Operators

Operator can be represented by its matrix elements.
$\Omega_{i j}=<i|\Omega| j>$
$\Omega: \mathbf{V} \rightarrow \mathbf{V}$

- Hermitian
$\Omega=\Omega^{\dagger} ; \Omega_{i j}^{\dagger}=\Omega_{j i}^{*}$
- Unitary
$U: \mathbf{V} \rightarrow \mathbf{V}$
$U^{\dagger} U=U U^{\dagger}=\mathbf{1}$
$\langle U w \mid U v\rangle=\langle w| U^{\dagger} U|v\rangle=\langle w| \mathbf{1}|v\rangle=\langle w \mid v\rangle$ operator acting on vectors w and v
$\delta_{j k}=\sum_{i} U_{j i}^{*} U_{i k}$
- Unit Matrix

Hermitian and Unitary

$$
\left[\begin{array}{lll}
1 & 0 & 0 \tag{1}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Projection Operator $\mathbf{P}_{\mathbf{V}^{\prime}}$

Generally takes a vector and removes some but not all components. Projects component of vector on subspace, \mathbf{V}^{\prime} along that direction
$\mathbf{V}^{\prime} \subset \mathbf{V}$
If subspace has just 1 dimension (multiples of some vector $\left.\left|v^{\prime}\right\rangle \in \mathbf{V}^{\prime}\right) \Longrightarrow \mathbf{P}_{\mathbf{V}^{\prime}}=\left|v^{\prime}\right\rangle\left\langle v^{\prime}\right|$
$\mathbf{P}_{\mathbf{V}^{\prime}}|v\rangle=\left|v^{\prime}\right\rangle\left\langle v^{\prime} \mid v\right\rangle$
Special case of projection on basis vectors $\mathbf{P}_{j}=|j\rangle\langle j|$
Any vector can be written as $|v\rangle=\sum_{j} P_{j}|v\rangle \therefore \sum_{j} \mathbf{P}_{j}=\mathbf{1}$
if dimension $\mathbf{V}^{\prime}>1$
1.find orthonormal base of $\mathbf{V}^{\prime}:\left|j^{\prime}\right\rangle, j^{\prime}=1 . . m<n$
2.find $\mathbf{P}_{\mathbf{V}^{\prime}}=\sum_{j^{\prime}}\left|j^{\prime}\right\rangle\left\langle j^{\prime}\right|$ vector projects onto \mathbf{V}^{\prime}
if we take $1-\mathbf{P}_{\mathbf{V}^{\prime}}$ we project onto orthogonal subspace $V \rightarrow \mathbf{V}_{\perp}^{\prime}$
Projection operators are hermitian but NOT unitary
Projection operator acting on itself gives same back: $\mathbf{P}_{\mathbf{V}^{\prime}} \mathbf{P}_{\mathbf{V}^{\prime}}=\mathbf{P}_{\mathbf{V}^{\prime}}$

Eigenvalues and Eigenvectors

-examples of projection operator
\mathbf{P}_{j} has eigenvalues of 1 and 0 , with eigenfunctions of $|j\rangle$ and $|i\rangle$ for $i \neq j$
For an arbitrary projection operator $\mathbf{P}_{\mathbf{V}^{\prime}}$ any vector in subspace that this projects onto has eigenvalue of 1; and any vector in the orthogonal subspace $\mathbf{V}_{\perp}^{\prime}$ is eigenvector with eigenvalue 0
-unit matrix: eigenvalue of 1 ; degenerate, n linearly independent eigenvectors with the same eigenvalue any operator that is unitary or hermitian (or. in general, commutes with its adjoint) has exactly n linearly independent EF (eigenvectors, also called "eigenfunctions")
-counterintuitive example in 2D complex vector space:

$$
\Omega=\left[\begin{array}{cc}
\cos \theta & \sin \theta \tag{2}\\
-\sin \theta & \cos \theta
\end{array}\right]
$$

unitary but not Hermitian

$$
\left[\begin{array}{cc}
\cos \theta & \sin \theta \tag{3}\\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\omega\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

