1-D Translations

Consider the operator

$$
\mathbf{T}(\Delta x)|x\rangle=|x+\Delta x\rangle
$$

Obviously this operator represents a translation in the x direction by some distance Δx.
For an infinitesimal shift, $\epsilon \rightarrow 0$, we would have $\mathbf{T}(\epsilon)|x\rangle=|x+\epsilon\rangle$. Applying this translation operator to an arbitrary state vector, $|\psi\rangle$ yields

$$
\mathbf{T}(\epsilon)|\psi\rangle=\left|\psi^{\prime}\right\rangle
$$

In order for this operator to be useful, the following properties must be true:

- If $|\psi|^{2}=1$, then $\left|\psi^{\prime}\right|^{2}=1$
- $\mathbf{T}(\Delta x \rightarrow 0) \rightarrow \mathbb{1}$
- $\mathbf{T}\left(\Delta x_{1}\right) \mathbf{T}\left(\Delta x_{2}\right)=\mathbf{T}\left(\Delta x_{1}+\Delta x_{2}\right)$

From the first requirement we have

$$
\left\langle\psi^{\prime} \mid \psi^{\prime}\right\rangle=\langle\psi| \mathbf{T}^{\dagger}(\epsilon) \mathbf{T}(\epsilon)|\psi\rangle=1
$$

Since this must be valid for ANY arbitrary state vector, it must be the case that \mathbf{T} is unitary, or $\mathbf{T}^{\dagger}(\epsilon) \mathbf{T}(\epsilon)=\mathbf{T}(\epsilon) \mathbf{T}^{\dagger}(\epsilon)=\mathbb{1}$.
Let's assume that \mathbf{T} can be represented as a linear combination of the unit operator and some arbitrary operator \mathbf{G} such that

$$
\mathbf{T}(\epsilon)=\mathbb{1}-\frac{i \epsilon}{\hbar} \mathbf{G}
$$

and

$$
\mathbf{T}^{\dagger}(\epsilon)=\mathbb{1}+\frac{i \epsilon}{\hbar} \mathbf{G}^{\dagger}
$$

To find what \mathbf{G} is, let's calculate $\mathbf{T}^{\dagger}(\epsilon) \mathbf{T}(\epsilon)$. Dropping terms with order higher than ϵ (since it is infinitesimally small anyway), we see that

$$
\begin{aligned}
\mathbf{T}^{\dagger}(\epsilon) \mathbf{T}(\epsilon) & =\left(\mathbb{1}+\frac{i \epsilon}{\hbar} \mathbf{G}^{\dagger}\right)\left(\mathbb{1}-\frac{i \epsilon}{\hbar} \mathbf{G}\right) \\
& =\mathbb{1}+\frac{i \epsilon}{\hbar} \mathbf{G}^{\dagger}-\frac{i \epsilon}{\hbar} \mathbf{G} \\
& =\mathbb{1}+\frac{i \epsilon}{\hbar}\left(\mathbf{G}^{\dagger}-\mathbf{G}\right)
\end{aligned}
$$

$\therefore \mathrm{G}$ is Hermitian

Now that we know \mathbf{G} is Hermitian, let's examine the commutator between $\mathbf{T}(\epsilon)$ and the \mathbf{X} operator:

$$
\begin{aligned}
& \mathbf{X T}(\epsilon)|x\rangle=\mathbf{X}|x+\epsilon\rangle=(x+\epsilon)|x+\epsilon\rangle \\
& \mathbf{T}(\epsilon) \mathbf{X}|x\rangle=\mathbf{T}(\epsilon) x|x\rangle=x|x+\epsilon\rangle
\end{aligned}
$$

So, a translation following by a measurement of the position yields a different result than first measuring the position followed by a translation (which should be no great shock).

$$
\begin{aligned}
{[\mathbf{X}, \mathbf{T}(\epsilon)] } & =\epsilon \mathbf{T}(\epsilon) \\
{\left[\mathbf{X}, \mathbb{1}-\frac{i \epsilon}{\hbar} \mathbf{G}\right] } & =\epsilon\left(\mathbb{1}-\frac{i \epsilon}{\hbar} \mathbf{G}\right)
\end{aligned}
$$

Again, we drop terms with order higher than ϵ and note that the unit operator commutes with anything.

$$
\begin{aligned}
{[\mathbf{X}, \mathbb{1}] } & -\frac{i \epsilon}{\hbar}[\mathbf{X}, \mathbf{G}]=\epsilon \\
& \rightarrow[\mathbf{X}, \mathbf{G}]=i \hbar \\
& \rightarrow \mathbf{G}=\mathbf{P}
\end{aligned}
$$

Therefore, the generator for a translation is simply the momentum operator, and we have $\mathbf{T}(\epsilon)=\mathbb{1}-\frac{i \epsilon}{\hbar} \mathbf{P}$.
All of these derivation was used on the assumption that the size of the translation, ϵ, is infinitesimally small, but what if the desired shift is some finite distance Δx ? In that case we break the translation up into N small translations, apply the translation N times, and allow N to go to infinity.

