
Angular Momentum

For any vector operator ~V = {vx, vy, vz}

[Vi, Lz] = ih̄εijkVk

For infinitesimal rotation,

[Vi, Lz]δφj = ih̄εijkVkδφj

For rotation about any axis,

[Vi, ~n.L]dφn = ih̄(~n× ~V )idφn

We know,

[L2, Lz] = 0

It means we can find the common set of eigen function for L2 and Lz.
Suppose we have eigen function |α,m > such that,

L2|α,m >= α|α,m >

Lz|α,m >= h̄m|α,m >

(assuming eigen values of Lz are integer multiple of h̄.)
To find eigen values of L2:
Lets invent,

L+ = Lx + iLy

L− = Lx − iLy
Also,L− = (L+)†

Now,

[Lz, L±] = [Lz, Lx]± i[Lz, Ly]

= ih̄Ly ± i(ih̄Lx)

= ih̄Ly ± h̄Lx
= ±h̄L±

Again,

L2[L+|α,m >] = L+L
2|α,m >
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= αL+|α,m >

Lz[L+|α,m >] = [L+Lz + [lz, L+]]|α,m >

= mh̄L+|α,m >] + h̄L+|α,m >

= (m+ 1)h̄L+|α,m >

So,

L±|α,m >= C±(α,m)|α,m± 1 >

C is introduced to account normalization.
In addition,m can’t be arbitrary. It should be fixed within some limit.
Here,

< α,m|L2 − L2
z|α,m >

=< α,m|L2
x + L2

y|α,m >

= |Lx|α,m > |2 + |Ly|α,m > |2whichis > 0

Therefore,

< α,m|L2 − L2
z|α,m >= α−m2h̄2 > 0

The value of m is constrained by the this equation.m can’t be arbitrarily
positive or negative.
It should follow that,

L+|l,mmax >= 0

Here,

L−L+ = L2
x + L2

y + i[Lx + Ly]

= L2 − L2
z + i(ih̄Lz)

= L2 − L2
z − h̄Lz

So,

L2 − L2
z − h̄Lz|l,mmax >= 0

or, (α− h̄2m2 − h̄2m)|l,mmax >= 0

Therefore,

α = h̄2mmax(mmax + 1)
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= h̄2l(l + 1)

calling mmax = l
Thus we obtain,

Lz|l,m >= h̄m|l,m >

L2|l,m >= h̄2l(l + 1)|l,m >

This gives the condition for mmax.Similarly, we can find that,mmin = −l
Hence, the range for m is −l to +l.
Now,
For,
l = 0, m = 0
l = 1

2
, m = −1

2
, 1
2

l = 1, m = 1, 0,−1
l = 3

2
, m = −3

2
, −1

2
, 1
2
, 3
2

We have 2l + 1 eigen vectors for any given l.
Lz should give only integer value.In order to generalize 1

2
integer value

we invent ~J which describes rotations such that J has eigen function |j,mj >.
Now,

J2|j,mj >= h̄2j(j + 1)|j,mj >

and,

Jz|j,mj >= h̄mj

j = o,
1

2
, .....

n

2
;mj = −j,−j + 1, ......+ j

Quantum mechanics tells us that there might be rotations of space that can’t
be defined by ~r × ~p which exist in classical mechanics.

Lets evaluate C±:

|C±|2 = |L+|l,m > |2

=< l,m|L−L+|l,m >

= h̄2[l(l + 1)−m2 −m]

or, C+ = h̄
√
l(l + 1)−m(m+ 1)

Similarly, C− = h̄
√
l(l + 1)−m(m− 1)
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In spherical coordinates,

x = rsinθcosφ, y = rsinθsinφ, z = rcosθ

And,

L+ = h̄eiφ
(
∂

∂θ
+
icotθ∂

∂φ

)

L− = h̄e−iφ
(
− ∂

∂θ
+
icotθ∂

∂φ

)
and from HW Set 9:

~L2 = −h̄2
(

1

sin θ

∂

∂θ
sin θ∂θ +

1

sin2 θ

∂2

∂φ2

)
.

We know that
L+|l, l〉 = 0

from which we can deduce that

Y l
l (θ, φ) = (−1)l

√
(2l + 1)!

4π

1

2ll!
sinl θeilφ.

All other Y m
l ’s can be deduced from this by repeatedly applying L−.

An arbitrary state with given angular momentum quantum numbers l,m
can be written

ψ(r, θ, φ) = R(r)Y m
l (θ, φ)

where for

m > 0, Y m
l (θ, φ) = (−1)m

√√√√2l + 1(l −m)!

4π(l +m)!
Pm
l (cosθ)eimφ

and for

m < 0, Y m
l (θ, φ) = (−1)m

√√√√2l + 1(l − |m|)!
4π(l +m)!

P
|m|
l (cosθ)eimφ

For a particle in a rotationally symmetric potential V (r) the Hamiltonian
in spherical coordinates is

H =
−h̄2∇2

2m
+ V (r)
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with

∇2 =

(
1

r2
∂

∂r
r2
∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ∂θ +

1

r2 sin2 θ

∂2

∂φ2

)
.

Therefore, we can write the Hamiltonian as

=
L2

2mr2
− h̄2Dr

2m
+ V (r)

where we define

Dr =
1

r2
∂

∂r
r2
∂

∂r
.

