
1-D Translations

Consider the operator
T(∆x) |x〉 = |x+ ∆x〉

Obviously this operator represents a translation in the x direction by some
distance ∆x.
For an infinitesimal shift, ε→ 0, we would have T(ε) |x〉 = |x+ ε〉. Applying
this translation operator to an arbitrary state vector, |ψ〉 yields

T(ε) |ψ〉 = |ψ′〉

In order for this operator to be useful, the following properties must be true:

• If |ψ|2 = 1, then |ψ′|2 = 1

• T(∆x→ 0)→ 1

• T(∆x1)T(∆x2) = T(∆x1 + ∆x2)

From the first requirement we have

〈ψ′|ψ′〉 =
〈
ψ|T†(ε)T(ε)|ψ

〉
= 1

Since this must be valid for ANY arbitrary state vector, it must be the case
that T is unitary, or T†(ε)T(ε) = T(ε)T†(ε) = 1.
Let’s assume that T can be represented as a linear combination of the unit
operator and some arbitrary operator G such that

T(ε) = 1− iε

~
G

and

T†(ε) = 1 +
iε

~
G†

To find what G is, let’s calculate T†(ε)T(ε). Dropping terms with order
higher than ε (since it is infinitesimally small anyway), we see that

T†(ε)T(ε) =

(
1 +

iε

~
G†
)(

1− iε

~
G

)
= 1 +

iε

~
G† − iε

~
G

= 1 +
iε

~
(G† −G)

∴ G is Hermitian
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Now that we know G is Hermitian, let’s examine the commutator between
T(ε) and the X operator:

XT(ε) |x〉 = X |x+ ε〉 = (x+ ε) |x+ ε〉

T(ε)X |x〉 = T(ε)x |x〉 = x |x+ ε〉

So, a translation following by a measurement of the position yields a different
result than first measuring the position followed by a translation (which
should be no great shock).

[X,T(ε)] = εT(ε)

[
X, 1− iε

~
G

]
= ε

(
1− iε

~
G

)
Again, we drop terms with order higher than ε and note that the unit operator
commutes with anything.

[X, 1]− iε

~
[X,G] = ε

→ [X,G] = i~

→ G = P

Therefore, the generator for a translation is simply the momentum operator,
and we have T(ε) = 1− iε

~P.
All of these derivation was used on the assumption that the size of the trans-
lation, ε, is infinitesimally small, but what if the desired shift is some finite
distance ∆x? In that case we break the translation up into N small transla-
tions, apply the translation N times, and allow N to go to infinity.

T(∆x) = lim
N→∞

(
T

(
∆x

N

))N
= lim

N→∞

(
1− i

~
∆x

N
P

)N
= e

−i∆xP
~
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2-D Rotations

We can derive the operator responsible for 2-D rotations in much the same
way that we derived the 1-D translation operator. First let’s note that, clas-
sically, a rotation through an angle ϕ0 can be expressed using the following
matrix equation: [

x
y

]
→
[
x′

y′

]
=

[
cosϕ0 − sinϕ0

sinϕ0 cosϕ0

] [
x
y

]
We define the operator U[Rz(ϕ0)] (causes a rotation through an angle ϕ0

around the z axis) where

U[Rz(ϕ0)] |ψ〉 = |ψR〉

It would be very odd to have a rotation operator that didn’t rotate a position
vector in the same way as a classical system. So, we must require that

U[Rz(ϕ0)] |x, y〉 = |x cosϕ0 − y sinϕ0, x sinϕ0 + y cosϕ0〉 = |R~r〉

Using the same arguments as with the 1-D translation operator, we let
U[Rz(ϕ0)] = 1− iϕ0

~ G. Now consider an infinitesimal rotation ε:

U[Rz(ε)] |x, y〉 = |x cos ε− y sin ε, x sin ε+ y cos ε〉

= |x− εy, y + εx〉

= Tx(−εy)Ty(εx) |x, y〉

=

(
1− i(−εy)

~
Px

)(
1− i(εx)

~
Py

)
|x, y〉

=

(
1 +

iεy

~
Px −

iεx

~
Py

)
|x, y〉

Since [Ri, Pj] = δi,j, both x and y can be ”promoted” to operators. We also
note that this relationship is true for any vector |x, y〉, which allows us to
relate the operators themselves. So we have

U[Rz(ε)] = 1− iε

~
(XPy −YPx) = 1− iε

~
Lz
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Rotation by a finite angle ϕ0 can be obtained in a similar way to translating
by a finite distance:

U[Rz(ϕ0)] = e

−iϕ0Lz
~

A very convenient coordinate system to use when working with this op-
erator is polar coordinates. In polar coordinates, a rotation will only cause
a change in the φ coordinate.

