
Tuesday Lecture (11/29/2011) 

Reminder 

Consider two vector spaces 𝕍 and 𝕌. We want to define the “direct product space” 𝕍⊗ 𝕌. 

We take any two basis elements from 𝕍 and 𝕌, 𝑉!   ,𝑈! >   = 𝑉! >    ⊗    𝑈!   > , as a basis state of  
𝕍⊗ 𝕌. 

Assume 𝕍   has 2 dimensions and 𝕌 has 3 dimensions.  

𝑉! >   = 01    ,  10  

𝑈! >   = 
1
0
0

 , 
0
1
0

 , 
0
0
1

 

Then the basis elements will be,  

0
1   ⊗ 

1
0
0

 =   

0
0
0
1
0
0

    etc. (6 in total) 

General state, 

𝜓𝕍⊗𝕌 >   = 𝛼!"    𝑉! >    ⊗    𝑈!   >!"       

in general, can not be written as product of just two states from 𝕍 and 𝕌:   

𝜓𝕍⊗𝕌 >   ≠ 𝜓𝕍 >    ⊗    𝜓𝕌 > 

Example: Considering the combination 

1
2

  

0
0
1
1
0
0

   =   
1
2
   1
0 ⊗

0
0
1

+ 0
1 ⊗

1
0
0

 

there is no way to write it as just a single product 𝑎𝑏 ⊗
𝑐
𝑑
𝑒

=      

𝑎𝑐
𝑎𝑑
𝑎𝑒
𝑏𝑐
𝑏𝑑
𝑏𝑒

    of states from 𝕍 and 𝕌. 



Another Example: 

Let 𝕍 = 𝕍! be the space of solutions with fixed angular momentum 𝑙 to the radial part of the 
Schrödinger equation. Let 𝕌 be the space of solutions to the angular Schrödinger equation 
𝑙,𝑚 > for the same angular momentum 𝑙, with magnetic quantum number  – 𝑙 ≤ 𝑚 ≤   𝑙  . 

For free states, Dim 𝕍 = ℝ; for bound states Dim 𝕍 = ℤ. Dim 𝕌 = 2𝑙 + 1. Basis vectors of  
𝕍⊗ 𝕌 are 

𝜓!"# >  =    𝑅!"   >   ⊗    𝑙,𝑚 > 

< 𝑟   𝜓!"# >=   𝑅!"(𝑟)𝑌!!(𝜃,𝜑) 

Assume a Hamiltonian  𝐻 that commutes with 𝐿! 

𝐻, 𝐿! = 0 

Here 𝑙 →    𝑙′   transition is not possible (if 𝑙 ≠ 𝑙′). Therefore, all solutions of the Schrödinger 
equation can be chosen to be Eigenvectors to  𝐿! with fixed 𝑙 (or linear combinations thereof). 

Any wave function fulfilling the (time-dependent) Schrödinger equation in this subspace with 
fixed 𝑙 can be written as 

|𝜓! > (𝑡)   =    𝑎   𝐸,𝑚 𝑅!" >  ⊗    𝑙,𝑚 >   𝑒!!"# ℏ    𝑑𝐸  
!

 

Since 𝕌 can be thought of consisting of column vectors of  2𝑙 + 1 complex numbers, the most 
general vector in 𝕍⊗ 𝕌 is of the form 

|𝜓 >=

𝑅!(𝑟)
𝑅!!!(𝑟)..

.
𝑅!!(𝑟)

 

 

For the previous wave function |𝜓! > 𝑡 , 𝑅! 𝑟 =    𝑎   𝐸,𝑚 = 𝑙   𝑅!" 𝑟 𝑒!
!"#

ℏ𝑑𝐸 etc. 

In this interpretation, the basis elements look as follows: 

!
!

!!,! !
⋮
!

 etc.  

 



Previously, we have shown that the angular momentum operators  J2, Jz allow not only integer, 
but also half-integer values for the quantum numbers j, m where the eigenvalues of J2 are 
𝑗(j+ 1)ℏ and the eigenvalues for Jz are 𝑚ℏ,−𝑗 ≤ 𝑚 ≤   𝑗 (in integer increments). 

For each value of j we define a (2j+1) – dimensional subspace with basis 𝑗,𝑚   >   . How do we 
interpret the half-integer values of j? It turns out that in addition to orbital angular momentum L 
(which can only have integer values for 𝑙), there is also an intrinsic property of each (elementary) 
particle called spin s (somewhat akin to rotation of a body around its own axis). In fact, any 
Hamiltonian that is consistent with special relativity must commute with this quantity for 
elementary particles: 𝐻, 𝑆! = 0. Other than charge, the only absolute invariants for elementary 
particles are their mass m and spin s, which therefore serve to define them.  

Particle (elementary ones 
are bold) 

Spin s 

Higgs , π, K, 4He 0 
ν, µ, e, quarks, p, 3He ½ 
γ, W, Z, ρ 1 

 

Each such particle therefore must “live in” a sub space of defined spin 

s = 0, +1/2, +1, +3/2, …  

with possible basis states |𝑚!   >, −𝑠 ≤ 𝑚! ≤   𝑠. 

