Reminder

Consider two vector spaces \mathbb{V} and \mathbb{U}. We want to define the "direct product space" $\mathbb{V} \otimes \mathbb{U}$.
We take any two basis elements from \mathbb{V} and $\mathbb{U},\left|V_{i}, U_{j}>=\left|V_{i}>\otimes\right| U_{j}>\right.$, as a basis state of $\mathbb{V} \otimes \mathbb{U}$.

Assume \mathbb{V} has 2 dimensions and \mathbb{U} has 3 dimensions.

$$
\begin{gathered}
\left\lvert\, V_{i}>=\binom{0}{1}\right.,\binom{1}{0} \\
\left\lvert\, U_{i}>=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right.,\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
\end{gathered}
$$

Then the basis elements will be,

$$
\binom{0}{1} \otimes\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right) \text { etc. (6 in total) }
$$

General state,

$$
\left|\psi_{\mathbb{V} \otimes \mathbb{U}}>=\sum_{i j} \alpha_{i j}\right| V_{i}>\otimes \mid U_{j}>
$$

in general, can not be written as product of just two states from \mathbb{V} and \mathbb{U} :
$\left|\psi_{\mathbb{V} \otimes \mathbb{U}}>\neq\left|\psi_{\mathbb{V}}>\otimes\right| \psi_{\mathbb{U}}>\right.$
Example: Considering the combination

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
0 \\
0
\end{array}\right)=\frac{1}{\sqrt{2}}\left[\binom{1}{0} \otimes\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)+\binom{0}{1} \otimes\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right]
$$

there is no way to write it as just a single product $\binom{a}{b} \otimes\left(\begin{array}{l}c \\ d \\ e\end{array}\right)=\left(\begin{array}{c}a c \\ a d \\ a e \\ b c \\ b d \\ b e\end{array}\right)$ of states from \mathbb{V} and \mathbb{U}.

Another Example:

Let $\mathbb{V}=\mathbb{V}_{l}$ be the space of solutions with fixed angular momentum l to the radial part of the Schrödinger equation. Let \mathbb{U} be the space of solutions to the angular Schrödinger equation $l l, m>$ for the same angular momentum l, with magnetic quantum number $-l \leq m \leq l$.

For free states, $\operatorname{Dim} \mathbb{V}=\mathbb{R}$; for bound states $\operatorname{Dim} \mathbb{V}=\mathbb{Z}$. $\operatorname{Dim} \mathbb{U}=2 l+1$. Basis vectors of $\mathbb{V} \otimes \mathbb{U}$ are

$$
\begin{aligned}
& \left|\psi_{E l m}>=\left|R_{E l}>\otimes\right| l, m>\right. \\
& <\vec{r} \mid \psi_{E l m}>=R_{E l}(r) Y_{l}^{m}(\theta, \varphi)
\end{aligned}
$$

Assume a Hamiltonian H that commutes with L^{2}

$$
\left[H, L^{2}\right]=0
$$

Here $l \rightarrow l^{\prime}$ transition is not possible (if $l \neq l^{\prime}$). Therefore, all solutions of the Schrödinger equation can be chosen to be Eigenvectors to L^{2} with fixed l (or linear combinations thereof). Any wave function fulfilling the (time-dependent) Schrödinger equation in this subspace with fixed l can be written as

$$
\left|\psi_{l}>(t)=\int \sum_{m} a(E, m)\right| R_{E l}>\otimes \mid l, m>e^{-i E t / \hbar} d E
$$

Since \mathbb{U} can be thought of consisting of column vectors of $2 l+1$ complex numbers, the most general vector in $\mathbb{V} \otimes \mathbb{U}$ is of the form

$$
\left\lvert\, \psi>=\left(\begin{array}{c}
R_{l}(r) \\
R_{l-1}(r) \\
\vdots \\
\cdot \\
R_{-l}(r)
\end{array}\right)\right.
$$

For the previous wave function $\mid \psi_{l}>(t), R_{l}(r)=\int a(E, m=l) R_{E l}(r) e^{-i E t / \hbar} d E$ etc.
In this interpretation, the basis elements look as follows: $\left(\begin{array}{c}0 \\ 0 \\ R_{E, l}(r) \\ \vdots \\ 0\end{array}\right)$ etc.