U[Rz(ϕ0)] |ρ, ϕ〉c = |ρ, ϕ+ ϕ0〉c

Here, we introduce a new labeling for our basis vectors - note that they are
still the same position eigenstates as before, just labeled with (ρ, ϕ) instead
of (x, y). In fact, we simply define

|ρ, ϕ〉c = |x = ρ cosϕ, y = ρ sinϕ〉 .

We can then introduce for any ket |ψ〉 its representation in these new variables
as

ψc(ρ, ϕ) := 〈ρ, ϕ|ψ〉 = ψ(ρ cosϕ, ρ sinϕ) = 〈x = ρ cosϕ, y = ρ sinϕ|ψ〉 .

Note that, by the laws of integration,∫ ∫
ρdρdϕψ∗c (ρ, ϕ)ψc(ρ, ϕ) =

∫ ∫
dxdyψ∗(x, y)ψ(x, y) = 1

for proper normalization. This implies∫ ∫
dρdϕ |ρ, ϕ〉c ρ 〈ρ, ϕ| = 1.

For reference, we note the normalization of the new way of writing our basis
vectors:

〈ρ′, ϕ′|ρ, ϕ〉c = 〈ρ′ cosϕ′, ρ′ sinϕ′|ρ cosϕ, ρ sinϕ〉
= δ(ρ′ cosϕ′ − ρ cosϕ)δ(ρ′ sinϕ′ − ρ sinϕ).

Using δ(f(x)− b) = δ(x− f−1(b))/|f ′(x)|, we can evaluate this expression as

〈ρ′, ϕ′|ρ, ϕ〉c =
1

cosϕ′
δ

(
ρ′ − ρ cosϕ

cosϕ′

)
δ(ρ cosϕ tanϕ′ − ρ sinϕ)

=
1

cosϕ′
δ

(
ρ′ − ρ cosϕ

cosϕ′

)
cos2 ϕ′

ρ cosϕ
δ(ϕ′ − arctan(sinϕ/ cosϕ)) =

1

ρ
δ(ρ′ − ρ)δ(ϕ′ − ϕ).
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To find a representation for Lz in polar coordinates, consider an arbitrary
wave function that has been rotated by an infinitesimal amount in polar
coordinates:

ψc(ρ, ϕ+ ε) = 〈ρ, ϕ+ ε|ψ〉

= 〈ρ, ϕ|U[Rz(ε)]|ψ〉

=

〈
ρ, ϕ|1− iε

~
Lz|ψ

〉

= ψc(ρ, ϕ) +
iε

~
〈ρ, ϕ|Lz|ψ〉

We also note that

ψc(ρ, ϕ+ ε) = ψc(ρ, ϕ) + ε
∂

∂ϕ
ψc(ρ, ϕ) +O(ε2)

So,
i

~
〈ρ, ϕ|Lz|ψ〉 =

∂

∂ϕ
ψc(ρ, ϕ)

→ 〈ρ, ϕ|Lz = −i~ ∂

∂ϕ
〈ρ, ϕ|

Now that we have a representation for Lz, it would be useful to know its re-
lated eigenvalues. If |lz〉 is an eigenfunction of Lz, then the related eigenvalue
will be lz. Using the derivative form of Lz will give

−i~ ∂

∂ϕ
ψlz(ρ, ϕ) = lzψlz(ρ, ϕ)

→ ψlz(ρ, ϕ) = AR(ρ)e

ilzϕ

~

To find lz we note that lz/~ must be an integer (since we require ψ(ρ, 2π) =
ψ(ρ, 0)). So, lz is quantized. More specifically,

2πlz
~

= 2πn

→ lz = ~n

5


