Classical Limits

We want to explore the “classical limits” of Quantum Mechanics (when and it what sense does a QM
system resemble classical counterparts). In particular, we want to discuss when and how QM systems
exhibit “particle-like” properties, “wave-like” properties, and “fluid-like” properties.

Point-like particle properties - the role of expectation values for position

Let’s revisit the normalized Gaussian wave package;
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In which a particle moves in x direction with a velocity v, po=mv, x(t)=vt
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What is time dependence of this observable variable? Of course,

p?

We know the Hamiltonian which is free Hamiltonian in this case. H = Py
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This is the direct analogue of classical mechanics.

By the Fourier transformation the wave function becomes
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(P)t=0 = Po

Now what is the time dependence of the momentum?
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Therefore P does not change

(P)t=0 = po = (P)(t)
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Then, where is the quantum aspect? Instead of just x and p we are talking about <x> and <p>. There is

uncertainty associated with them.
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Does this affect anything in every day life in a visible manner?
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Considering a tiny mass, 10”° kg
AX-Av=10"2m-m/s

How well could anyone localize (position) this mass, realistically? Making an extreme assumption:
Ax=10"m => Av=10"° m/s

Can any experiment measure the velocity in this precision? No way!

In general, Ax is not constant.
(AX)?(t) = 02 + Av?t?

However, even this tiny mass (10”° kg) is still humongous compared to the atomic scale With the
example above, it would take 3 months before the velocity uncertainty increases the position
uncertainty significantly (by 40%). For an electron located within 1 nm, though, the velocity uncertainty

would be so large that it would “smear out” in an instance.

However, in experiments at JLab even the scattered electrons are treated as classical particles and the
flight paths are measured! How can the path of the quantum particle be measured? It’s possible under

this condition:

p = 1000 MeV /c



Ap = 0.1 MeV/c
Ax = 2000 fm = 2pm = 0.002 nm

The location within .002 nm error is good enough to say where the electron went through. Practically
Ax=10 um is good.

In addition to the well-known Heisenberg uncertainty relationship above, one can also formulate a more
“subjective” relationship between the accuracy in which the energy of a system is known, and time.
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But what is AT ( T is NOT an operator)? Here’s one way to interpret, again with the example of the
Gaussian wave packet:

Let’s say we define T as the time how long the wave takes to move some distance L. Then T = L/v where
L is the distance and v is velocity. There is uncertainty in this time since you don’t know the exact
location of the wave. Therefore,
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NOTE: The average energy is (slightly) higher than the classical energy, so although position and
momentum for the Gaussian wave package are following classical trajectories, the agreement is not
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perfect.

2

AE = v- AP

o
AEAT =v-AP—=APo = —
v 2



The reason the motion of the Gaussian wave packet comes out close to classical mechanics is because;
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so the average position and the average momentum follow the classical Hamilton equations of motion.

But the r.h.s. is not necessarily always 0. In general, it would be
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This seems to agree with the result in classical mechanics, where = o However, the derivative

would have to be evaluated at the average <X> to make the parallel exact. In other words, instead of
taking the average of the derivative, one would have to take the derivative at the average x. This
difference makes for an important difference between quantum mechanics and classical mechanics,
although it only exists if the third derivative of the potential is non-zero (in other words, if the 1*
derivative of the force varies appreciably over the range of spatial uncertainty, Ax — see Shankar.).
Therefore, one expects that the “motion” of the expectation value <x> in a Harmonic Oscillator potential
is exactly like that in the classical case — sinusoidal oscillation with frequency w, while the classical
approximation is probably less good for a particle in a box or in a Coulomb potential (where the force
does not depend linearly on position). The problem is that the wave function “samples” the potential
“everywhere” at once, while classically, only the potential and its derivative at the exact position of the
particle matter. Let’s look at this more in detail:

a) The Harmonic Oscillator: We already showed that IF the HO is in a superposition of adjacent
eigenstates, the motion is indeed exactly a sinusoidal oscillation, (X)(t)~%cos wt, with the right

frequency (see HW#8 last semester). Note two interesting aspects: i) If the HO is in an eigenstate of the
Hamiltonian, it doesn’t “move” at all (<x> = 0 at all times). This goes with the fact that oscillations can be
used to measure time, but if the energy uncertainty is infinitely small (eigenstate), then the time
uncertainty must be infinitely large (see above). ii) Vice versa, because a superposition of eigenstates
does not have a well-defined energy, time can be measured. However, the amplitude of the motion
does not agree with the classical expectation, even if we use the average energy. This is due to the fact
that the QM energy always has an additional term (again, see above) which is due to the “zero-point”
energy simply required by the Heisenberg uncertainty principle.

b) Hydrogen atom

Again, for a single eigenstate of the Hamiltonian, nothing depends on time. However, if the angular
momentum / becomes large, the “orbits” predicted by quantum mechanics approach those of classical
mechanics (circular orbits of radius r). Specifically, if we choose
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we see that the electron is moving in a plane (Yll is only significantly non-zero around 6 =m/2 for large /).
The radial part? Let’s choose the minimal value for the main quantum number n,
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If /=n-1, L becomes a constant.
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This probability peaks around p=xr=/.
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This is the exact classical answer of the orbit in Coulomb field (to be shown in HW Problem Set 5).
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Meanwhile, if you had a “classical” electron circling the nucleus with angular momentum /, and energy E,
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it would look like and oscillating dipole with frequency w , with w = Of course, such an orbit would

loose energy through dipole radiation of the same frequency and decay instantly. Meanwhile, quantum
mechanics tells us that each orbit by itself does not radiate, but if we have a transition between two
energy levels, the emitted radiation will have a frequency of w = §E/h, with

s = Ry(L- 1)
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In particular, it turns out that the frequency of the radiation emitted in a transition
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has the same value as the classical expectation if n becomes very large (again, to be shown by you in the
next HW problem).



Wavelike Properties

Back again to the Gaussian Wave packet:

How does the wave function look like?
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Because o is much larger than A
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(picture from http://www.jick.net/~jess/hr/skept/GWP/packet1.gif)
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Is the wave phase velocity equal to v? No. Look at the wave function. We can approximately write (see

below)
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What’s E? E=Py*/2m. E is not well defined here. But let’s say for now.
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Quantum mechanical wave behaves like ones in highly dispersive media.
The envelope moves v but the small waves in the envelope move half of v.
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Fluid-like Properties

We already introduced the (probability) density o(r) = |1,U(F)|2 and the (probability) current density
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We can interpret the last term as the product of the density at point 7, multiplied with the average

velocity Vv = 4 at that point. In other words, the probability density and current are equivalent to the
m

mass density and current density of a fluid (like a gas). The continuity equation (which we know holds
for the QM probability density and current, because of Schrédinger’s equation) then guarantees that
this flow of the “equivalent fluid” does not violate mass conservation. More details will follow next
lecture.