$$
\mathbf{T}(\Delta x)=\lim _{N \rightarrow \infty}\left(\mathbf{T}\left(\frac{\Delta x}{N}\right)\right)^{N}=\lim _{N \rightarrow \infty}\left(\mathbb{1}-\frac{i}{\hbar} \frac{\Delta x}{N} \mathbf{P}\right)^{N}=e^{\frac{-i \Delta x \mathbf{P}}{\hbar}}
$$

2-D Rotations

We can derive the operator responsible for 2-D rotations in much the same way that we derived the 1-D translation operator. First let's note that, classically, a rotation through an angle φ_{0} can be expressed using the following matrix equation:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \rightarrow\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \varphi_{0} & -\sin \varphi_{0} \\
\sin \varphi_{0} & \cos \varphi_{0}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

We define the operator $\mathbf{U}\left[R_{z}\left(\varphi_{0}\right)\right]$ (causes a rotation through an angle φ_{0} around the z axis) where

$$
\mathbf{U}\left[R_{z}\left(\varphi_{0}\right)\right]|\psi\rangle=\left|\psi_{R}\right\rangle
$$

It would be very odd to have a rotation operator that didn't rotate a position vector in the same way as a classical system. So, we must require that

$$
\mathbf{U}\left[R_{z}\left(\varphi_{0}\right)\right]|x, y\rangle=\left|x \cos \varphi_{0}-y \sin \varphi_{0}, x \sin \varphi_{0}+y \cos \varphi_{0}\right\rangle=|R \vec{r}\rangle
$$

Using the same arguments as with the 1-D translation operator, we let $\mathbf{U}\left[R_{z}\left(\varphi_{0}\right)\right]=\mathbb{1}-\frac{i \varphi_{0}}{\hbar} \mathbf{G}$. Now consider an infinitesimal rotation ϵ :

$$
\begin{aligned}
\mathbf{U}\left[R_{z}(\epsilon)\right]|x, y\rangle & =|x \cos \epsilon-y \sin \epsilon, x \sin \epsilon+y \cos \epsilon\rangle \\
& =|x-\epsilon y, y+\epsilon x\rangle \\
& =\mathbf{T}_{x}(-\epsilon y) \mathbf{T}_{y}(\epsilon x)|x, y\rangle \\
& =\left(\mathbb{1}-\frac{i(-\epsilon y)}{\hbar} \mathbf{P}_{x}\right)\left(\mathbb{1}-\frac{i(\epsilon x)}{\hbar} \mathbf{P}_{\mathbf{y}}\right)|x, y\rangle \\
& =\left(\mathbb{1}+\frac{i \epsilon y}{\hbar} \mathbf{P}_{x}-\frac{i \epsilon x}{\hbar} \mathbf{P}_{\mathbf{y}}\right)|x, y\rangle
\end{aligned}
$$

Since $\left[R_{i}, P_{j}\right]=\delta_{i, j}$, both x and y can be "promoted" to operators. We also note that this relationship is true for any vector $|x, y\rangle$, which allows us to relate the operators themselves. So we have

$$
\mathbf{U}\left[R_{z}(\epsilon)\right]=\mathbb{1}-\frac{i \epsilon}{\hbar}\left(\mathbf{X} \mathbf{P}_{y}-\mathbf{Y} \mathbf{P}_{x}\right)=\mathbb{1}-\frac{i \epsilon}{\hbar} \mathbf{L}_{z}
$$

Rotation by a finite angle φ_{0} can be obtained in a similar way to translating by a finite distance:

$$
\mathbf{U}\left[R_{z}\left(\varphi_{0}\right)\right]=e^{\frac{-i \varphi_{0} \mathbf{L}_{z}}{\hbar}}
$$

A very convenient coordinate system to use when working with this operator is polar coordinates. In polar coordinates, a rotation will only cause a change in the ϕ coordinate.

$$
\mathbf{U}\left[R_{z}\left(\varphi_{0}\right)\right]|\rho, \varphi\rangle_{c}=\left|\rho, \varphi+\varphi_{0}\right\rangle_{c}
$$

Here, we introduce a new labeling for our basis vectors - note that they are still the same position eigenstates as before, just labeled with (ρ, φ) instead of (x, y). In fact, we simply define

$$
|\rho, \varphi\rangle_{c}=|x=\rho \cos \varphi, y=\rho \sin \varphi\rangle
$$

We can then introduce for any ket $|\psi\rangle$ its representation in these new variables as

$$
\psi_{c}(\rho, \varphi):=\langle\rho, \varphi \mid \psi\rangle=\psi(\rho \cos \varphi, \rho \sin \varphi)=\langle x=\rho \cos \varphi, y=\rho \sin \varphi \mid \psi\rangle .
$$