Previously, we have shown that the angular momentum operators $\mathbf{J}^{2}, \mathbf{J}_{z}$ allow not only integer, but also half-integer values for the quantum numbers j, m where the eigenvalues of \mathbf{J}^{2} are $j(\mathrm{j}+1) \hbar$ and the eigenvalues for \mathbf{J}_{z} are $m \hbar,-j \leq m \leq j$ (in integer increments).

For each value of j we define a $(2 j+1)$ - dimensional subspace with basis $\mid j, m>$. How do we interpret the half-integer values of j ? It turns out that in addition to orbital angular momentum $\overrightarrow{\mathrm{L}}$ (which can only have integer values for l), there is also an intrinsic property of each (elementary) particle called spin s (somewhat akin to rotation of a body around its own axis). In fact, any Hamiltonian that is consistent with special relativity must commute with this quantity for elementary particles: $\left[H, S^{2}\right]=0$. Other than charge, the only absolute invariants for elementary particles are their mass m and spin s, which therefore serve to define them.

Particle (elementary ones are bold)	Spin s
Higgs $, \pi, \mathrm{K},{ }^{4} \mathrm{He}$	0
$\mathbf{v}, \boldsymbol{\mu}, \mathbf{e}$, quarks, $\mathrm{p},{ }^{3} \mathrm{He}$	$1 / 2$
$\boldsymbol{\gamma}, \mathbf{W}, \mathbf{Z}, \rho$	1

Each such particle therefore must "live in" a sub space of defined spin
$s=0,+1 / 2,+1,+3 / 2, \ldots$
with possible basis states $\mid m_{s}>,-s \leq m_{s} \leq s$.
Similar to orbital angular momentum operators, here we have spin operators $S_{x}, S_{y}, S_{z}, S^{2}, S_{+}, S_{-}$ which represent (infinitesimal) rotations in this new space and fulfill all the usual commutator rules as well as relationships like

$$
\mathrm{S}_{\mathrm{z}} \mathrm{~S}_{+}\left|m_{s}>=\hbar\left(m_{s}+1\right) \mathrm{S}_{+}\right| m_{s}>
$$

In general, a particle with spin s must then be represented in the product space of its spatial coordinates, \mathbb{V} with $\operatorname{Dim} \mathbb{V}=\mathbb{R}^{3}$, and its "spin coordinates", \mathbb{U}, with $\operatorname{Dim} \mathbb{U}=2 s+1$.

The basis states in $\mathbb{V} \otimes \mathbb{U}$ are given by $\left|\alpha, m>=|\alpha>\otimes| m_{s}>; \mathrm{m}_{\mathrm{s}}=+\mathrm{s}, \ldots\right.$, ,-s $(\alpha$ represents any quantum numbers describing the basis states in spatial coordinates):
$<\vec{r}\left|\alpha, m_{s}>=R_{\alpha}(\vec{r}) \otimes\right| m_{s}>$
Most general state $=\left(\begin{array}{c}R_{s}(\vec{r}) \\ R_{S-1}(\vec{r}) \\ \vdots \\ R_{-s}(\vec{r}) \\ \end{array}\right)$

If $\mathbf{H}=\mathbf{H}_{\text {spatial }}+\mathbf{H}_{\text {spin }},\left[\mathbf{H}_{\text {spatial }}, \vec{S}\right]=0$ and $\mathbf{H}_{\text {spin }}$ acts only on spin degrees of freedom, then all eigenstates of \mathbf{H} can be chosen in the form $\left.|\alpha>\otimes| m_{s}\right\rangle$.

