
0.1 Motion in 1-dimensional space

To present a particle moving along the real axis, we define a Hilbert space
having as its regular vectors |f〉 the complex-valued, continuous, and square-
integrable functions on the real numbers:

f : R→ C
∫ ∞
−∞

f ∗(x)f(x)dx <∞

We do, however, allow our basis to violate the requirement of square-integrability,
giving us the pseudo-bases of

X | x〉 = x | x〉

or
P | p〉 = p | p〉

We can project our waveform ψ onto a particular basis like so

〈x | ψ〉 = ψ(x)

〈p | ψ〉 = ψ̃(p)

If we try to get the x projection of canonical momentum, then

〈x | P | ψ〉 =

∫
dx′〈x | P | x′〉〈x′ | ψ〉

=

∫
~
i
δ′(x− x′)ψ(x′)dx′

=
~
i

∂

∂x
ψ(x)

We remind ourselves:

〈x | p〉 = Φp(x) =
1√
2π~

e
ipx
~

〈p | x〉 = ψx(p) =
1√
2π~

e
−ipx

~

The connection between ψ(x) and ψ̃(p) is theFourier transform

ψ̃(p) = 〈p | ψ〉 =

∫ ∞
−∞
〈p | x′〉〈x′ | ψ〉dx′ = 1√

2π~

∫ ∞
−∞

e
−ipx′

~ ψ(x′)dx′
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Like-wise

ψ(x) =
1√
2π~

∫ ∞
−∞

e
ipx
~ ψ̃(p)dp

Given the hamiltonian for a free particle with no forces on it:

H =
p2

2m

We want to find a basis of eigenvectors

H | ψi〉 = Ei | ψi〉

ψi(t) = ψi(0)e
−iEit

~

Apparently, our p-basis fils the bill:

H | p〉 =
p2

2m
| p〉

E =
p2

2m

Each eigenvalue is twice degenerate, because | p〉 and | −p〉 give you the same
value. Any linear combination of degenerate eigenstates is also an eigenstate
of the same eigenvalue. That is,

1√
2
| p〉+

1√
2
| −p〉

is also an eigenstate.

0.2 Propagator

Given that we know ψ(0) how to we find ψ(t)?

| ψ0〉 =

∫
dp〈p | ψ(0)〉 | p〉 ⇒| ψ(t)〉 =

∫
dp〈p | ψ(0)〉e

−ip2t
2m~ | p〉

| ψ(t)〉 = U(t) | ψ(0)〉 =

(∫
dp | p〉〈p | e

−ip2t
2m~

)
| ψ(0)〉

The expression in parentheses is the unitary propagator in time, the operator
U(t).
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We can use this propagator to answer the following question: If we know
the wave function at every point for the initial time t = 0, ψ(x, 0), how can
we “propagate” this information to the wave function ψ(x, t) at time t? We
are looking for the propagator in x-space, U(x, t;x′, t = 0). You can think
of this as an operator that calculates the contribution coming to the point
x from the initial value of the wave function at x′, after some time t has
elapsed. (Think of electromagnetic waves as an example: The value at some
point in space and time t is the linear superposition of all values at earlier
times that have traveled to this point.)

ψ(x, t) = 〈x | U(t) | ψ(0)〉 =

∫
dx′〈x | U(t) | x′〉 〈x′| | ψ(0)〉 =

∫
dx′U(x, t;x′, 0)ψ(x′, 0)

Plugging in, we get

〈x | U(t) | x′〉 =

∫
dp〈x | p〉e

−ip2t
2m~ 〈p | x′〉 =

1

2π~

∫
ei
px
~ e
−ip2t
2m~ e

−ipx′
~ dp

Recall from Appendix A2 in Shankar∫ ∞
−∞

e−ay
2+by+cdy =

√
π

a
e
b2

4a ec

Here, a = it/2m~ and b = i(x− x′)/~ and thus

U(x, t;x′) =

√
m

2π~it
e−

m
2~it (x−x

′)2

and

ψ(x, t) =

∫
U(x, t;x′)ψ(x′, t = 0)dx′.

