One Dimensional Solid (Crystal)
Lecture Notes 2/5/2013

Consider N atoms in a row.To make life easier we make following approxi-
mation:

a)some electrons are bound to the nucleus and some are free. In particular,
say we have ¢ electrons per atom are free, i. e, in total qN free electrons are
present.

b)Bound electrons of one atom do not interact with bound electrons of an-
other atom.

c)Potential is periodic and approximated as delta function which allows one
bound state.

It looks as in figure below:

V(z) = —azoé(x — ja)

Now, we want to solve Schrodinger equation for the above system. Before
doing so, lets first define an operator D.

Dy(x) = 9(x + a)

Dis called displacement operator.
For a periodic potential [V(x)=V(x+a)],
D commutes with hamiltonian H.

[D,H =0

It means we can find joint eigen function for them. Moreover, D is not her-
mitian, so its eigenvalue may not be real.



We have,

Dijp(x) = ¢z + a)
= 7¢(x)
Assume:
¥(0) = ¢(Na)
then

¥(0) = (D)N(0)
=7"4(0)

Looking at this equation we can see that that v can have following form:

1(21)” . .
or even, v = e""~)" n is an integer.
Then we have

D(0) = "1 (x)

where %’r =0

Y(r —a) = e7"(x)

We will now solve Schrodinger equation in the interval ja—e < x < (j+1)a—e
since we can recover the full solution simply by applying translations by a.
Introduce y = x — ja;y = —e...a — €,then

—h? 9*P(y)
2m  Oy?

+ V(y)v(y) = EY(y).....(1)

For y > € potential is zero, so we have free hamiltonian,thus we can write
the solution as,

U(y) = Ae™ + Be™™
where, k = %
Now, we apply boundary condition:



In region 0 < y < a and € > 0 but very small,we can write

Y(—€) = v(a—e)e™
_ e—inqb(Aeik(a—E) + Be—ik(a—s))

when € — 0, 4 ' '
A—|— B — efznd)(Aezka + Beflka>

A (1 — eikae_m‘ﬁ) =B (e_i"‘z’e_ik“ — 1)

efika _ 6in¢
A= <€in¢_€ika>B

Integrating eqn(1) in [-€,¢], we get

€ _h2 82 € €
oWy [ vty = £ [ vy
—h* [0 0 te
oo |25 = 2| [ stwtapan = o
2
th {—z’k(A — B) + ike™ ™ (Aete — B_ik“} =a(A+ B)
N 152
Z;;i [A(eikae—iw — 1)+ B(1 - e‘ikae_m‘z’)} = Z;{Z {23(1 — e‘ikae_m‘z’)} = a(A+B)

—ika in
| _ gmika—ind _ 2ma 1 [e — en® N 1]

kh2 Z ein¢ _ eika
| | | | 2
_ maa sin(ka)
cos(ka) — cos(ng) = 2 ka
calling ka = z,we get
maa\ sin(z)
cos(z) — (h2> ——— = cos(ng)
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Figure 1: PLOT of f(z) vs Z




We can find the sequence of solutions for z by observing that the r.h.s.
has exactly N/2 unique values between -1 and 1, after which the cos repeats
itself. Therefore, from the lowest z where the function f(z) crosses into the
+1 band up, there are N/2 unique solutions, followed by another N/2 for
the second crossing etc.

Since k = £ we can find the energy eigenvalues as

2212

B —
2ma?

Plot for energy bands

Consequences:

Each of the allowed eigenstates can be filled by (at most) 2 electrons (one spin
up, one spin down), so the first band can accommodate N electrons, as well
as the 2nd band and so on. The crystal behaves as an insulator if the allowed
energy bands are either filled or empty.The crystal behaves as a conductor if
one or more bands are partly filled.The crystal is a semiconductor if one or
two bands are slightly filled or slightly empty (“doped”) or if the separation
between the full and the empty band is small.