The simplest non-trivial case is spin-1/2:
$S=1 / 2$ which yields $\operatorname{Dim} \mathbb{U}=2$, so $\mathbb{U}=\mathbb{C}^{2}$ with basis states $\binom{1}{0},\binom{0}{1}$
which are eigenfunctions to S_{z} with magnetic quantum numbers $m_{s}=+1 / 2$ and $-1 / 2$:
$S_{z}\binom{1}{0}=\frac{\hbar}{2}\binom{1}{0}, S_{z}\binom{0}{1}=-\frac{\hbar}{2}\binom{0}{1}$
General $\left\lvert\, \psi>\in \mathbb{U}=>\binom{\alpha}{\beta}\right. ; \alpha, \beta \in \mathbb{C}$
If we normalize the vector, then $|\alpha|^{2}+|\beta|^{2}=1 \Rightarrow$ we can write $|\alpha|=\cos \gamma,|\beta|=\sin \gamma$

$$
\begin{aligned}
& \quad \Rightarrow \left\lvert\, \psi \geq\left(\begin{array}{ll}
\cos \gamma & e^{i \delta_{\alpha}} \\
\sin \gamma & e^{i \delta_{\beta}}
\end{array}\right)\right. \\
& =e^{i \frac{\delta_{\alpha}+\delta_{\beta}}{2}}\left(\begin{array}{ll}
\cos \gamma & e^{\frac{i}{2}\left(\delta_{\alpha}-\delta_{\beta}\right)} \\
\sin \gamma & e^{\frac{-i}{2}\left(\delta_{\alpha}-\delta_{\beta}\right)}
\end{array}\right) \\
& =e^{i \frac{\delta_{\alpha}+\delta_{\beta}}{2}}\left(\begin{array}{ll}
\cos \gamma & e^{\frac{i}{2} \Delta \delta} \\
\sin \gamma & e^{\frac{-i}{2} \Delta \delta}
\end{array}\right)
\end{aligned}
$$

Any operator in this vector space must be represented by a 2×2 matrix:
$\hat{O}=\left(\begin{array}{cc}O_{\frac{1}{2} \frac{1}{2}} & O_{\frac{1}{2}-\frac{1}{2}} \\ O_{\frac{-1}{2} \frac{1}{2}} & O_{\frac{-1}{2} \frac{-1}{2}}\end{array}\right)$ which can be expressed as a linear combination of 4 "basis" matrices:
$\hat{O}=\sum_{i=0, x, y, z} \theta_{i} \sigma_{i}$
$\sigma_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \sigma_{x}=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
In particular, the three components of the spin vector operator are
$S_{i}=\frac{\hbar}{2} \sigma_{i}(i=\mathrm{x}, \mathrm{y}, \mathrm{z})$. This can be proven as follows:
$S_{z}=\frac{\hbar}{2} \sigma_{z}$ follows simply from the definition of the basis, Eq. (*)

Similarly, it must be true that $S_{+}=\hbar\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ since $S_{+}\binom{0}{1}=\hbar\binom{1}{0}$ according to our results for arbitrary j, and $S_{-}=\hbar\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$. Then all we need is that $S_{x}=\frac{1}{2}\left(S_{+}+S_{-}\right)$and $S_{y}=\frac{1}{2 i}\left(S_{+}-S_{-}\right)$

Finally, $S^{2}=\frac{3}{4} \hbar^{2} \mathbb{1}=s(s+1) \hbar^{2} \sigma_{0}$. This does not give anything new. It commutes with all possible operators as it must.

Some properties of the Pauli matrices:
$\sigma_{i} \sigma_{j}=i \sum_{k} \varepsilon_{i j k} \sigma_{k}+\delta_{i j} \sigma_{0}$
$\sigma_{i} \sigma_{j}=-\sigma_{j} \sigma_{i}=>$ The Pauli matrices anti-commute.
$\left[\sigma_{i}, \sigma_{j}\right]=2 i \sum_{k} \varepsilon_{i j k} \sigma_{k}$
Eigen functions of $S_{z} ;\binom{1}{0},\binom{0}{1}$
$S_{x}=>\quad \frac{1}{\sqrt{2}}\binom{1}{1}, \frac{1}{\sqrt{2}}\binom{1}{-1}$
$S_{y}=>\quad \frac{1}{\sqrt{2}}\binom{1}{i}, \frac{1}{\sqrt{2}}\binom{1}{-i}$
As shown above, up to a constant phase (irrelevant), any properly normalized state can be written like

$$
\left(\begin{array}{cc}
\cos \gamma & e^{-\frac{i}{2} \Delta \delta} \\
\sin \gamma & e^{\frac{i}{2} \Delta \delta}
\end{array}\right)
$$

