Angular Momentum

For any vector operator $\vec{V}=\left\{v_{x}, v_{y}, v_{z}\right\}$

$$
\left[V_{i}, L_{z}\right]=i \hbar \epsilon_{i j k} V_{k}
$$

For infinitesimal rotation,

$$
\left[V_{i}, L_{z}\right] \delta \phi_{j}=i \hbar \epsilon_{i j k} V_{k} \delta \phi_{j}
$$

For rotation about any axis,

$$
\left[V_{i}, \vec{n} . L\right] d \phi_{n}=i \hbar(\vec{n} \times \vec{V})_{i} d \phi_{n}
$$

We know,

$$
\left[L^{2}, L_{z}\right]=0
$$

It means we can find the common set of eigen function for L^{2} and L_{z}.
Suppose we have eigen function $\mid \alpha, m>$ such that,

$$
\begin{gathered}
L^{2}|\alpha, m>=\alpha| \alpha, m> \\
L_{z}|\alpha, m>=\hbar m| \alpha, m>
\end{gathered}
$$

(assuming eigen values of L_{z} are integer multiple of \hbar.)
To find eigen values of L^{2} :
Lets invent,

$$
\begin{aligned}
& L_{+}=L_{x}+i L_{y} \\
& L_{-}=L_{x}-i L_{y}
\end{aligned}
$$

Also, $L_{-}=\left(L_{+}\right)^{\dagger}$
Now,

$$
\begin{gathered}
{\left[L_{z}, L_{ \pm}\right]=\left[L_{z}, L_{x}\right] \pm i\left[L_{z}, L_{y}\right]} \\
=i \hbar L_{y} \pm i\left(i \hbar L_{x}\right) \\
=i \hbar L_{y} \pm \hbar L_{x} \\
= \pm \hbar L_{ \pm}
\end{gathered}
$$

Again,

$$
L^{2}\left[L_{+} \mid \alpha, m>\right]=L_{+} L^{2} \mid \alpha, m>
$$

$$
\begin{gathered}
=\alpha L_{+} \mid \alpha, m> \\
L_{z}\left[L_{+} \mid \alpha, m>\right]=\left[L_{+} L_{z}+\left[l_{z}, L_{+}\right]\right] \mid \alpha, m> \\
\left.=m \hbar L_{+} \mid \alpha, m>\right]+\hbar L_{+} \mid \alpha, m> \\
=(m+1) \hbar L_{+} \mid \alpha, m>
\end{gathered}
$$

So,

$$
L_{ \pm}\left|\alpha, m>=C_{ \pm}(\alpha, m)\right| \alpha, m \pm 1>
$$

C is introduced to account normalization.
In addition, m can't be arbitrary. It should be fixed within some limit. Here,

$$
\begin{gathered}
<\alpha, m\left|L^{2}-L_{z}^{2}\right| \alpha, m> \\
=<\alpha, m\left|L_{x}^{2}+L_{y}^{2}\right| \alpha, m> \\
=\left|L_{x}\right| \alpha, m>\left.\right|^{2}+\left|L_{y}\right| \alpha, m>\left.\right|^{2} \text { whichis }>0
\end{gathered}
$$

Therefore,

$$
<\alpha, m\left|L^{2}-L_{z}^{2}\right| \alpha, m>=\alpha-m^{2} \hbar^{2}>0
$$

The value of m is constrained by the this equation. m can't be arbitrarily positive or negative.
It should follow that,

$$
L_{+} \mid l, m_{\max }>=0
$$

Here,

$$
\begin{gathered}
L_{-} L_{+}=L_{x}^{2}+L_{y}^{2}+i\left[L_{x}+L_{y}\right] \\
=L^{2}-L_{z}^{2}+i\left(i \hbar L_{z}\right) \\
=L^{2}-L_{z}^{2}-\hbar L_{z}
\end{gathered}
$$

So,

$$
\begin{gathered}
L^{2}-L_{z}^{2}-\hbar L_{z} \mid l, m_{\max }>=0 \\
\operatorname{or},\left(\alpha-\hbar^{2} m^{2}-\hbar^{2} m\right) \mid l, m_{\max }>=0
\end{gathered}
$$