Note that, by the laws of integration,

$$
\iint \rho d \rho d \varphi \psi_{c}^{*}(\rho, \varphi) \psi_{c}(\rho, \varphi)=\iint d x d y \psi^{*}(x, y) \psi(x, y)=1
$$

for proper normalization. This implies

$$
\iint d \rho d \varphi|\rho, \varphi\rangle_{c} \rho\langle\rho, \varphi|=1 .
$$

For reference, we note the normalization of the new way of writing our basis vectors:

$$
\begin{array}{r}
\left\langle\rho^{\prime}, \varphi^{\prime} \mid \rho, \varphi\right\rangle_{c}=\left\langle\rho^{\prime} \cos \varphi^{\prime}, \rho^{\prime} \sin \varphi^{\prime} \mid \rho \cos \varphi, \rho \sin \varphi\right\rangle \\
=\delta\left(\rho^{\prime} \cos \varphi^{\prime}-\rho \cos \varphi\right) \delta\left(\rho^{\prime} \sin \varphi^{\prime}-\rho \sin \varphi\right)
\end{array}
$$

Using $\delta(f(x)-b)=\delta\left(x-f^{-1}(b)\right) /\left|f^{\prime}(x)\right|$, we can evaluate this expression as

$$
\begin{array}{r}
\left\langle\rho^{\prime}, \varphi^{\prime} \mid \rho, \varphi\right\rangle_{c}=\frac{1}{\cos \varphi^{\prime}} \delta\left(\rho^{\prime}-\rho \frac{\cos \varphi}{\cos \varphi^{\prime}}\right) \delta\left(\rho \cos \varphi \tan \varphi^{\prime}-\rho \sin \varphi\right) \\
=\frac{1}{\cos \varphi^{\prime}} \delta\left(\rho^{\prime}-\rho \frac{\cos \varphi}{\cos \varphi^{\prime}}\right) \frac{\cos ^{2} \varphi^{\prime}}{\rho \cos \varphi} \delta\left(\varphi^{\prime}-\arctan (\sin \varphi / \cos \varphi)\right)=\frac{1}{\rho} \delta\left(\rho^{\prime}-\rho\right) \delta\left(\varphi^{\prime}-\varphi\right) .
\end{array}
$$

To find a representation for \mathbf{L}_{z} in polar coordinates, consider an arbitrary wave function that has been rotated by an infinitesimal amount in polar coordinates:

$$
\begin{aligned}
\psi_{c}(\rho, \varphi+\epsilon) & =\langle\rho, \varphi+\epsilon \mid \psi\rangle \\
& =\langle\rho, \varphi| \mathbf{U}\left[R_{z}(\epsilon)\right]|\psi\rangle \\
& =\langle\rho, \varphi| \mathbb{1}-\frac{i \epsilon}{\hbar} \mathbf{L}_{z}|\psi\rangle \\
& =\psi_{c}(\rho, \varphi)+\frac{i \epsilon}{\hbar}\langle\rho, \varphi| \mathbf{L}_{z}|\psi\rangle
\end{aligned}
$$

We also note that

$$
\psi_{c}(\rho, \varphi+\epsilon)=\psi_{c}(\rho, \varphi)+\epsilon \frac{\partial}{\partial \varphi} \psi_{c}(\rho, \varphi)+\mathcal{O}\left(\epsilon^{2}\right)
$$

So,

$$
\begin{aligned}
\frac{i}{\hbar}\langle\rho, \varphi| \mathbf{L}_{z}|\psi\rangle & =\frac{\partial}{\partial \varphi} \psi_{c}(\rho, \varphi) \\
\rightarrow\langle\rho, \varphi| \mathbf{L}_{z} & =-i \hbar \frac{\partial}{\partial \varphi}\langle\rho, \varphi|
\end{aligned}
$$

Now that we have a representation for \mathbf{L}_{z}, it would be useful to know its related eigenvalues. If $\left|l_{z}\right\rangle$ is an eigenfunction of \mathbf{L}_{z}, then the related eigenvalue will be l_{z}. Using the derivative form of \mathbf{L}_{z} will give

$$
\begin{gathered}
-i \hbar \frac{\partial}{\partial \varphi} \psi_{l_{z}}(\rho, \varphi)=l_{z} \psi_{l_{z}}(\rho, \varphi) \\
\rightarrow \psi_{l_{z}}(\rho, \varphi)=A R(\rho) e^{\frac{i l_{z} \varphi}{\hbar}}
\end{gathered}
$$

To find l_{z} we note that l_{z} / \hbar must be an integer (since we require $\psi(\rho, 2 \pi)=$ $\psi(\rho, 0))$. So, l_{z} is quantized. More specifically,

$$
\begin{gathered}
\frac{2 \pi l_{z}}{\hbar}=2 \pi n \\
\rightarrow l_{z}=\hbar n
\end{gathered}
$$