We are interested in eigenstates of the Hamiltonian

HψE,l,m = EψE,l,m

or,
−h̄2Drψ

2m
+

L2ψ

2mr2
+ V (r) = Eψ

Assume ψ = R(r)Y m
l (θ, φ). Also

1

2mr2
L2Y m

l =
h̄2

2mr2
l(l + 1)Y m

l (θ, φ)

The radial equation is therefore,

− h̄2

2m
DrR(r) +

[
h̄2l(l + 1)

2mr2
+ V (r)

]
R(r) = ER(r)

Let R(r) = U(r)
r

Then, [
d2

dr2
− l(l + 1)

r2
− 2m

h̄2
[V (r)− E]

]
U(r) = 0.

For now, let’s restrict ourselves to the case V (r) = 0 (it could be an
arbitrary constant, but we can always set it to zero by redefining E). In this
case, the Schrödinger equation reads[

d2

dr2
− l(l + 1)

r2
− k2

]
U(r) = 0

with

k2 =
2m

h̄2
[V − E].

Now lets look at the limiting cases:

When r → 0, for l = 0, U =

{
sinkr
coskr
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We can ignore the 2nd possibility since it would lead to an overall wave
function

ψ = R(r)Y 0
0 (θ, φ) ∝ 1

r

at the origin but we know that the Laplacian of this is a delta function at
the origin. So it cannot solve the Schrödinger equation unless the potential
itself is a delta function.

For l 6= 0,
l(l + 1)

r2

dominates over the potential term, so

U ′′ − l(l + 1)

r2
U = 0.

Its solutions are,

U ≈ rl+1

U ≈ 1

rl

Again, the 2nd solution cannot be correct at the origin since the full wave
function

ψ = R(r)Y m
l (θ, φ)

could not be normalized:

|ψ|2 =
∫
r2dr

∫
d cos θ

∫
dφ|R(r)|2|Y m

l (θ, φ)|2

=
∫
r2dr|R(r)|2 ≈

∫
r2dr

1

r2l+2

which explodes at the origin.
We already know what the solution for a free particle looks like in carte-

sian coordinates:

ψ(~r) =
1

(2πh̄)3/2
e
i~p·~r
h̄

To solve the radial equation in spherical coordinates,

U ′′ =
l(l + 1)U

r2
− k2U,

we define ρ = kr so that U(r) = V (kr) = V (ρ). Then,

U ′′ = k2v′′ =
l(l + 1)k2

ρ2
U − U
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or
d2v

dρ2
+

(
1− l(l + 1)

ρ2

)
v = 0.

Introduce dl = ∂
∂ρ

+ l+1
ρ

and d†l = −∂
∂ρ

+ l+1
ρ

. This yields

dld
†
l =
−∂2

∂ρ2
+
l(l + 1)

ρ2

d†ldl =
−∂2

∂ρ2
+

(l + 1)(l + 2)

ρ2

Now we can rewrite the equation for v:

dld
†
l vl(ρ) = vl(ρ)

Multiplying from the left with d†l and regrouping the ladder operators we
find

d†ldld
†
l vl(ρ) =

(
−∂2

∂ρ2
+

(l + 1)(l + 2)

ρ2

)
d†l vl(ρ) = d†l vl(ρ)

which is the equation for vl+1(ρ). We can therefore conclude that the ladder
operator d†l acting on vl(ρ) turns it into (a multiple of) the radial eigenstate
for the next higher l. Thus, if we can start with the solution for l = 0, we can
produce all higher-l solutions by repeated application of the ladder operator.

We already know that for l = 0 the solutions are

v0(ρ) =

{
sinρ
−cosρ

If we want to find vl(ρ) then,we have to carry out the following:

vl(ρ) = d†l−1d
†
l−2......d

†
0v0(ρ).

We can rewrite this if we remind ourselves that we are really after the
radial solutons R(r) = U(r)/r = v(ρ)/r:

RE,l=0(r) =

{
sinkr
r

= ksinkr
kr

= kj0(kr)
−coskr

r
= −kcoskr

kr
= −kn0(kr)

In general

RE,l(r) = vl(ρ)
r

= k

{
jl(ρ)
nl(rho)

where jl is the spherical Bessel function and nl is the Neumann function.
We can show (using the expression involving the ladder operator) that

jl(ρ) = (−ρ)l
(

1

ρ

∂

∂ρ

)l
j0(ρ)
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nl(ρ) = (−ρ)l
(

1

ρ

∂

∂ρ

)l
n0(ρ)

While we know that only the spherical Bessel functions can contribute at
the origin, this more general solution is useful if we have to “piece together”
a solution for a potential that has one value near the origin and a different
value for r > a (particle in a “spherical box” of radius a). In that case,
the jl contribute in the center and we have to use the continuity of the wave
function and its derivative to match to a combination of Bessel and Neumann
functions at r ≥ a.

For a truly free particle, any value of E > 0 is allowed and there is exactly
one solution for each combination E, l,m. On the other hand, if the particle
is locked inside a rigid sphere (V (r) =∞ for r > a), we have to require that
RE,l(r) = 0 for r = a. This leads to only certain values of k and therefore
E being permissible – we once again get quantized energy eigenstates. For
instance, for l = 0, we have to require ka = nπ with integer n.

Finally, we can make the connection with the cartesian form of the free
particle wave function - since the eigenstates in spherical coordinates must
form a complete basis, we should be able to express the plane wave as a
linear combination of solutions in spherical coordinates. For simplicity, let’s
assume that the wave travels along the z-direction, ~p = pẑ. Then

ψ(~r) =
1

(2πh̄)3/2
e
ipz
h̄ =

1

(2πh̄)3/2
e
ipr cos θ

h̄

which is already expressed in spherical coordinates. Since there is no φ
dependence, we can assume that only Y 0

l ’s can contribute. Indeed, the plane
wave can be written as

ψ(~r) = Σlclkjl(kr)Y
0
l (θ, φ).
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