
1 Harmonic Oscillator (HO)

The classical Hamiltonian for the HO is given by H = p2

2m+ 1
2kx

2. The frequency

(ω) of the oscillation is independent of the amplitude. It is given by ω =
√
k/m.

Therefore the QMHamiltonian could be written as H = P 2

2m+mω2

2 X2. From this
equation, one can guess that there is a symmetry in position and momentum
space solutions. The solution will not be easy in either momentum or position
space; here we solve in position space.

We are looking for the bound state solutions which satisfy the Schrödinger
equation Hψ = Eψ. All the eigenstates of the Hamiltonian must be bound
states and all energies must be greater than zero. Again we will use the natural
units, but what are the suitable natural units for this problem? The easiest
parameter that can be used as a scale for this problem is the energy E0 = h̄ω.

H

h̄ω
=

P 2

2mh̄ω
+
mω

2h̄
X2

The second natural unit is p0 =
√
mE0 =

√
mh̄ω. Finally, the proper scale for

the position is x0 =
√
h̄/mω = h̄/p0. Using P̂ = P/p0 and X̂ = X/x0 as well

as Ĥ = H/E0, E/E0 = ε we have

Ĥ =
1

2
P̂ 2 +

1

2
X̂2.

We note that in coordinate representation

X̂ = x̂ = x/x0; P̂ =
h̄

ip0

∂

∂x
=

1

i

∂

∂x̂

Finally we write any eigenfunction of H as φ(x) = Cψ(x̂). The constant C is
set by the requirement that both φ and ψ are normalized to one:

∞∫
−∞

|ψ(x̂)|2dx̂ = 1

and
∞∫
−∞

|ψ(x)|2dx = 1 = x0C
2

∞∫
−∞

|ψ(x̂)|2dx̂

from which we conclude

C =
√

1/x0 =
(mω
h̄

)1/4

Therefore, the eigenfunctions of the Hamiltonian fulfill

εψ(x̂) = −1

2

∂2ψ(x̂)

∂x̂2
+

1

2
x̂2ψ(x̂)
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First, we will find the solution for this PDE as x̂→∞. Therefore, we can ignore
the LHS.

∂2ψ(x̂)

∂x̂2
= x̂2ψ(x̂)

Let us try the following solution y∞(x̂) = e−x̂
2/2

∂ψ∞
∂x̂

= −x̂e−x̂
2/2

∂2y∞
∂x̂2

= x̂2e−x̂
2/2 + e−x̂

2/2

The last term of the RHS can be ignored as x̂ → ∞, and are we left with the
Gaussian solution of unit σ. Therefore, the general solution ψ(x̂) can be written
as:

ψ(x̂) = f(x̂)ψ∞(x̂)

where f(x̂) is a finite polynomial 1 which has the form
n∑
k=0

ckx̂
k

ψ(x̂) =

n∑
k=0

ckx̂
ke−x̂

2/2

Substitute in the Schrödinger equation, one gets:
n∑
k=0

εckx̂
ke−x̂

2/2 = 1
2

n∑
k=0

ckx̂
k+2e−x̂

2/2 − 1
2
∂2ψ(x̂)
∂x̂2 ...........................(I)

∂2ψ(x̂)

∂x̂2
=

∂

∂x̂

n∑
k=0

cke
−x̂2/2(kx̂k−1 − x̂k+1)

∂2ψ(x̂)

∂x̂2
=

n∑
k=0

ck(k(k − 1)x̂k−2 − kx̂k − (k + 1)x̂k + x̂k+2)e−x̂
2/2

substitute in equation I,putting every term with power k at the LHS,

n∑
k=0

ckx̂
k(2ε− 2k − 1) = −

n∑
k=2

ckk(k − 1)x̂k−2

re-lable the RHS, k − 2 = k′

RHS = −
n−2∑
k′=0

ck′+2(k′ + 2)(k′ + 1)x̂k
′

RHS = −
n−2∑
k=0

ck+2(k + 2)(k + 1)x̂k

1It must be finite or the full wave function wouldn’t go to zero at ∞ as it must to be
normalizable.
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n∑
k=0

ckx̂
k(2ε− 2k − 1) = −

n−2∑
k=0

ck+2(k + 2)(k + 1)x̂k

Compare coefficient by coefficient, we get:

ck+2 = −ck
2ε− (2k + 1)

(k + 1)(k + 2)
...........................II

ψ(x̂) =

n∑
k=0

ckx̂
ke−x̂

2/2 = Hn(x̂)e−x̂
2/2

Hn are called Hermite polynomials. We have to determine c0 and c1 and then
any other constant can be calculated from the recursion relation. This recursion
relation leads to an infinite set of c’s. However, to retain the correct asymptotic
behavior, we need to ascertain that there is a maximum power x̂n for the Hermite
polynomials. Therefore, the RHS in equation (II) must goes to zero for some
value of k. So,

2ε− (2k + 1) = 0

∃k : 2ε = (2k + 1)

ε = k +
1

2
........................................III

Therefore, we have conditions on our energy. Not every eigenvalue is possible for
the energy.Only the values satisfy equation (III) are allowed.Write the energy
in terms of the dimensional quantity, one gets;

En = (n+
1

2
)h̄ω

We require c0 = 0 if n is odd and c1 = 0 if n is even; as well as (by convention)
cn = 2n. The simple-most Hermite polynomial is H0(x̂), c0 = 20 = 1.The

ground state wave function is < x|E0 >= NCe−x̂
2/2 with N = π−1/4. It is

the same as the asymptotic solution, a Gaussian. The eigenvalue of energy is
1/2h̄ω in this case. In contrast to the “Gaussian wave packet” discussed earlier,
this eigenstate has a constant expectation value for position of < x >= 0 and
a constant width in x-space. In momentum space the solution is also Gaussian
and we have:

< p|E0 >= NCe−(p/p0)2/2

∆x̂ =
√

1/2, ∆x =
√

1/2
√

h̄
mω , ∆p =

√
1/2
√
h̄mω

∆p∆x =
h̄

2

So E0 = h̄ω
2 , the ground state has positive binding energy. The momentum

square is not zero, while < p >= 0.
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Further solutions exist for each n:
H1(x̂) = 2x̂, E1 = 3h̄ω

2

H2(x̂) = 4x̂2 − 2, E2 = 5h̄ω
2

H3(x̂) = 8x̂3 − 12x̂, E3 = 7h̄ω
2

...

In the QM Oscillator, nothing is going back and forth as for the classical
oscillator because we have < x >= 0, and < p >= 0. The higher the energy
of the system, the larger the width of the states becomes. This is expected
because for a classical oscillator the energy is directly proportional to the am-
plitude. Classically, it is also more likely to find the oscillator close to one of
its end points (lower kinetic energy and therefore lower velocity) than in the
middle (higher kinetic energy). This turns out to be true only for the higher
excited states for the quantum oscillator.

To normalize ψ(x̂) we have

∞∫
−∞

|ψ(x̂)|2dx̂ = 1

ψn(x̂) =

√
1√
π2nn!

Hn(x̂)e−x̂
2/2

φn(x) = (
mω

h̄
)

1
4

√
1√
π2nn!

Hn(x/x0)e−(x/x0)2/2
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