where ω is a constant
this example has no degenerate eigenvalues

$$
(\Omega-\omega \mathbf{I})|\omega\rangle=0
$$

singular operator/matix det must be 0

$$
\begin{gathered}
\operatorname{det}\left[\begin{array}{cc}
\cos \theta-\omega & \sin \theta \\
-\sin \theta & \cos \theta-\omega
\end{array}\right]=(\cos \theta-\omega)^{2}+\sin ^{2} \theta=0 \\
\text { we solve this equation for } \omega \\
\cos \theta-\omega= \pm i \sin \theta \Rightarrow \omega_{1,2}=e^{ \pm i \theta}
\end{gathered}
$$

\therefore this does have eigenvalues, but they were hard to see quickly as they are complex

Finding eigenvectors

have " n " zeros, but many can be repeats

$$
(\Omega-\omega \mathbf{I})=\operatorname{Pol}^{n}(\omega)
$$

How to find eigenvectors? (back to example...)

$$
\begin{gather*}
\omega_{1}:\left(\cos \theta-e^{i \theta}\right) a+\sin \theta b=0 \\
\omega_{2}:-\sin \theta a+\left(\cos \theta-e^{i \theta}\right) b=0 \\
\text { after solving, we find: } b= \pm i a \\
\therefore \text { solution is } \\
{\left[\begin{array}{c}
a \\
i a
\end{array}\right]} \tag{5}
\end{gather*}
$$

now we need to normalize our results

$$
\begin{align*}
& \text { let } a=\frac{1}{\sqrt{2}} \\
& \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
i
\end{array}\right] \tag{6}
\end{align*}
$$

and our other eigenvector, $e^{-i \theta}$

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \tag{7}\\
-i
\end{array}\right]
$$

In general, we can always find solutions to the characteristic polynomial $\operatorname{det}(\Omega-\omega \mathbf{I})=P o l^{n}(\omega)$ (in the complex numbers). If we have 1 solution, ω_{1}, we must be able to find EF $\left|\omega_{1}, 1\right\rangle$ by solving set of ($n-1$) linear equations. (The second index " 1 " is only needed in case the eigenvalue is degenerate). We assume $\left|\omega_{1}, 1\right\rangle$ is normalized. Now we must find all vectors perpendicular to this vector, which form a new subspace. $\mathbf{V}=\mathbf{V}_{\left|\omega_{1}\right\rangle}+\mathbf{V}_{\left|\perp \omega_{1}\right\rangle}$ Next we find orthonormal basis of $\mathbf{V}_{\left|\perp \omega_{1}\right\rangle}$ which, together with $\left|\omega_{1}, 1\right\rangle$ forms a new basis. In this basis, Ω has a "block diagonal form" which acts on $\mathbf{V}_{\left|\omega_{1}\right\rangle}$ as a simple multiplication with ω_{1} and on $\mathbf{V}_{\left|\perp \omega_{1}\right\rangle}$ as a regular $(n-1) \times(n-1)$ matrix. We can now repeat this procedure to reduce the size of that matrix, until we are left with a complete, orthonormal new basis $\left|\omega_{i}, \alpha\right\rangle$ in which the operator Ω becomes purely diagonal, with its eigenvalues on the diagonal.
Returning to our prior example:

$$
\begin{gather*}
\Omega=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \tag{8}\\
{\left[\begin{array}{l}
a \\
b
\end{array}\right]=\frac{a-i b}{\sqrt{2}}\left|\omega_{1}\right\rangle, \frac{a+i b}{\sqrt{2}}\left|\omega_{2}\right\rangle} \tag{9}
\end{gather*}
$$

we can write any vector as a linear combination of these
check:

$$
\left\langle\omega_{2} \mid \omega_{1}\right\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & i
\end{array}\right]\left[\begin{array}{l}
1 \tag{10}\\
i
\end{array}\right]=0
$$

Note: Eigenvalues of hermitian operators are all real, while eigenvalues of unitary operators are all of form $e^{i \phi}$.

