
The Classical Limit

For any conserved quantity → continuity equation
Example: Electric charge -> Divergence of current = time derivative of charge density

In the case of QM, we have the probability density of finding a particle near x; total 
probability is conserved.
ρ = |Ψ|2(x) = Ψ*(x)Ψ(x) =
probability = ρ(x)•∆x

we know that the probability over all x is 1

What is the time dependence of the probability density

this introduces the concept of a probability current, j(x)

from

and assuming a simplified Hamiltonian,

Where

summary- catch up

|x〉 |Ψ〉|x〉|Ψ〉

↵changes with time

∴ρ(x) = probability
∆x

a probability density 
(in one dimension)

∫ probability dx =1
-∞

∞

dρ(x)

dt
note: probability 
cannot be created 
nor destroyed, only 
moved

dρ(x)

dt
dj(x)

dx
+ = 0

P2

2m
V+H =

|x〉V(x) |x〉∫V =
-∞

∞
dx

V(x) = a real function of x

dρ(x)

dt
 = d

dt
|x〉 |Ψ〉|x〉|Ψ〉

 { projection operator onto eigenfunction of x, Px

(iħ)d
dt

|P(x)〉〉 = |Ψ〉|Ψ〉 [|Px,H]

[|Px,H] = [|Px,P2/2m] + [|Px,V]

(iħ)d
dt

|P(x)〉〉

↵Postulate no. 4

|x’〉V(x’) |’x〉∫
-∞

∞
dx’

[|Px,V] = 0 = [|x〉 |x〉,V] = 0 = |x〉 |x〉V(x) |x〉 |x〉V(x)- (≠ true if V ≠ V(x))

To find 



We can also find j(x) in term of momentum

classically: j(x) = pVlocal

Commentary, in 3D j becomes
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 {

Ψ*(x)

 {

Ψ(x)

[|Px,P/2m] = |Ψ〉|x〉P2/2m |x〉|Ψ〉 P2/2m-|x〉 |Ψ〉|x〉|Ψ〉∴[|Px,H] =

figure out by writing in full coordinate 
representation (i.e. in terms of x)
↵

↵ singular, but 
complex conjugate

↵-ħ2
2m

+ ∂2

∂x2
Ψ(x)

-ħ2
2m

+ ∂2

∂x2
Ψ*(x)

-ħ2
2m

+ ∂2

∂x2
Ψ(x)= Ψ*(x) Ψ(x)-ħ2

2m
+ ∂2

∂x2
Ψ*(x)-( ( ))

By factoring out a negative ∂
∂x

= ħ2
2m ( )-∂

∂x
Ψ*(x)[ ]∂

∂x
Ψ(x) ∂

∂x
Ψ*(x) Ψ(x)-

Now factoring out a constant, i

= ħ2

2mi ( )-∂
∂x

Ψ*(x)[ ]∂
∂x
Ψ(x) ∂

∂x
Ψ*(x) Ψ(x)-

 {

= j(x)

|x〉|Ψ〉 P2/2m |Ψ〉|x〉|Ψ〉|x〉P2/2m -|x〉|Ψ〉

 {exact imaginary part

j➝

= ħ2

2mi
Ψ*[ ]Ψ Ψ* Ψ-∇➝ ∇➝( )

dρ
dt + = 0j➝∇➝

j➝



Classical Limit

explain commutators and translation of variables

We know, for any variable

If quantum mechanics is the true theory of the universe then clearly classical mechanics 
is wrong, but conversely classical mechanics is extremely successful.

To ratify this we ask how is quantum mechanics connected to classical mechanics?

We found before, a gaussian packet is a good representation of a particle.

The ideal particle, i.e. one in which there is no uncertainty, is an ideal construction.

e.g. an e-1 that is scattered at J-Lab, with 1 GeV = energy, ∴ momentum, P = 1Gev/c

If we were to turn on a magnetic field we would see a trajectory closer to,

With large detectors, “quantum uncertainty” can be neglected, a typical good 
measurement is about 100μm, for the purpose of this discussion let these 
measurements be as low as 100 nm or even 1 nm (even though this is technically 
impossible)
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(iħ)d
dt

O〉〉Ψ = [O,H]〉〉 Ψ

e-

e-

measuring the trajectory of 
the electron at many points

e-
Now measure the radius of 
curvature

resolution in position, σ = 1nm⇒



∴ a single e- can be talked about in a classical track.

