
1 Scattering in 3D - Exact Solution

We consider elastic scattering of an incoming particle in the presence of a poten-
tial V (~r) that is constrained to a finite volume centered on the origin: V (~r) = 0
for |~r| > a. (We ignore for now inelastic scattering and particle production;
however, the results we will obtain can be easily applied to elastic scattering of
one particle off another by transforming the problem into center-of-mass and rel-
ative coordinates; V (~r) then becomes the interaction potential between the two
particles depending on their relative coordinate while the center of mass motion
is trivial). To solve the scattering problem in 3D, we are looking for solutions
of the Schrödinger equation that asymptotically approach free eigenfunctions of
H0 at large distance r from the origin (where the potential is zero).

The incoming particle is once again described by a Gaussian wave packet,
this time in three dimension - let’s assume it travels along the z-axis. Following
the same procedure as for 1D scattering, we can take the asymptotic limit
where this becomes a plane wave with momentum h̄k along the z-axis: ψin(~r) =
exp(i~p · ~r/h̄) = exp(ikz) (the normalization is arbitrarily chosen to make the
wave function as simple as possible, but it will cancel in the end).

In the “frequentist interpretation” of quantum mechanics, where the wave
function describes a large number of identical particles, the cross section can be
expressed as the ratio between the rate of events dN/dt in a detector of area
A at distance R from the origin, spanning a solid angle ∆Ω = A/R2, divided
by the probability current density jz of the incoming particles. Note: dN/dt =
Ajr = ∆ΩR2jr where jr is the radial current density, and jz = h̄k/m. Since we
expect the cross section to depend only on the energy E of the incoming particle
and the direction of the detector (θ, φ), it is best to use spherical coordinates to
describe the outgoing (scattered) asymptotic wave function.

We have seen the previous semester that for a free Hamiltonian H0 = ~p2

2m =
−h̄2

2m ∇
2, expressing∇2 in polar coordinates we obtain the following eigenfuctions:

ψElm = RE,l(r)Y
m
l (θ, φ) =

uE,l(r)

r
Y ml (θ, φ) E =

h̄2k2

2m
, (1)

where RE,l(r) can be a Neumann function ηl(kr) (singular at r = 0) or a Bessel
function jl(kr) (regular at r = 0).. (We cannot discard the Neumann functions
since the free Hamiltonian is only applicable for r > a where they behave per-
fectly fine.)

The general solution for the Schrödinger Equation with eigenvalue (energy)
E anywhere outside of the sphere of radius a around the origin will be a super-
position of the eigenfunctions of H0 with the same energy E:

ψE(r, θ, φ) =

∞∑
l=0

l∑
m=−l

[Almjl(kr) +Blmηl(kr)]Y
m
l (θ, φ)]. (2)

We remember that asymptotically for r →∞ we have:{
jl(kr)→ 1

kr sin(kr − lπ/2) = 1
2ikr (ei(kr−lπ/2) − e−i(kr−lπ/2))

ηl(kr)→ − 1
kr cos(kr − lπ/2) = − 1

2kr (ei(kr−lπ/2) + e−i(kr−lπ/2))
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Inserting these expressions in ψE we obtain:

ψE(r →∞, θ, φ) = (3)

1

2kr

∞∑
l=0

l∑
m=−l

[(−iAlm −Blm)ei(kr−lπ/2) + (iAlm −Blm)e−i(kr−lπ/2)]Y ml (θ, φ)] .

For the scattered wave function, we are looking for solutions that represent an
outgoing wave (meaning that jr is positive). Therefore, the second coefficient
must be zero, meaning Alm/Blm = −i, so we arrive at the following expression
for the asymptotic outgoing wave function:

ψE(r, θ, φ) =
1

kr
eikr

∑
l,m

(−i)l(−Blm)Y ml (θ, φ) =
1

r
eikrf(θ, φ). (4)

The last equality defines the scattering amplitude f(θ, φ).
We combine this with the incoming plane wave. So asymptotically the wave

function for the 3D scattering problem is:

ψ(r →∞) = eikz +
eikr

r
f(θ, φ). (5)

We can now calculate the outgoing probability current density:

jr =
h̄k

m

1

r2
|f(θ, φ)|2. (6)

This follows from the gradient in spherical coordinates; it is

r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ
(7)

but we discard all terms that fall off faster than 1/r2 and are therefore sup-
pressed at the large distance R of the detector.

We therefore get for the rate into the detector

dN/dt = ∆ΩR2jr(R) = ∆ΩR2 h̄k

m

1

R2
|f(θ, φ)|2 = ∆Ω

h̄k

m
|f(θ, φ)|2 (8)

which is indeed independent of R as expected. Dividing by jz, we obtain the
following expression for the elastic differential cross section:

∆σ

∆Ω
→ dσ

dΩ
=

1

jz

h̄k

m
|f(θ, φ)|2 = |f(θ, φ)|2. (9)

Therefore, our task is to find a solution of the Schrödinger Equation with the
asymptotic form Eqs. 4-5 for r > a and then we can calculated the cross section
from f(θ, φ).

