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Operators
Operator can be represented by its matrix elements.
Ωij =< i|Ω|j >
Ω: V→ V

• Hermitian
Ω = Ω†; Ω†ij = Ω∗ji

• Unitary
U : V→ V
U†U = UU† = 1
〈Uw|Uv〉 = 〈w|U†U |v〉 = 〈w|1|v〉 = 〈w|v〉 operator acting on vectors w and v
δjk =

∑
i U
∗
jiUik

• Unit Matrix
Hermitian and Unitary  1 0 0

0 1 0
0 0 1

 (1)

• Projection Operator PV′

Generally takes a vector and removes some but not all components. Projects component of vector on
subspace, V′ along that direction
V′ ⊂ V
If subspace has just 1 dimension (multiples of some vector |v′〉 ∈ V′) =⇒ PV′ = |v′〉〈v′|
PV′ |v〉 = |v′〉〈v′|v〉
Special case of projection on basis vectors Pj = |j〉〈j|
Any vector can be written as |v〉 =

∑
j Pj |v〉 ∴

∑
j Pj = 1

if dimension V′ > 1
1.find orthonormal base of V′: |j′〉, j′ = 1..m < n
2.find PV′ =

∑
j′ |j′〉〈j′| vector projects onto V′

if we take 1−PV′ we project onto orthogonal subspace V → V′⊥
Projection operators are hermitian but NOT unitary
Projection operator acting on itself gives same back: PV′PV′ = PV′

Eigenvalues and Eigenvectors
-examples of projection operator
Pj has eigenvalues of 1 and 0, with eigenfunctions of |j〉 and |i〉 for i 6= j
For an arbitrary projection operator PV′ any vector in subspace that this projects onto has eigenvalue of 1;
and any vector in the orthogonal subspace V′⊥ is eigenvector with eigenvalue 0
-unit matrix: eigenvalue of 1; degenerate, n linearly independent eigenvectors with the same eigenvalue
any operator that is unitary or hermitian (or. in general, commutes with its adjoint) has exactly n linearly
independent EF (eigenvectors, also called “eigenfunctions”)

-counterintuitive example in 2D complex vector space:

Ω =

[
cos θ sin θ
− sin θ cos θ

]
(2)

unitary but not Hermitian[
cos θ sin θ
− sin θ cos θ

] [
a
b

]
= ω

[
a
b

]
(3)

where ω is a constant
this example has no degenerate eigenvalues

(Ω− ωI)|ω〉 = 0
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singular operator/matix det must be 0

det

[
cos θ − ω sin θ
− sin θ cos θ − ω

]
= (cos θ − ω)2 + sin2 θ = 0 (4)

we solve this equation for ω

cos θ − ω = ±i sin θ ⇒ ω1,2 = e±iθ

∴ this does have eigenvalues, but they were hard to see quickly as they are complex

Finding eigenvectors

have ”n” zeros, but many can be repeats

(Ω− ωI) = Poln(ω)

How to find eigenvectors? (back to example...)

ω1 : (cos θ − eiθ)a+ sin θb = 0
ω2 : − sin θa+ (cos θ − eiθ)b = 0
after solving, we find: b = ±ia

∴ solution is[
a
ia

]
(5)

now we need to normalize our results

let a =
1√
2

1√
2

[
1
i

]
(6)

and our other eigenvector, e−iθ

1√
2

[
1
−i

]
(7)

In general, we can always find solutions to the characteristic polynomial det(Ω − ωI) = Poln(ω) (in the
complex numbers). If we have 1 solution, ω1, we must be able to find EF |ω1, 1〉 by solving set of (n − 1)
linear equations. (The second index “1” is only needed in case the eigenvalue is degenerate). We assume
|ω1, 1〉 is normalized. Now we must find all vectors perpendicular to this vector, which form a new subspace.
V = V|ω1〉+V|⊥ω1〉 Next we find orthonormal basis of V|⊥ω1〉 which, together with |ω1, 1〉 forms a new basis.
In this basis, Ω has a “block diagonal form” which acts on V|ω1〉 as a simple multiplication with ω1 and on
V|⊥ω1〉 as a regular (n − 1) × (n − 1) matrix. We can now repeat this procedure to reduce the size of that
matrix, until we are left with a complete, orthonormal new basis |ωi, α〉 in which the operator Ω becomes
purely diagonal, with its eigenvalues on the diagonal.
Returning to our prior example:

Ω =

[
cos θ sin θ
− sin θ cos θ

]
(8)

[
a
b

]
=
a− ib√

2
|ω1〉,

a+ ib√
2
|ω2〉 (9)

we can write any vector as a linear combination of these

check:

〈ω2|ω1〉 =
1√
2

[
1 i

] [ 1
i

]
= 0 (10)

Note: Eigenvalues of hermitian operators are all real, while eigenvalues of unitary operators are all of
form eiφ.
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