What about it’s spread?

if we know momentum

∴ after 10-14 s, spread noticeably increases. However, if the measurement accuracy 
would have been 1 µm = 1000 nm, it would take 10 ns (the length of the whole 
trajectory in a typical detector) for the spreading to make the position noticeably more 
uncertain.
So why doesn’t the electron continue to spread?

→Every position measurement resets the clock on the e- and stops it spreading out to 
the entire universe.

we can similarly say for everyday objects;

• hard to measure accurately enough to appreciate any spread

• they are continually measured.
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σp = ħ = 100 eV
c2σ

Typical momenta are 109 eV/c or more so this is a 
“perturbation” of only 10-7. Even if we measure position 1 
million times, we still get only an uncertainty of 10-4.

t: σ = (1nm)2 + σp2t2
m2

{

(2•10-4c)2t2

me = 511,000 eV/c2

c = 3•1017 nm/s ⇒ 2•10-4c = 6•1013nm/s
↵uncertainty “spread”



Formally

Classical mechanics

What happens to the averages in QM?
<x>, <p> → knowing these values will give you the most exact classical mechanics 
answer.

using the commutator relation [Ω,Λ2] = ΩΛ2-Λ2Ω + ΛΩΛ-ΛΩΛ
= [Ω,Λ]Λ-Λ[Λ,Ω]
or [Ω,Λ]Λ+Λ[Ω,Λ]

∴[X,P2] = [X,P]P + P[X,P] = 2ħiP

∴

What we really want is
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dx = ∂H
dt     ∂p

dp = -∂H
dt      ∂x

d
dt

x〉〉 = 1
iħ

|Ψ〉|Ψ〉 [X,H]

↵where X is the position operator

assume P2

2m
V+H =

= 1
iħ2m

|Ψ〉|Ψ〉 X(P2)-(P2)X

 {adding zero

↵[X,P] = iħ, very, very important

=
1

iħ2m
|Ψ〉|Ψ〉 X(P2)-(P2)X =1

m
|Ψ〉|Ψ〉 P <P>

m

which agrees with the 
classical work for this 
Hamiltonian

1
iħ2m

|Ψ〉|Ψ〉 X(P2)-(P2)X = ∂H
∂P〉〈 this is resolved with the 

correct interpretation

↵might not be true for 
other Hamiltoniansfor the particle in a box 

problem
∂<x>
∂t = 0 (true but not useful)

useful for particle with energy > max V at ∞ any bound state must have 
zero average momentum



Now examine 

However, for perfect agreement we would require that this is

There might be a difference between .          and              due to range of wave 
function. 

Extended wave packets might force the particle away from it’s  average place of 
measurement. 

∂H
∂x〉〈- 

=
∂H
∂<x>- 

holds approximately for V general as long as Ψ is localized and holds exactly only for V 
that is a polynomial of maximally 2nd degree in X.

summary- catch up

∂<P>
∂t

= 1
iħ

|Ψ〉|Ψ〉 [P,H]

↵this time [P,P2/2m] = 0
∂<P>
∂t

= 1
iħ

|Ψ〉|Ψ〉 [P,V]

= ∫dx 1
iħ
( )Ψ*(x)

∂
∂x

V(x) • ∂
∂x
Ψ(x)-ħ

i
Ψ(x) Ψ*(x)

ħ
i

V(x)

Ψ*(x)
∂
∂x

V(x) •- Ψ(x)= = |Ψ〉|Ψ〉 ∂
∂x

V(x) -

= ∂V
∂x〉〈- = ∂H

∂x〉〈- 
note:we retrieve something in 
quantum mechanics that agrees 
with classical mechanics

= ∂H
∂<x>- 

∂H
∂x〉〈- ∂H

∂<x>- 


