger probability to be below z = 0.

Second order:

E ′
100 = −Ry −

∞∑
n′=2

|〈n′10|eεz|100〉|2

Ry(1− 1
n2 )

Putting the H atom in the electric field reduces its energy because the electric
field induces a dipole moment.

E ′
100 = −Ry − ε2(

∞∑
n′=2

|〈n′10|ez|100〉|2

Ry(1− 1
n2 )

)

The term in () is proportional to the polarizability. As a result, a hydrogen atom
is attracted towards a region of larger electrical fields (insulators are attracted to
charged objects).

Degenerate Case

So far we have always assumed that all eigenvalues of the Hamiltonian H0 are non-
degenerate.
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If En = Em the Hamiltonian is degenerate. An example is the Hydrogen Atom
that can be described with eigenstates

|nlm > , the energy depends only on n, i.e En = −Ry 1

n2

and only its ground state is non-degenerate.

For the degenerate states, we need to make sure that the overlap integral
< m|Hp|n > is zero whenever En = Em. Otherwise the first-order correction to
the wave function and the second order correction to the energy “blow up” (zero
denominators). Formally, our derivation assumed that for each eigenstate of H0

there is a corresponding eigenstate of H = H0 + HP that smoothly converges to
the original one as HP goes to zero. However, for degenerate eigenvalue of H0 there
are infinitely many possible eigenstates to choose from (any linear combination of
eigenstates is also an eigenstate). So we have to find a specific set of eigenstates
that diagonalize HP - only those eigenstates will connect “smoothly” to the new
eigenstates of H0 +HP .

To do that, we take the Hilbert space and split it into sub-spaces, each spanned
by a complete set of eigenstates to Ho with the same degenerate energy En:

V = VE1 ⊕VE2 ⊕VE3 . . . basis set for the Hilbert space with

VE1 = |1, α >; VE2 = |2, α > . . .

So that for the Hydrogen atom we can now write the basis for VE1 : |100 >, the
basis for VE2 : |200 >, |211 >, |210 >, |21 − 1 >, and similarly for the additional
subspaces (higher energies). Each of the subspaces is a finite dimensional subspace,
and any operator can be written as an n × n matrix if restricted within a finite
dimension.

Given Hp, the expression

< E2, α
′|Hp|E2, α >

gives all elements of the n × n matrix for Hp in that subspace. For each subspace
for a degenerate eigenvalue of H0 we diagonalize this matrix representing Hp.

A transformation can always be made from the old basis set to the new basis
set following the steps:

• find the matrix elements of each subspace
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• linearly combine the previous basis vectors to have Hp diagonal (unitary trans-
formation yielding a new orthonormal basis of the subspace that diagonalizes
both H0 and Hp.)

Example:

We have a perturbation due to an electric field: Hp = eEz.

• For the ground state |100 > (no degeneracy, no first-order change in energy)

|δΨ⊥ >
1st order= eE

∑
n>1

< n10|z|100 >

−Ry(1− 1
n2 )
|n10 >

∆E1 = ∆E1st order
1︸ ︷︷ ︸
→0

+e2E2
∑
n>1

| < n10|z|100 > |2

−Ry(1− 1
n2 )

• For the state |200 >
We have 4 orthogonal sub states so we have to check the matrix elements of
Hp and see if we can diagonalize.

The selection rules for the process are that
1- z can only couple states with m = m′ and
2- the element matrix must have odd parity. Since z has odd parity if it’s
taken between states with the same parity we get a zero.

The elements to calculate are thus < 210|z|200 >= −3ao

|200 > |210 > |211 > |21− 1 >
< 200| 0 −3aoeE 0 0
< 210| −3aoeE 0 0 0
< 211| 0 0 0 0
< 21− 1| 0 0 0 0

From the table values, Hp is not diagonal, so we have to combine the elements
in such a way as to make it so.

Eigenvalues of the 2× 2 matrix : ∓3aoeE
Eigenstates, with corresponding eigenvectors: 1√

2
(|200 > ±|210 >)
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Rewriting the unperturbed state:

|a >=
1√
2

(|200 > +|210 >)

|b >=
1√
2

(|200 > −|210 >)

with similar combinations for the other states, Hp in the new states is now
diagonalized

Hp =


−3aoeE 0 0 0

0 +3aoeE 0 0
0 0 0 0
0 0 0 0


and we can evaluate the equation

∆E1st order
2 =< a|Hp|a >= −3aoeE

∆E1st order
2 =< b|Hp|b >= +3aoeE

There is no dipole moment in the ground state for the 1st order perturbation.

To the 2nd order, there is an induced dipole moment which interacts linearly
with the electric field and causes the 2nd order perturbation. However, the
1st excited state (n = 2) apparently does have a non-zero “permanent” dipole
moment, so the energy changes in first order. More specifically:

• combining 2 states creates a dipole moment

• if there’s no electric field, the Hydrogen atom wave function can be chosen
arbitrarily within each subspace. It is always possible to choose symmetric
(standard) wave functions.

• For even the slightest electric field, degeneracy causes a “spontaneous break-
ing” of rotational symmetry selecting new combination of states with non-zero
intrinsic dipole moments (since it “costs no energy”).These intrinsic dipoles
interact with the field to give a a first-order change in the energy.
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