
This is our first example of a bound state system. A bound state is an eigenstate of the 
Hamiltonian with eigenvalue E that has asymptotically E < V(x) as x → ∞

Couple of general theorems, (for single dimension)

• " if V(x) dips below its asymptotic values at x → ±∞ then there exists a bound state
• " bound states are not degenerate
We are looking for solution to the general problem;

(if V0 → ∞ then retrieve the classical particle in a box)

Hamiltonian:

where           is the momentum operator squared.

To solve the general problem we look for stationary solutions      to Schrödinger’s 
equation.

Find solutions in x-space → multiply by      on the right to construct 

Which we should remember is not the Schrödinger equation, it’s just a representation of 
the Schrödinger equation. It is a good representation if V is independent of x, (example 
of  a V that is dependent of x would be a constant force)
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We require E < V at ∞, and E < V0, for a bound state system. If not then the system is 
closer to a scattering state or an unbound state.

E > 0, else any solutions would grow without bounds as x → ∞

" (If a solution were to be positive then the 2nd derivation would also be positive 
meaning it would grow both for negative and positive x and the system would not be 
square integrable, a requirement of our Hilbert space.)

How ever this is not a major problem as if the well’s bottom is not located at zero then 
we can always re-normalize (define) the potential at the bottom of the well to be zero,(ε 
= E - V1)
" Then the solutions would be

But the eigenfunction would look the same. Similarly the well doesn’t have to start a x = 
0 but a change of coordinates (Ψ’(x) = Ψ(x + ∆x) would yield a more familiar construction. 
While there exists an even more general problem, where the potential on the right of the 
well doesn’t equal the potential on the left, this problem can be solved using principles 
constructed here.

Can we find a dimensionless version of the problem? If we can find a constant inherent 
in the problem such that E becomes unit-less.

 First we divide by h-bar squared over 2m.

Notice that the 2nd derivative has units of length squared. So next we divide [multiply] 
by 2 powers of a ‘natural’ length. It is inherent in this problem that the natural length in 
the length of the well, L

By examining the term (ħ 2/2mL2), we can see that it has units of energy, this reveals 
another inherent unit of the problem, namely E0 = (ħ 2/2mL2)
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The term       characterizes the problem.

The two solutions are 2nd order differential equations, therefore the answer is;

Ψ1(x)= AeKx + Be-Kx

For region 1 we require Be-kx to go to zero, therefor we set B = 0 and our solution 
becomes Ψ1(x)= AeKx, similarly for region 3, Ψ3(x)= De-Kx,

For region 2, the general solution has the form

Ψ2(x)= B cos(kx) + C sin(kx)

At this stage we have 4 unknowns to find. The first can be eliminated by realizing that 
we can multiply the entire wave function by a constant and still retrieve an eigen 
solution, namely by multiplying by 1/A.

We cannot solve the system for all 3 unknowns, but we can use the boundary 
conditions to find relationships between them.

First condition, at x = 0
Ψ1(0)= Ψ2(0) ⇒ 1 = B

Second condition, at x = L
Ψ2(L)= Ψ3(L) ⇒  cos(kL) + C sin(kL) = De-KL

Since the potential is finite everywhere, the 2nd derivative is finite anywhere.

If V jumps to ∞ values, (a delta function, classical particle in a box) there is no 
guarantee that Ψ’ is continuos. This gives us another boundary condition,

Ψ’1(0)= Ψ’2(0) ⇒ K = Ck
∴C = K/k

∴ Ψ2(x) = cos (kx) + (K/k)sin(kx) evaluating Ψ2(x) at x = L we find
∴Ψ2(L)= Ψ3(L) ⇒ cos(kx) + (K/k)sin(kx) = De-KL

∴ D = [cos(kx) + (K/k)sin(kx)]eKL
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Note, if V0 and E are known then K and k are known.

To finish apply the last boundary condition,

Ψ’2(L)= Ψ’3(L)

-ksin(kL) +(k/k)Kcos(kL) = - K(cos(kL) +(K/k)sin(kL))(eKL)(e-KL)

-ksin(kL) +Kcos(kL) = - K(cos(kL) +(K/k)sin(kL))

F1(E) = F2(E) [one function of energy equal to another]

In general we can not find a closed solution. In fact, there must be multiple solutions. 
However, it is clear that only a countable number of values for E can solve this equation, 
so E cannot take on any arbitrary value: E is quantized => for any bound state we have 
a discrete spectrum of bound state energies

2Kcos(kL) = ksin(kL)-(K2/k)sin(kL)

2Kkcos(kL) = k2sin(kL)-K2sin(kL)

2Kkcos(kL) = (k2-K2)sin(kL)

2Kk = (k2-K2)tan(kL)

0 = K2tan(kL) + 2kK -k2tan(kL)

0 = K2 + [(2k)/tan(kL)]K -k2

where a = 1, b = [(2k)/tan(kL)], c = -k2
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from tan(θ/2) = csc(θ) - cot(θ) and cot (θ/2) = csc(θ) +cot (θ) we come to

2 positive solutions,at least 1 of these equations has a solution, K = ktan(kL/2): 
As K goes down, ktan(kL/2) increases; this implies that at some point they will be equal 
to each other: A ground state bound solution can always be found! 

Numerical and graphical solutions of these equations can be found in the spreadsheet 
posted on our website. Higher energy solutions can only be found if V0 is high enough; 
solutions for the first equation for K are interleaved with solutions for the 2nd one.

Note that as Vo -> ∞, K becomes ∞ also. This means we require kL/2 = (2n+1) π/2 (first 
equation) or kL/2 = (2n) π/2 (2nd equation) for integer n. In other words, the solutions 
are kL = nπ for n = 1,2,... and the corresponding energies are En = E0(kL)2 = E0 n2 π2. 
From our solution for the wave function, we see that the term containing sin(kx) 
increases without bound beyond the other terms, so it will be the only surviving term in 
this limit. With other words, the wave function becomes strictly zero outside of zone 2 
and proportional to sin(kx) inside zone 2. (The normalization constant turns out to be
 (2/L)1/2.)
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