Therefore,

$$
\alpha=\hbar^{2} m_{\max }\left(m_{\max }+1\right)
$$

$$
=\hbar^{2} l(l+1)
$$

calling $m_{\max }=l$
Thus we obtain,

$$
\begin{gathered}
L_{z}|l, m>=\hbar m| l, m> \\
L^{2}\left|l, m>=\hbar^{2} l(l+1)\right| l, m>
\end{gathered}
$$

This gives the condition for $m_{\max }$. Similarly, we can find that, $m_{\min }=-l$ Hence, the range for m is $-l$ to $+l$.
Now,
For,
$l=0, m=0$
$l=\frac{1}{2}, m=\frac{-1}{2}, \frac{1}{2}$
$l=1, m=1,0,-1$
$l=\frac{3}{2}, m=\frac{-3}{2}, \frac{-1}{2}, \frac{1}{2}, \frac{3}{2}$
We have $2 l+1$ eigen vectors for any given l.
L_{z} should give only integer value.In order to generalize $\frac{1}{2}$ integer value we invent \vec{J} which describes rotations such that J has eigen function $\mid j, m_{j}>$. Now,

$$
J^{2}\left|j, m_{j}>=\hbar^{2} j(j+1)\right| j, m_{j}>
$$

and,

$$
\begin{gathered}
J_{z} \mid j, m_{j}>=\hbar m_{j} \\
j=o, \frac{1}{2}, \ldots \ldots \frac{n}{2} ; m_{j}=-j,-j+1, \ldots \ldots+j
\end{gathered}
$$

Quantum mechanics tells us that there might be rotations of space that can't be defined by $\vec{r} \times \vec{p}$ which exist in classical mechanics.

Lets evaluate $C_{ \pm}$:

$$
\begin{gathered}
\left|C_{ \pm}\right|^{2}=\left|L_{+}\right| l, m>\left.\right|^{2} \\
=<l, m\left|L_{-} L_{+}\right| l, m> \\
=\hbar^{2}\left[l(l+1)-m^{2}-m\right] \\
o r, C_{+}=\hbar \sqrt{l(l+1)-m(m+1)}
\end{gathered}
$$

Similarly, $C_{-}=\hbar \sqrt{l(l+1)-m(m-1)}$

In spherical coordinates,

$$
x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta
$$

And,

$$
\begin{gathered}
L_{+}=\hbar e^{i \phi}\left(\frac{\partial}{\partial \theta}+\frac{i \cot \theta \partial}{\partial \phi}\right) \\
L_{-}=\hbar e^{-i \phi}\left(-\frac{\partial}{\partial \theta}+\frac{i \cot \theta \partial}{\partial \phi}\right)
\end{gathered}
$$

and from HW Set 9:

$$
\vec{L}^{2}=-\hbar^{2}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \partial \theta+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right)
$$

We know that

$$
L_{+}|l, l\rangle=0
$$

from which we can deduce that

$$
Y_{l}^{l}(\theta, \phi)=(-1)^{l} \sqrt{\frac{(2 l+1)!}{4 \pi}} \frac{1}{2^{l} l!} \sin ^{l} \theta e^{i l \phi} .
$$

All other Y_{l}^{m} 's can be deduced from this by repeatedly applying L_{-}.
An arbitrary state with given angular momentum quantum numbers l, m can be written

$$
\psi(r, \theta, \phi)=R(r) Y_{l}^{m}(\theta, \phi)
$$

where for

$$
m>0, Y_{l}^{m}(\theta, \phi)=(-1)^{m} \sqrt{\frac{2 l+1(l-m)!}{4 \pi(l+m)!}} P_{l}^{m}(\cos \theta) e^{i m \phi}
$$

and for

$$
m<0, Y_{l}^{m}(\theta, \phi)=(-1)^{m} \sqrt{\frac{2 l+1(l-|m|)!}{4 \pi(l+m)!}} P_{l}^{|m|}(\cos \theta) e^{i m \phi}
$$

For a particle in a rotationally symmetric potential $V(r)$ the Hamiltonian in spherical coordinates is

$$
H=\frac{-\hbar^{2} \nabla^{2}}{2 m}+V(r)
$$

with

$$
\nabla^{2}=\left(\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \partial \theta+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right) .
$$

Therefore, we can write the Hamiltonian as

$$
=\frac{L^{2}}{2 m r^{2}}-\frac{\hbar^{2} D_{r}}{2 m}+V(r)
$$

where we define

$$
D_{r}=\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r} .
$$

We are interested in eigenstates of the Hamiltonian

$$
\begin{gathered}
H \psi_{E, l, m}=E \psi_{E, l, m} \\
o r, \frac{-\hbar^{2} D_{r} \psi}{2 m}+\frac{L^{2} \psi}{2 m r^{2}}+V(r)=E \psi
\end{gathered}
$$