Note that, taken literally, U(x, t;x′, 0) would be the wave function of a par-
ticle at time t that was in the state |x′〉 at time t = 0. At first glance one
might think that the exponential guarantees that one can find this particle
still nearby at later times; however, if you take the absolute square, you find
that the probability to find the particle anywhere, even only a split second
later, is the same - whether right were it started or behind the moon. This
is a consequence of the fact that the momentum in this case is completely
undetermined (and can thus be any arbitrary value, so any arbitrary distance
can be travelled in an arbitrarily short time). Formally, it’s a consequence
of the fact that |x〉 is not a proper vector in the Hilbert space and therefore
cannot represent a real state of a real particle.
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0.3 Gaussian Wave Packets

One cannot prepare a state with perfect position and momentum, so instead
you prepare a Gaussian around a point x0 with an average momentum p0:

ψ(x, t = 0) =

√
1√
2πσ

e
ip0x
~ e

−(x−x0)
2

4σ2

Prob(x...x+ dx) = |ψ(x)|2dx; |ψ(x)|2 =
1√
2πσ

e
−(x−x0)

2

2σ2

This is the usual Gaussian probability distribution with mean < x >= x0
and standard deviation σ.

In momentum space:

ψ̃(p, t = 0) =
1√
2π~

∫
e
−ipx

~ ψ(x)dx

=
1√

2π~σ
1

(2π)
1
4

∫
e−

1
4σ2

(x2−2x0x+x20)+
i(p0−p)

~ xdx

So, a = 1
4σ2 , b = x0

2σ2 + i(p0−p)
~ and c = − x20

4σ2 . Therefore,

ψ̃(p, t = 0) =
√
π4σ2

1√
2π~σ

1

(2π)
1
4

e
b2

4a ec =

√
2σ√
2π~

e−
(p0−p)

2

~2 σ2+
i(p0−p)x0

~

=
1√√
2π ~

2σ

e
− (p−p0)

2

4 ~2
4σ2 e−

i(p−p0)x0
~

|ψ̃(p)|2 =
1√

2π ~
2σ

e
− (p−p0)

2

2 ~2
4σ2

〈p〉 = p0

σp =
~

2σx
Thus

∆x∆p =
~
2

We find that the Gaussian wave packet has the smallest product for the
uncertainties of position and momentum that is allowed by the Heisenberg
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uncertainty relationship. It is the best possible approximation to a “local-
ized” particle moving along the x-axis with definite momentum. The width
in either position or momentum space can be chosen arbitrarily, but the other
one will then be inversely proportional. Unfortunately, as we will see now,
the Gaussian wave packet doesn’t remain localized in x-space (although it
has constant width in momentum space).

Let’s find ψ(x, t) using the propagator U(x, t;x′, 0) introduced above.

ψ(x, t) =

√
m

2π~it
1

√
σ(2π)

1
4

∫
e
ip0x

′
~ e−

1
4σ2

(x′−x0)2e−
m

2~it (x
2−2xx′+x′2)dx′

Here, a = 1
4σ2 + m

2~it , b = ip0
~ + x0

2σ2 + mx
~it and c = − x20

4σ2 − mx2

2~it . Therefore,

b2

4a
=

(
x0
2σ2

+
i

~
(p0 −

mx

t
)

)2(
1

σ2
+

2m

~it

)−1
(1)

and

ψ(x, t) =

√
m

2π~tiσ
1

(2π)
1
4

√
π

1
4σ2 − im

2~t
e
−2p0σ

2(p0t−2mx)+i~(m(x−x0)
2+2p0x0t)

2~(~t−2imσ2) .

This gives us

ψ(x, t) =

√
m

2π~tiσ
1

(2π)
1
4

√
π

1
4σ2 − im

2~t
e
− (p0t/m+x0−x)

2

4(σ2+(~/2σ)2t2/m2) e
i=

(
b2

2a
+c

)

where I expanded the exponent to collect its real and imaginary parts.
Let the coefficient in front of the expontential be represented by ζ; then

|ψ(x, t)|2 = ζ∗ζe
− (x−(p0t/m+x0))

2

2(σ2+σ2pt
2/m2) =

1
√

2π
√

(σ2 + σ2
pt

2/m2)
e
− (x−(p0t/m+x0))

2

2(σ2+σ2pt
2/m2)

This is a new Gaussian probability distribution with a mean of

〈x〉 =
p0
m
t+ x0

and a width of

σ2
x = σ2 +

σ2
p

m2
t2
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Over time, the center of the wave packet moves from x0 with constant velocity
p0/m in x-direction. At the same time, its width in x spreads out because of
the additional widening due to the momentum uncertainty. The first aspect
of this motion agrees with the correspondence principle, which says that
Classical Mechanics can be retrieved as the average behavior of expectation
values in Quantum Mechanics; however, the fully Classical description is not
correct since it misses the initial width and further spreading of the wave
packet. On the other hand, in the limit of large masses, it takes centuries
for any appreciable spreading, so in this limit Classical Mechanics becomes
applicable.
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