Graduate Quantum Mechanics - Problem Set 1 - Solutions

Problem 1)

$E=T_{k i n}+V(x)=H(p, x)=\frac{p^{2}}{2 m}+m g x$.
$\frac{\partial H}{\partial p}=\frac{p}{m}=v=\dot{x}$
$-\frac{\partial H}{\partial x}=-m g=F=\dot{p}$

Problem 2)

$\vec{A}\left(r_{\perp}, \varphi, z\right)=\frac{r}{2} b \hat{\varphi} \Rightarrow \quad A_{\varphi}=\frac{r}{2} b, A_{r}=0, A_{z}=0 \Rightarrow$
$\vec{B}=\vec{\nabla} \times \vec{A}=-\frac{\partial A_{\varphi}}{\partial z} \hat{r}+\frac{1}{r} \frac{\partial r A_{\varphi}}{\partial r} \hat{z}=\frac{1}{r} r b \hat{z}=b \hat{z}$
where we took only the non-zero terms from the curl in cylindrical coordinates in the formula sheet. This leads to motion in a circle of radius

Problem 3)

$\vec{F}=q \vec{v} \times \vec{B}=-e(0.1 c)(0.1 T)(-\hat{y})=3 \cdot 10^{7} e \mathrm{~N} / \mathrm{C} \hat{y}=4.8 \cdot 10^{-13} \mathrm{~N} \hat{y}$
The magnitude of this force is constant and it is always perpendicular to the direction of motion. Therefore, the electron moves on a circle of radius $R=\frac{m v}{e B}=0.0017 \mathrm{~m}$ centered at $x=0, y=R$. Its angular velocity is $\omega=\frac{v}{R}=1.76 \cdot 10^{10} \mathrm{rad} / \mathrm{s}$ which corresponds to a full orbit every 0.36 ns .

Problem 4)

For each of the following statements about Quantum Mechanics, indicate whether you believe them to be correct or wrong. Give a 1-2 sentence explanation for each of your responses:
a. If all possible information on a system is given, Quantum Mechanics can predict the outcome of any future measurement on the system accurately. WRONG: in general, only probabilities can be predicted
b. Quantum Mechanics cannot predict anything precisely. WRONG - then it wouldn't be physics!
c. Quantum Mechanics cannot predict with certainty the result of any particular measurement on a single particle. DEPENDS - if a particle is in an eigenstate of an observable, I can predict the outcome of a measurement of that observable precisely.
d. The Heisenberg Uncertainty principle means that nothing can be measured precisely. WRONG - see above
e. The x - and y-components of any angular momentum cannot simultaneously be measured with arbitrary precision. CORRECT
f. The time evolution of a quantum mechanical wave function is described by a unitary operator. CORRECT

Problem 5)

The most general solution is
$y(x)=A \exp (m x)+B \exp (-m x)$
which can be shown by plugging it in (as a $2^{\text {nd }}$ order differential equation, there must be two integration constants, A and B).
Since $y(0)=A+B$ and $y^{\prime}(0)=m A-m B$, we can solve for A and B in terms of the initial conditions at $x=0$.

Problem 6)

$z=\exp (c)=\exp (\operatorname{Re}(c)+i \operatorname{Im}(c))=\exp (\operatorname{Re}(c))(\cos (\operatorname{Im}(c))+i \sin (\operatorname{Im}(c)))$
$z^{*}=\exp (\operatorname{Re}(c))(\cos (\operatorname{Im}(c))-i \sin (\operatorname{Im}(c)))=\exp (\operatorname{Re}(c)) \exp (-i \operatorname{Im}(c))=\exp \left(c^{*}\right)$

Problem 7)

See next recitation