Assume $\psi=R(r) Y_{l}^{m}(\theta, \phi)$. Also

$$
\frac{1}{2 m r^{2}} L^{2} Y_{l}^{m}=\frac{\hbar^{2}}{2 m r^{2}} l(l+1) Y_{l}^{m}(\theta, \phi)
$$

The radial equation is therefore,

$$
-\frac{\hbar^{2}}{2 m} D_{r} R(r)+\left[\frac{\hbar^{2} l(l+1)}{2 m r^{2}}+V(r)\right] R(r)=E R(r)
$$

Let $R(r)=\frac{U(r)}{r}$
Then,

$$
\left[\frac{d^{2}}{d r^{2}}-\frac{l(l+1)}{r^{2}}-\frac{2 m}{\hbar^{2}}[V(r)-E]\right] U(r)=0
$$

For now, let's restrict ourselves to the case $V(r)=0$ (it could be an arbitrary constant, but we can always set it to zero by redefining E). In this case, the Schrödinger equation reads

$$
\left[\frac{d^{2}}{d r^{2}}-\frac{l(l+1)}{r^{2}}-k^{2}\right] U(r)=0
$$

with

$$
k^{2}=\frac{2 m}{\hbar^{2}}[V-E] .
$$

Now lets look at the limiting cases:
When $r \rightarrow 0$, for $l=0, U=\left\{\begin{array}{l}\operatorname{sinkr} \\ \operatorname{coskr}\end{array}\right.$

We can ignore the 2 nd possibility since it would lead to an overall wave function

$$
\psi=R(r) Y_{0}^{0}(\theta, \phi) \propto \frac{1}{r}
$$

at the origin but we know that the Laplacian of this is a delta function at the origin. So it cannot solve the Schrödinger equation unless the potential itself is a delta function.

For $l \neq 0$,

$$
\frac{l(l+1)}{r^{2}}
$$

dominates over the potential term, so

$$
U^{\prime \prime}-\frac{l(l+1)}{r^{2}} U=0 .
$$

Its solutions are,

$$
\begin{gathered}
U \approx r^{l+1} \\
U \approx \frac{1}{r^{l}}
\end{gathered}
$$

Again, the 2nd solution cannot be correct at the origin since the full wave function

$$
\psi=R(r) Y_{l}^{m}(\theta, \phi)
$$

could not be normalized:

$$
\begin{gathered}
|\psi|^{2}=\int r^{2} d r \int d \cos \theta \int d \phi|R(r)|^{2}\left|Y_{l}^{m}(\theta, \phi)\right|^{2} \\
=\int r^{2} d r|R(r)|^{2} \approx \int r^{2} d r \frac{1}{r^{2 l+2}}
\end{gathered}
$$

which explodes at the origin.
We already know what the solution for a free particle looks like in cartesian coordinates:

$$
\psi(\vec{r})=\frac{1}{(2 \pi \hbar)^{3 / 2}} e^{\frac{i \bar{p} \cdot \vec{r}}{\hbar}}
$$

To solve the radial equation in spherical coordinates,

$$
U^{\prime \prime}=\frac{l(l+1) U}{r^{2}}-k^{2} U,
$$

we define $\rho=k r$ so that $U(r)=V(k r)=V(\rho)$. Then,

$$
U^{\prime \prime}=k^{2} v^{\prime \prime}=\frac{l(l+1) k^{2}}{\rho^{2}} U-U
$$

or

$$
\frac{d^{2} v}{d \rho^{2}}+\left(1-\frac{l(l+1)}{\rho^{2}}\right) v=0 .
$$

Introduce $d_{l}=\frac{\partial}{\partial \rho}+\frac{l+1}{\rho}$ and $d_{l}^{\dagger}=\frac{-\partial}{\partial \rho}+\frac{l+1}{\rho}$. This yields

$$
\begin{gathered}
d_{l} d_{l}^{\dagger}=\frac{-\partial^{2}}{\partial \rho^{2}}+\frac{l(l+1)}{\rho^{2}} \\
d_{l}^{\dagger} d_{l}=\frac{-\partial^{2}}{\partial \rho^{2}}+\frac{(l+1)(l+2)}{\rho^{2}}
\end{gathered}
$$