Similar to orbital angular momentum operators, here we have spin operators   Sx, Sy, Sz, S2
, S+, S-  

which represent (infinitesimal) rotations in this new space and fulfill all the usual commutator 
rules as well as relationships like 

Sz S+ 𝑚!   >  = ℏ(𝑚!   + 1)S! 𝑚!   > 

In general, a particle with spin s must then be represented in the product space of its spatial 
coordinates,  𝕍 with Dim 𝕍 = ℝ!, and its “spin coordinates”, 𝕌, with Dim 𝕌 = 2𝑠 + 1. 

The basis states in 𝕍⊗ 𝕌 are given by 𝛼,𝑚 >  =    𝛼 >⊗ 𝑚! > ; ms = +s,….,-s (α represents 
any quantum numbers describing the basis states in spatial coordinates): 

< 𝑟 𝛼,𝑚! >  =   𝑅!  (𝑟)   ⊗    𝑚! > 

Most general state = 

!!(!)
!!!!(!)..

.
!!!(!)

 



If  H = Hspatial + Hspin , [Hspatial , 𝑆  ] = 0 and Hspin acts only on spin degrees of freedom, then all 
eigenstates of H can be chosen in the form 𝛼 >⊗ 𝑚! >. 

The simplest non-trivial case is spin-1/2: 

S= ½ which yields Dim 𝕌 = 2, so 𝕌 = ℂ! with basis states    !!   ,      
!
!  

which are eigenfunctions to Sz with magnetic quantum numbers ms = + ½ and - ½: 

𝑆! !
! = ℏ

!
   !
! , 𝑆! !

! = − ℏ
!
   !
!   (*) 

General |𝜓 >  ∈   𝕌   =>  
𝛼
𝛽  ; 𝛼,𝛽  𝜖  ℂ 

If we normalize the vector, then  𝛼 ! + 𝛽 ! = 1 ⟹ we can write 𝛼 = cos 𝛾 , 𝛽 = sin 𝛾 

⟹ |𝜓 ≥ cos 𝛾 𝑒!!!
sin 𝛾 𝑒!!!

 

                    = 𝑒!
!!!!!

!
cos 𝛾 𝑒

!
!(!!!!!)

sin 𝛾 𝑒
!!
! (!!!!!)

 

= 𝑒!
!!!!!

!
cos 𝛾 𝑒

!
!Δ!

sin 𝛾 𝑒
!!
! Δ!

 

Any operator in this vector space must be represented by a 2x2 matrix: 

𝑂 =
𝑂!
!  
!
!

𝑂!
!!

!!
!

𝑂!!
!   
!
!

𝑂!!
!   
!!
!

 which can be expressed as a linear combination of 4 “basis” matrices: 

𝑂 = 𝜃!𝜎!
!!!,!,!,!

 

𝜎! =
1 0
0 1       𝜎! =

0 1
1 0             𝜎! =

0 −𝑖
𝑖 0    𝜎! =

1 0
0 −1  

In particular, the three components of the spin vector operator are 

𝑆!   =
ℏ
!
𝜎! (i = x,y,z). This can be proven as follows: 

𝑆!   =
ℏ
!
𝜎! follows simply from the definition  of the basis, Eq. (*) 



Similarly, it must be true that 𝑆! = ℏ 0 1
0 0    since 𝑆! !

! =   ℏ !
!  according to our results for 

arbitrary j, and 𝑆! = ℏ 0 0
1 0 . Then all we need is that 𝑆! =

!
!
𝑆! + 𝑆!  and 𝑆! =

!
!!
𝑆! − 𝑆!  

Finally, 𝑆! = !
!
ℏ!  𝟙 = 𝑠(𝑠 + 1)ℏ!𝜎!   .  This does not give anything new. It commutes with all 

possible operators as it must.  

Some properties of the Pauli matrices: 

𝜎!𝜎! = 𝑖 𝜀!"#𝜎!
!

+   𝛿!"𝜎! 

𝜎!𝜎! = −𝜎!𝜎!  => The Pauli matrices anti-commute. 

𝜎! ,𝜎! =  2𝑖 𝜀!"#𝜎!!  

Eigen functions of Sz;  
1
0 , 01   

Sx =>          !
!
1
1 , !

!
      1
−1  

Sy =>          !
!
1
𝑖 , !

!
      1
−𝑖  

As shown above, up to a constant phase (irrelevant), any properly normalized state can be 
written like 

cos 𝛾 𝑒!
!
!Δ!

sin 𝛾 𝑒
!
!Δ!

 

 

A rotation around the 𝑛 is given by 𝑒!
!"!.!
ℏ = 𝟙− 𝑖𝜃 !.!

ℏ
+ −𝑖𝜃 ! !.!

ℏ
!.!
ℏ
+⋯ 

We know that !.!
ℏ
= !⋅!