For this purpose, it is convenient to solve the Schrödinger equation in spher-
ical coordinates. Therefore, we have to write the incoming plane wave in spher-
ical coordinates also:

eikz = eikr cos θ =

∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θ). (10)
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(This is at least plausible given that a plane wave along the z-axis must be
spherically symmetric - so only the Y ml with m = 0 contribute, which are pro-
portional to the Legendre polynomials Pl(cos θ). Furthermore, only the Bessel
functions can be present since a plane wave must be regular at the origin. The
exact magnitude of each coefficient can be obtained using various properties of
the Legendre polynomials, including the fact that they form an orthonormal
basis).

At very large r →∞ this becomes (using again the asymptotic form of jl:

eikz → 1

2ikr

∞∑
l=0

(2l + 1)(eikr − i2leikr)Pl(cos θ). (11)

If the potential is invariant under rotations along the z axis, ∂V
∂φ = 0, the

outgoing wave should be symmetric as well (independent of φ) and takes the
form:

1

kr
eikr

∞∑
l=0

l∑
m=−l

(−i)l(−Blm)Y ml =
eikr

r

∞∑
l=0

(2l + 1)al(k)Pl(cos θ) = f(θ)
eikr

r
, (12)

where we define al appropriately to get this convenient form (again, Y 0
l ∼

Pl(cos θ) and Pl(1) = 1.)

So the total wave function at large r can be rewritten in this way:

ψE(r →∞, θ, φ) = eikz +
eikr

r
f(θ, φ) =

1

2ik

∞∑
l=0

(2l + 1)

(
(1 + 2ikal)

eikr

r
− i2l e

−ikr

r

)
Pl(cos θ). (13)

Now all we need to do is find a solution of the full Schrödinger equation
for all r with the same eigenvalue E. We can do this in 2 parts: Outside of
r = a, we know that the solution will be simply the free one, of the same form
as Eq. 2. Inside (r < a), we need to come up with the correct solution RE,l(r)
for the given potential, for each value of l. The two solutions must be matched
(in value and in their first derivatives) at r = a. We can make use of the fact
that any such solution can be written as a purely real function of r. Therefore,
we can replace the sum of jl and ηl for each l in Eq. 2 by a Bessel function only,
but shifted by a certain amount (called “phase shift”):

ψE(r > a, θ, φ) =

∞∑
l=0

l∑
m=−l

[Clmjl(kr + δl)Y
m
l (θ, φ)], (14)

just like A cos θ +B sin θ can always be replaced with C sin(θ + δ).
Asymptotically for r →∞, once again we have:

jl(kr + δl)→
1

kr
sin(kr − lπ/2 + δl) =

1

2ikr
(ei(kr−lπ/2+δl) − e−i(kr−lπ/2+δl)) (15)

Inserting this expressions in ψE we obtain:

ψE(r →∞, θ, φ) = (16)

1

2ikr

∞∑
l=0

Dl[(−i)leiδleikr − (i)le−iδle−ikr]Pl(cos θ)] .
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where we once again made use of the cylindrical symmetry.
Comparing with Eq. 13, we can read off from the terms proportional to

exp(−ikr) that

−(2l + 1)i2l = −Dli
le−iδl ⇒ Dl = (2l + 1)ileiδl (17)

Plugging this in and comparing the terms proportional to exp(ikr) in both
equations, we see that

(2l + 1)(1 + 2ikal) = Dl(−i)leiδl = (2l + 1)e2iδl . (18)

We see that, as a consequence of the solution being real, the factor in front of
the “outgoing wave” in Eq. 13 is has the same magnitude and only differs in
phase from the factor in front of the “incoming spherical wave”. This can also
be understood from the point of view of probability conservation: If the factors
had different magnitude, we would have a “net flow of probability” inwards or
outwards for specific angular momenta, which is inconsistent with a stationary
solution (and angular momentum conservation).

Solving for the constants al we obtain:

al =
e2iδl − 1

2ik
=

sin δl
k

eiδl ⇒ f(θ) =
1

k

∞∑
l=0

(2l + 1) sin δle
iδlPl(cos θ). (19)

This form is in particular useful if only a few angular momenta l contribute; in
general, only angular momenta up to l ≈ ka need to be considered, since the
“centrifugal barrier” suppresses higher orbital angular momenta.

Note, in summary, that once we have determined the phase shifts δl(k) from
solving and matching the Schrödinger equation at r = a for all values of k, we
have a complete description of the elastic cross section at all energies and in all
directions.
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