Now we can rewrite the equation for v :

$$
d_{l} d_{l}^{\dagger} v_{l}(\rho)=v_{l}(\rho)
$$

Multiplying from the left with d_{l}^{\dagger} and regrouping the ladder operators we find

$$
d_{l}^{\dagger} d_{l} d_{l}^{\dagger} v_{l}(\rho)=\left(\frac{-\partial^{2}}{\partial \rho^{2}}+\frac{(l+1)(l+2)}{\rho^{2}}\right) d_{l}^{\dagger} v_{l}(\rho)=d_{l}^{\dagger} v_{l}(\rho)
$$

which is the equation for $v_{l+1}(\rho)$. We can therefore conclude that the ladder operator d_{l}^{\dagger} acting on $v_{l}(\rho)$ turns it into (a multiple of) the radial eigenstate for the next higher l. Thus, if we can start with the solution for $l=0$, we can produce all higher- l solutions by repeated application of the ladder operator.

We already know that for $l=0$ the solutions are
$v_{0}(\rho)=\left\{\begin{array}{l}\sin \rho \\ -\cos \rho\end{array}\right.$
If we want to find $v_{l}(\rho)$ then, we have to carry out the following:

$$
v_{l}(\rho)=d_{l-1}^{\dagger} d_{l-2}^{\dagger} \cdots \cdots . d_{0}^{\dagger} v_{0}(\rho) .
$$

We can rewrite this if we remind ourselves that we are really after the radial solutons $R(r)=U(r) / r=v(\rho) / r$:
$R_{E, l=0}(r)=\left\{\begin{array}{l}\frac{\operatorname{sinkr}}{r}=\frac{k \sin k r}{k r}=k j_{0}(k r) \\ \frac{-\cos k r}{r}=\frac{-k \operatorname{coskr}}{k r}=-k n_{0}(k r)\end{array}\right.$
In general
$R_{E, l}(r)=\frac{v_{l}(\rho)}{r}=k\left\{\begin{array}{l}j_{l}(\rho) \\ n_{l}(r h o)\end{array}\right.$
where j_{l} is the spherical Bessel function and n_{l} is the Neumann function.
We can show (using the expression involving the ladder operator) that

$$
j_{l}(\rho)=(-\rho)^{l}\left(\frac{1}{\rho} \frac{\partial}{\partial \rho}\right)^{l} j_{0}(\rho)
$$

$$
n_{l}(\rho)=(-\rho)^{l}\left(\frac{1}{\rho} \frac{\partial}{\partial \rho}\right)^{l} n_{0}(\rho)
$$

While we know that only the spherical Bessel functions can contribute at the origin, this more general solution is useful if we have to "piece together" a solution for a potential that has one value near the origin and a different value for $r>a$ (particle in a "spherical box" of radius a). In that case, the j_{l} contribute in the center and we have to use the continuity of the wave function and its derivative to match to a combination of Bessel and Neumann functions at $r \geq a$.

For a truly free particle, any value of $E>0$ is allowed and there is exactly one solution for each combination E, l, m. On the other hand, if the particle is locked inside a rigid sphere $(V(r)=\infty$ for $r>a)$, we have to require that $R_{E, l}(r)=0$ for $r=a$. This leads to only certain values of k and therefore E being permissible - we once again get quantized energy eigenstates. For instance, for $l=0$, we have to require $k a=n \pi$ with integer n.

Finally, we can make the connection with the cartesian form of the free particle wave function - since the eigenstates in spherical coordinates must form a complete basis, we should be able to express the plane wave as a linear combination of solutions in spherical coordinates. For simplicity, let's assume that the wave travels along the z-direction, $\vec{p}=p \hat{z}$. Then

$$
\psi(\vec{r})=\frac{1}{(2 \pi \hbar)^{3 / 2}} e^{\frac{i p z}{\hbar}}=\frac{1}{(2 \pi \hbar)^{3 / 2}} e^{\frac{i p r \cos \theta}{\hbar}}
$$

which is already expressed in spherical coordinates. Since there is no ϕ dependence, we can assume that only Y_{l}^{0} 's can contribute. Indeed, the plane wave can be written as

$$
\psi(\vec{r})=\Sigma_{l} c_{l} k j_{l}(k r) Y_{l}^{0}(\theta, \phi)
$$