A rotation around the \hat{n} is given by $e^{-\frac{i \theta n \cdot \vec{s}}{\hbar}}=\mathbb{1}-i \theta \frac{\hat{n} \cdot \vec{S}}{\hbar}+(-i \theta)^{2} \frac{\hat{n} \cdot \vec{S}}{\hbar} \frac{\hat{n} \cdot \vec{S}}{\hbar}+\cdots$
We know that $\frac{\hat{n} \cdot \vec{S}}{\hbar}=\frac{\hat{n} \cdot \vec{\sigma}}{2}$

$$
\begin{aligned}
& e^{-\frac{i \theta \hat{n} \cdot \vec{s}}{\hbar}}=\mathbb{1}-i \theta \frac{\hat{n} \cdot \vec{\sigma}}{2}+\frac{1}{2} \frac{(-i \theta)^{2}}{2}(\hat{n} \cdot \vec{\sigma})^{2}+\cdots \\
&(\hat{n} \cdot \vec{\sigma})^{2}=\left(\hat{n}_{x} \sigma_{x}+\hat{n}_{y} \sigma_{y}+\hat{n}_{z} \sigma_{z}\right)\left(\hat{n}_{x} \sigma_{x}+\hat{n}_{y} \sigma_{y}+\hat{n}_{z} \sigma_{z}\right) \\
&=\left(\hat{n}_{x}{ }^{2} \sigma_{x}{ }^{2}+\hat{n}_{y}{ }^{2} \sigma_{y}{ }^{2}+\hat{n}_{z}{ }^{2} \sigma_{z}{ }^{2}\right)=\mathbb{1}
\end{aligned}
$$

$$
\begin{array}{r}
=\sum_{\text {odd } n} \frac{1}{n!}\left(\frac{-i \theta}{2}\right)^{n} \hat{n} \cdot \vec{\sigma}+\sum_{\text {even } n} \frac{1}{n!}\left(\frac{-i \theta}{2}\right)^{n} \mathbb{1} \\
=-i \sin \theta / 2 \hat{n} \cdot \vec{\sigma}+\cos \theta / 2 \mathbb{1} \\
=\left(\begin{array}{cc}
\cos \theta / 2-i \sin \theta / 2 \hat{n}_{z} & -i \sin \theta / 2 \hat{n}_{x}-\sin \theta / 2 \hat{n}_{y} \\
-i \sin \theta / 2 \hat{n}_{x}+\sin \theta / 2 \hat{n}_{y} & \cos \theta / 2+i \sin \theta / 2 \hat{n}_{z}
\end{array}\right)
\end{array}
$$

Rotation φ around z axis;

$$
\left(\begin{array}{cc}
e^{-i^{\varphi} / 2} & 0 \\
0 & e^{i \varphi / 2}
\end{array}\right)
$$

Rotation around z axis changes the relative phase of the two components of a spinor.
Rotation around y-axis:

$$
\left(\begin{array}{cc}
\cos \theta / 2 & -\sin \theta / 2 \\
\sin \theta / 2 & \cos \theta / 2
\end{array}\right)
$$