!
 

𝑒!
!"!.!
ℏ = 𝟙− 𝑖𝜃

𝑛 ⋅ 𝜎
2 +

1
2
−𝑖𝜃
2

!

𝑛 ⋅ 𝜎 ! +⋯ 

                                                                             𝑛 ⋅ 𝜎 !   = 𝑛!  𝜎! + 𝑛!  𝜎! + 𝑛!  𝜎! 𝑛!  𝜎! + 𝑛!  𝜎! + 𝑛!  𝜎!  

                    = 𝑛!
!𝜎!! + 𝑛!

!𝜎!! + 𝑛!
!𝜎!! = 𝟙 



                                            =
1
𝑛!

−𝑖𝜃
2

!""  !

!

𝑛 ⋅ 𝜎 +   
1
𝑛!

−𝑖𝜃
2

!"!#  !

!

𝟙 

     = −𝑖 sin𝜃 2𝑛 ⋅ 𝜎 + cos
𝜃
2 𝟙 

=
cos𝜃 2− 𝑖 sin

𝜃
2𝑛! −𝑖 sin𝜃 2𝑛! − sin

𝜃
2𝑛!

−𝑖 sin𝜃 2𝑛! + sin
𝜃
2𝑛! cos𝜃 2+ 𝑖 sin

𝜃
2𝑛!

 

Rotation φ around z axis;  

𝑒!!
!
! 0

0 𝑒!
!
!

 

Rotation around z axis changes the relative phase of the two components of a spinor. 

Rotation around y-axis: 

cos𝜃 2 − sin𝜃 2
sin𝜃 2 cos𝜃 2

 

Combination (Euler angles) corresponds to rotating the spinor pointing in +z-direction to the 
direction given by the spherical coordinates θ, φ: 

𝑒!!
!
! 0

0 𝑒!
!
!

cos𝜃 2 − sin𝜃 2
sin𝜃 2 cos𝜃 2

1
0  

=      
cos𝜃 2 𝑒

!!! !

sin𝜃 2 𝑒
!! !

 

This is exactly the form of the most general state possible if we identify 𝜃 2 = 𝛾 and 𝜑 = Δ𝛿! 
This means that for each possible state of a spin-1/2 particle, there is (exactly) one direction in 
space (given by the spherical coordinates θ, φ) such that it is in the eigenstate with ms = +1/2 of 
the spin operator pointing in that direction, 𝑛 ⋅ 𝑆. Of course, for all other directions (except −𝑛), 
the state is not in an eigenstate of the corresponding spin operator, and therefore will have a 
statistical uncertainty for any measurement of the spin component along that direction. 

 

  



Force Due to a magnetic field B on a length s of wire carrying current I:  F = BIs 

Torque on square loop with side length s  = 2.s/2 BIs sin θ 

Magnetic moment       =  Is2 

𝜇 = 𝐼𝑎  𝑛 

𝜏 = 𝜇  ×𝐵 

Work dW= 𝜏𝑑θ 

Let initial orientation be at θ=90 

Work done = 𝜇𝐵 sin𝜃  𝑑𝜃!!"#$%
!"  

Potential energy stored in the loop, 𝑉!"# =   −𝜇𝐵 cos𝜃!"#$% 

Magnetic dipole moment of a single charge q orbiting at fixed radius r with velocity v: 

𝜇 =
𝑞𝑣
2𝜋𝑟 𝑟

! =
𝑞𝑣𝑟
2 =

𝑞
2𝑚𝑐 𝐿 

Interaction Hamiltonian is given by, 

𝐻!"# = −𝜇.𝐵 

                                    = −
𝑞
2𝑚𝑐 𝐽.𝐵 

Electron Spin :   𝐻!"# = −𝑔 !
!!"

𝑆.𝐵  

                        = 𝑔 !ℏ
!!"

!
!
𝜎.𝐵   Here 𝜇!= !ℏ

!!"
   and  g = 2.(1.00116) 

                        = −𝛾𝑆.𝐵 

 

In general Hamiltonian can have.., 

 

𝜓 >!"#$%#&   ⨂𝜒   ; 𝜒 =
𝑎
𝑏  

𝐻 =
𝑃!

2𝑚 𝟙+   𝑔𝜇!
1
2𝜎.𝐵   



𝜓 >(!!!)  =>    𝜓 >(!)  = 𝑒!
!"#
ℏ 𝜓 >(!!!)           

Rotation around axis of 𝐵 by an angle of 𝑔𝜇!
!"
ℏ

  

|𝜓 >(!)  = 𝑒!!"!!!!.
!  
!   
!
ℏ 

Here    gproton = 2(2.79) 

  gneutron =2(-1.91) 

If the magnetic field is inhomogeneous; 

Force = −∇𝑉!"# = 𝜇.∇𝐵   

Consequence: Stern-Gerlach apparatus which can measure the angular momentum (spin) 
component along the z-direction determined by the field direction. 