Combination (Euler angles) corresponds to rotating the spinor pointing in +z -direction to the direction given by the spherical coordinates θ, ϕ :

$$
\begin{aligned}
& \left(\begin{array}{cc}
e^{-i^{\varphi} / 2} & 0 \\
0 & e^{i \varphi} / 2
\end{array}\right)\left(\begin{array}{cc}
\cos \theta / 2 & -\sin \theta / 2 \\
\sin \theta / 2 & \cos \theta / 2
\end{array}\right)\binom{1}{0} \\
= & \binom{\cos \theta / 2 e^{-i^{\varphi} / 2}}{\sin \theta / 2 e^{i \varphi} / 2}
\end{aligned}
$$

This is exactly the form of the most general state possible if we identify $\theta / 2=\gamma$ and $\varphi=\Delta \delta$! This means that for each possible state of a spin-1/2 particle, there is (exactly) one direction in space (given by the spherical coordinates θ, ϕ) such that it is in the eigenstate with $m_{\mathrm{s}}=+1 / 2$ of the spin operator pointing in that direction, $\hat{n} \cdot \vec{S}$. Of course, for all other directions (except $-\hat{n}$), the state is not in an eigenstate of the corresponding spin operator, and therefore will have a statistical uncertainty for any measurement of the spin component along that direction.

Force Due to a magnetic field B on a length s of wire carrying current I :

$$
F=B I s
$$

Torque on square loop with side length $s=2 \cdot s / 2$ BIs $\sin \theta$
Magnetic moment $=I s^{2}$

$$
\begin{aligned}
& \vec{\mu}=I a \hat{n} \\
& \vec{\tau}=\vec{\mu} \times \vec{B}
\end{aligned}
$$

Work $\mathrm{dW}=\tau d \theta$
Let initial orientation be at $\theta=90$
Work done $=\mu B \int_{90}^{\theta_{\text {final }}} \sin \theta d \theta$
Potential energy stored in the loop, $V_{\text {pot }}=-\mu B \cos \theta_{\text {final }}$
Magnetic dipole moment of a single charge q orbiting at fixed radius r with velocity v :

$$
\mu=\frac{q v}{2 \pi r} r^{2}=\frac{q v r}{2}=\frac{q}{2 m c} L
$$

Interaction Hamiltonian is given by,

$$
\begin{aligned}
H_{\text {int }} & =-\vec{\mu} \cdot B \\
& =-\frac{q}{2 m c} \vec{J} \cdot B
\end{aligned}
$$

Electron Spin : $H_{\text {int }}=-g \frac{q}{2 m c} \vec{S} \cdot \vec{B}$

$$
\begin{aligned}
& =g \frac{e \hbar}{2 m c} \frac{1}{2} \vec{\sigma} \cdot \vec{B} \quad \text { Here } \mu_{B}=\frac{e \hbar}{2 m c} \quad \text { and } \quad g=2 \cdot(1.00116) \\
& =-\gamma \vec{S} \cdot \vec{B}
\end{aligned}
$$

In general Hamiltonian can have..,
$\mid \psi>_{\text {spatial }} \otimes \chi ; \chi=\binom{a}{b}$
$H=\frac{\vec{P}^{2}}{2 m} \mathbb{1}+g \mu_{B} \frac{1}{2} \vec{\sigma} \cdot \vec{B}$
$\left|\psi>_{(t=0)}=>\left|\psi>_{(t)}=e^{-\frac{i H t}{\hbar}}\right| \psi>_{(t=0)}\right.$
Rotation around axis of \vec{B} by an angle of $g \mu_{B} \frac{B t}{\hbar}$

$$
\left\lvert\, \psi>_{(t)}=e^{-i g \mu_{B} B \widehat{b} \cdot \frac{\vec{\sigma}}{2} \frac{t}{\hbar}}\right.
$$

Here

$$
\begin{gathered}
\mathrm{g}_{\text {proton }}=2(2.79) \\
\mathrm{g}_{\text {neutron }}=2(-1.91)
\end{gathered}
$$

If the magnetic field is inhomogeneous;
Force $=-\nabla \stackrel{\rightharpoonup}{V_{p o t}}=\vec{\mu} . \nabla \vec{B}$
Consequence: Stern-Gerlach apparatus which can measure the angular momentum (spin) component along the z -direction determined by the field direction.

